Robust Estimation

Introduction. A common computational problem in vision is to esti-
mate the parameters of a model from image data.

Examples of parameterized models to be fit to image datadedloes
and ellipses, camera calibration models, image motion i8p8PB pla-
nar regions, 3D models, and human face models.

Key Difficulties:
e The models must be fit to noisy image data.
e Initial guesses for the models must be generated autortiatica

e Multiple occurrences of the models are often representdtien
data. But the number and types of models are typically unkrew
priori. They must also be determined from the data.

e The data typically contains (structured) outliers, i.&@s@rvations
that do not belong to the model being fitted. These must someho
be ignored during the model fitting.

Reading: Chapter 15 of Forsyth and Ponce (skip Sec. 15.6 for now).
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Working Example Problem: Fitting Lines

Example Problem: Find the best fitting line(s) to a set of image edgel
positions,
D= {fk}é(:r

For simplicity, we ignore edgel strengths and orientatioaie.
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Robust line estimator output. The Canny edgel positifis} are
marked (red dots), along with the fitted line segments (green
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Current Goals

We use the example of estimating image lines to:
¢ Introduce robust M-estimation and show how it deals withiers.
e Discuss leverage points.
¢ Introduce methods for generating initial guesses.
e Introduce issues in model selection.

— We have more to say about this difficult issue later in thigseu
Here we briefly consider selecting the number of models (i.e.
lines), but not the model type (eg. lines versus curves).

e Discuss the general types of errors to be expected.
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Perpendicular Error
The equation for points on one infinite lineL is
n-r+c=20.

Here we normalizgi|| = 1. The error in an observed poifit (relative
to the lineL) is defined to be the perpendicular distance

e(Ty; 1, ¢c) = 1T+ c.
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Note that the error perpendicular to the line is used heres ihiffer-
ent from the usual linear regression model for which onlygher in
they component is minimized.
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Least Squares Problem

Given a set of edgel positions = {7} ,, consider estimating the
line parametersr, ¢) by minimizing the squared error

K
O(it,c) = Y (i@ +c)*, for il =1. (1)

k=1

By the theory of Lagrange multipliers, the solution musts$at

—— (A, \) =0, for L(ii,c,\) = O(it,c) — A(||7||> = 1).

The derivatives ofZ with respect toi, ¢, and\ give (respectively):

K
Z Q(ﬁTfk + C)fk — 2\ = 6,
k=1
K

2
S 2T+ o) =0, @
k=1

|7|]P—1=0.
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Least Squares Solution

The solution to the LS problem above satisfies three negeseaditions:

SE (ATE + )T — i = 0, (3)
SE ATH 4c = 0, (4)
7> =1 = 0. (5)

First, it is straightforward to show from Eqn. (4) thamust satisfy
c = —ilm, (6)

—

wherem = % Zle 75, is the mean edgel location. Substitutingn” 77 for c into the objective
function (on the previous page) yields

0 = ) (i"(@ —mm))?*. Y

k=1
In this form it is clear that the optimal line passes througihrmean of the edgel positions.
Using (6) and minor algebraic manipulation, we can also itewine first constraint above in (3) as
S B (T —m)TA = i (8)

This is further simplified using the covariance matrix of dugel locations, i.e.,

K K
C = %Z(fk—m)(fk—m)’f = %(;@@T) —mm T (9)
That is, Eqn. (8) is equivalent to
Ci = pit, (10)
which shows that is an eigenvector of the covariance mattix

Finally, using (5), (6) and (10), we can simplify the objgetfunction to obtain:

K
O = (A2, —m))? = Ki'Cil = Kpu . (11)
k=1

Therefore, to minimiz&, we select the eigenvector corresponding to the smallgehealue of”.
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Least Squares Solution

The gradient equations (2) can be simplified using
| < | <
= 2 _ = =\ (72 AT
m—§2xk, C’—EZ(xk—m)(xk—m) :
k=1 k=1
namely the mean and covariance of the data.

With m andC one can show that the least squares solutiésy;), must

satisfy

Cii = uf, ||n|| =1,
c=—iTm.

That is,

e 77 must be an eigenvector of;

e ¢ must be chosen such that the estimated line passes throeigh th
mean of the points;

e and for the solution to be a local minimum, it also can be shown
that7 must be the eigenvector for thenimumeigenvalue of”'.

The solution is therefore unigue and easy to compute. Nalgtiess
IS required.
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Least Squares and Outliers
Unfortunately, least squares solutions are sensitive tbeos in the
data.

For example, consider the set of edgel point datg}* , depicted by
red dots:

Least Squares Estimate
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The least squares estimate (blue line, above) is stronfilyeimced by
the small cluster of outliers.

In other words, this LS approach is not directly suitablefiibing data
with outliers or when multiple solutions are expected.
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Hough Transform

The Hough transform (HT) is an early method for dealing wititliers
and multiple solutions in parameter estimation problems.

For our working example, image linés' (6)Z + ¢ = 0 are parameter-
ized by andc, with 77(0) = (cos(#), sin())!.

A discrete voting space is formed by quantizthg [0, 7) andc. For
each edgef, and each discret, we add one vote to the bid;, ¢;)
which has minimal absolute error, that is

il (0,) T +¢; € [~dc/2,0c/2). (13)
Heredc is the bin spacing for.

Egn. (13) dictates that each edgglvotes for a sinusoidal curve in the
Hough space (see example below).

The accumulation of votes for all the edgels provides the Hough
transformH .
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Hough Example

For example, the Hough transform for only the three blue sdggow
IS shown on the right.

Image Edgel Positions Partial Hough Transform
=20 ‘ : : ‘
_10! f
’ etes,
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> [ ]
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30 : : : :
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The maximum number of votes here2isnot 3, since the three edgels
are not precisely colinear. The centers of the bins @whites provide
the parameters for blue lines below.

Lines with 2 Votes in HT

-20

Increasing the bin sizéc would allow
one (or more) bins to have votes from
all three edgels. In practice, selecting

appropriate bin sizes for the HT can be

“ | tricky.

30 ‘ ‘ ‘ ‘
-20 -10 0 10 20 30
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Hough Example (Cont.)

The Hough transform for all the edgels in the previous exangl
shown on the right. Note the symmetf(6;,¢;) = H(6; + m, —c;),
which is due to the symmetry of the erroe= 71 (0)Z + c.

Image Edgel Positions Hough Transform
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Three strong peaks are visible in the HT, correspondinghiyug the

three line segments apparent in the data. (Enlarge the maighood
of these peaks when viewing an electronic copy.)

L I M f HT (>= 10 vot .
ocal Max of HIT (>= 10 votes) The blue lines result from local non-

-20
10l | max suppression of the HT above, then
| thresholding the results at 10 votes.

> . Results are sensitive to the particular

Y values used for this threshold and the

20} . .
bin sizes. Good values for these param-

Y 10 o 10 20 = etersoften depend on the image data.

X
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Hough Transform Summary

The Hough transform is a reasonable approach for simple f@ata
which clear peaks can be expected. However,

e Goldilocks’ problem: Itis difficult to set appropriate bin sizes:

— Too large: Poor resolution of parameters.

— Too small: Peaks in HT broken into pieces, each with fewer
votes.

— Just right: Isolated peaks at appropriate parameter values.

e Poor detector performance (i.e. the trade-off betweer faési-
tives and false negatives). In noisy and/or cluttered @ddamany
extraneous bins can have vote counts comparable to, or thaye
the counts for the desired models.

e |In practice, fractional votes for neighbouring Hough bins also
included to help smooth the HT and reduce discretizatiofaats.

e The number of bins grows exponentially with the dimensiothef
unkown parameters (eg? for n bins in each ofl dimentions).

For more complex data sets, a much better alternative isg¢@asist
M-estimation, which we discuss next.
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Robust M-estimation

We seek line paramete(s, ¢c) which (locally) solve the minimization

problem
min O(11,c), for ||7i|| =1, (14)
K
O(it,¢c) = Y ple(F; i,c)) . (15)
k=1

Herep(e) is the “estimator”, which provides a cost for any given error
e. Common choices include:

ple) = e, Least squares (LS) estimator,
ple) = |el, L, estimator,
2

ple) = ‘ ,  Geman-McLure (GM) estimator.

02 + e2

Estimators

.

1.51

0.51

Uy 4

Error e
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Influence Function

The influence function describes the sensitivity of the all@stimate,
(17, ¢), on data with erroe.

Definition: Given the estimator(e), the influence functiorny(e), is
defined to be:

vie) = o). (16)

Estimators Influence Functions

[ N
r—
(2]
-
(>

1.5

Estimator p
=
Influence Function
[=]

0.5F

-1

] -2 1 / 1 1 ]
4 -4 -2 0 2 4
Error e Errore

Remark:Unlike LS, the influence functions fdr; and GM are bounded.
Moreover, GM is a ‘redescending estimator’, that4ge) — 0 as

le| — oo.
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Objective Function Examples: LS andL;

Given a data seftz; } & |, we can plot the objective functiafi(7i(6), c)
for 77(6) = (cos(f),sin(d))!. Note that, sincei(d + ) = —ii(0), the
objective function is periodic il with O(7i(0 + 7), c) = O(7(0), —c).

Image Edgel Positions

LS Objective anctlon L1 Objective Function
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2
4000
15 3000
o1 © 2000

1000+

The LS estimator always providesuaiquelocal minimum (blue line
in top figure). The L1 estimator can have multiple local miairin this
case, there are two local minima (red lines in top figure).

These surfaces (and the fits above) indicate the signifiafloence of
data with large errors.
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Objective Function Examples: GM (with o = 1)

In contrast, for the GM estimator the influence of a data pwittti large
error (essentially) vanishes. For the same data as before:

GM Objective Function

GM Objective Function (o = 1)
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For the GM estimator, the objective function exhibits 3 sgeaninima
(the green lines below). The outer pair of the deep valleywalare
actually parts of the same valley, due to periodicity.in

There are many weaker local minima (red lines below).

Local Minima (o = 1)

.
We show only those local minima for
whichO < K — 10, whereK is the
number of data points.

Note thatp(e) < 1, so K is the max-
imum possible value fo®.

_lo,

30

20
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X
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Objective Function Examples: GM, Varying o

Increasingr in the GM-estimator smooths the objective function:

GM Objective Function (o = 2) Local Minima (o = 2)

. . , . . . . ,
0 0.79 157 2.36 3.14 ~20 -10 0 10 20 30
0 X

GM Objective Function (o = 4) Local Minima (o = 4)

e Note there are fewer local minima for larger (We showall the
local minimum beyond minor fluctuations.)

e As o is increased, outliers receive greater influence, andfibrere
the bias in the estimates often increases (e.g., bottorhplgt).

e As 0 — oo the objective function can be shown to approximate
the one for least squares (with a unique solution).
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Robust Objective Function and the Hough Transform

The robust objective functio® (6, c) is closely related to a smoothed
Hough transform (e.g., see the figures on p. 10 and 15).

Theorem. Supposep(e) is a smooth redescending estimator such as
GM, with p(e) — 1 as|e] — oco. Let H(6;, ¢;) be the Hough transform

of K edgels using small bin size® anddjc. Consider the discrete
1D filter kernelf(c;) obtained by sampling — p(c) atc; = joc, j =
0,+1,+£2,.... Define

S(0i;¢j) = (f *2 H)(0; ¢;).

Herex, denotes convolution with respect to the second argument. So
S(0;,c;) is simply H(6;, ¢;) blurred in thec-direction byp(c;). Then

(9(9@, Cj) =K — S(@Z, Cj) + O<59 + 56),

asof, oc — 0. That is, the blurred Hough transforhapproximates
O, up to a sign change and additive constant.

The smoothness @ (0, ¢) is useful for locating local minima precisely.
Indeed, as mentioned above, the HT is often smoothed inipeact
Moreover, on the next few pages we show how to find local minima
without densely sampling the objective function, which can prodde
considerable computational savings over HT.
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Weight Function

It is sometimes convenient to re-express a robust estinmatform

resembling weighted least squares.
The gradient of the objectiv® = ). p(e;(6)) with respect to model

parametersg is

00 dp oe; = ~ 0e;  ~
- - €; S = wl\e;) €; = 17
T ) @ = wleed® ) an
with weights
1 Op 1
i) = — &) = — i) - 1
wle) = —30(e) = — ) (18)
. Weight Functions
Remarks: "

e Forp(e) = €2, the weights are constant,= 2, and (17) is just LS.

e If the weights were independent 6fthen (17) would be the gra-
dient of aweighted_S estimator.

e FFor robust estimators, for bounded weights, Eqn (17) hafotine
of weightedLS, but it is nonlinear as the weights depenogon
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Weighted Mean and Covariance

Back to our robust line fitting problem: Minimiz8(7, c¢), but without
densely sampling the parameter space.

Extending our previous solution, we now use the weightedmaewl

covariance:
1 K
mo==> wle) (19)
Sk:zl
1 K
_ 2 — )2 — )L 20
C Szw(ek) (T — m) (& —m)", (20)

ER
I

1
wheres = 321 w(ey,) ande, = 777, + c.
We show in the subsequent notes that a necessary conditidf, g
to be a solution of (14) is that
Cn = un, (21)
i, [l = 1. (22)

c=—1n

wherep is the minimum eigenvalue of theex 2 covariance matrix’.

Properties of the solution:
e (' typically depends o, ¢) through the weightsu(e;) (as does
m), and therefore (21) ismonlineareigenvalue problem fat.
e For LS, (21) becomes tHmear eigenvalue problem in (12).

e Egn. (22) implies the line must pass through the weightedmea

2503: Robust Estimation Page: 20



Notes: Conditions for Objective Function Minima

Supposep(e) is an estimator with a bounded weight functietie). We wish to minimizeO(ii, c),
subject to the constrainii|| = 1. A standard approach for such a constrained optimizatiohlpm
is to introduce a Lagrange multiplier and consider

L(7i, e, \) = O(#t, ¢) — M|||[2 — 1).

A necessary condition fdi, c) is that this Lagrangiafl has a stationary point &t c, ), that is

oL

m(n, C, )\) = 0.

For O(1i, ¢) as in (14) the derivatives af with respect tai, ¢, and\ give (respectively):

SAT + sme — 2M\i = 0,
sm T+ sc =0, (23)
17> =1 =0.

Heres = 3", w(ey) is the sum of the weights for erroes = 7 77, +c, m = 2 S w(ey) Ty is the
weighted mean of the daa, } £, andA = L "1 | w(e;,) 72/ is the weighted correlation matrix.

Solving the second equation fegivesc = —m T'7i. Substituting this into the first equation gives the
(nonlinear) eigenvalue problefor 7,

g(A —mm )i = M. (24)

A short calculation shows that the weighted covariance imair(20) satisfiesC' = A — mm T,
Therefore (24) takes the desired forti = w7, for u = 2X\/s. Finally, it can be shown that the
objective function is locally minimized only whenis chosen to be the eigenvector for tihhéimum
eigenvalue of”.
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lteratively Reweighted Least Squares Algorithm

There are many ways to compute minima’df Here we consider one
approach, motivated by Egn (17), that is intuitive and of#ective.
(That is, there may be better ways to optimé2g

For the robust line fitting problem, given an initial guess tioe line
parametersi, ¢y), we can update the parameters as follows:

1. Compute the weights, = w(7id  + c).

2. Computen andC' as in (19) and (20).

3. Setr to be the eigenvector for the minimum eigenvalu€’of

4. Setc = —i7 'm.
Note that the updated estimate far, ¢) is not necessarily a local min-

ima of (14), sincern and C' were computed usingiy, ¢y) instead of

(12, ).

Resetting 7y, ¢y) to be the newly computed, c), we iterate the above
steps until the update of bothandc are small.

This is known as the iteratively reweighted least squarfRs %)) algo-
rithm. See the Matlab tutorialobust Denp. m (available from the
course homepage) for a demonstration.
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Example Results

For the GM estimator (witly equal to the standard deviation of the
noise for the edgels near the dominant line) the iteratidnbeIRLS
algorithm are shown below (black lines). The initial gues@green)
and the converged states (blue) are also shown.

Convergence of Line Estimates Convergence of Line Estimates

100 y ' 100 y '
0 50 100 150 0 50 100 150
X X

The solution on the left indicates the outliers have beesctef, while
the iterations on the right show the algorithm convergingrie of sev-
eral undesirable local minimum. How can we avoid these?

2503: Robust Estimation Page: 23



Analysis of Influence

To understand these extraneous local minima it is usefulrdb don-
sider the influence of outliers in detall.

Given a solution(ry, ¢g) of (14), we consider the effect of one addi-
tional outlierzx,. We wish to estimate the perturbation to the solution
caused by this outlier. The size of this perturbation willedimine the
influenceof that outlier.

To simplify the analysis, we freeze the weights for the orajidata,
wy, = w(iid Ty+co) fork =1,..., K, and setvy 1 = w(iid Tr1+co).
With all these weights frozen, we seek the solution of theyiviad least
squares problem

min OWL5<ﬁ, C, E), for HﬁH =1, (25)

+ €

O G T80 + )2,

K
OWLS(n, c, 6) = [Z (n Txk + 6)2

(26)

For e = 0 we recover Egns (21) and (22) for the original solution
(179, cp). Fore = 1 the solution is the first update of the IRLS algo-
rithm given the initial gues&i, ¢y) and the additional poingx ;.
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Influence of Outliers on Line Parameters

Theorem. Let ¢y, = (il Tr1 + ¢o) be the influence function
evaluated afy ., andt, be a unit vector tangent to the initial line (i.e.,
to L 7y ). Then the optimal solutiof¥i(e), c(¢)) of (25) satisfies

dc VK11

dE 620 S 9 ( )
dn V41 -op, S

— = — tots (X —m), 28
| = T W — ) (28)

wheres = 30wy, m =130 wd, and > o are the two

—

eigenvalues of0' = "1, wi(F, — m)(Z — m)T.
The proof of this theorem is left to the reader.

Observations:

e Eqn. (27) showsdc/de is proportional ta)(e), motivating the name
‘influence function’ fory(e).

e Eqn. (27) shows the sense in whicis stable whem)(e) is bounded.

e Egn. (28) shows may not be stableeven for a bounded influence
function(e) (since\tBT(fKH — m)| may be large). In addition,
notice the effect ofi; — 15, which measures the eccentricity of the
original data points.

— —

: . . > T .
e Pointszx; for which |y 1ty (Zx1 — m)| is large are called
leverage points
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Controlling Leverage

The previous Theorem shows that even a redescending estjmath

as GM, is not robust to leverage points.

Convergence of Line Estimates

100 y '
0 50 100 150
X

In this example (from p. 23) the estimator fails to rejectusstdr of out-
liers in favour of points on the dominant line. For some aliguesses,
this cluster has enough leverage to unduly influence theisolu

A simple strategy for dealing with leverage points is:
1. Estimate the distribution of data support along the fitieel (eg.
project the weightsy,. from 7. onto the line and blur).
2. Determine a contiguous region of support along the fiitez] that
is, an interval of support without any large gaps.

3. Reduce the weights,. in the IRLS algorithm for points’;. sig-
nificantly outside the region of contiguous support (eg.sseth
weights to0).

We show an example of this next.
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Leverage Example

We can reduce leverage problems by controlling the supptetval
within the robust line estimation algorithm.

lterations O to 2 above. Current line estimate (black). Elgeth sig-
nificant weights (blue). The estimate for a contiguous negiosupport
Is also shown (green segment).

The remaining iterations 3 to 5, at which point the algorithas con-
verged.
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Successive Estimation

This approach can be applied to find lines one at a time:

Fitted Line Segment (it = 1)

Fitted Line Segment (it = 2)

Fitted Line Segment (it = 3)
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The first fitted segment is shown (left). Edgels having sigaiit robust
weights (blue), can then be removed from the active dataee}.

A second line segment is fit (middle) to the remaining edgeis, the
new supporting edgels (blue) are removed. Then a third segsét.

Remaining Edgels
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30 : : : :
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This fitting process continues until no further lines withntiguous
support regions can be fit. The remaining active edgels alemu

2503: Robust Estimation Page: 28



Outline of a Robust Line Estimation Algorithm

1. Initial Guess.

e Randomly sample from the data. Eg. §&f, ¢;) according the
the position and orientation of a sampled edgel.

2. lterative Fitting.

e Use the iteratively reweighted least squares algorithnt todi
line parameters. Maintain information about the suppoon(f
the data) for the line along its length, and use it to downWweig
data likely to cause leverage problems.

3. Verification.

e Given a converged solution, decide whether that line hds suf
cient data support (e.g., consider the sum of the weights}. D
card solutions with insufficient support.

4. Model Selection.

e For each verified line segment, remove the edgels that pgovid
significant support for it from the data set.

Repeat steps 1 through 4.

See page 2 and the next two pages for sample results. Sitndtegies
can be applied to many other estimation problems.
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Linefinder Results

Edgel positions are shown in red, with fitted lines in grediny goom-
ing into small regions, such as the rocking chair, to see the dietail)
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Linefinder Results

| Parkbench Image Colour-coded Egel Orientation

Random seeds for lines were obtained by sampling the edagdys

within oriented regions (i.e., red regions in bottom-lafiaige).
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Types of Errors

There are instances of several general types of errordevisilthe pre-
vious line finder results:

e Drop-outs: Parts or all of a true line that are missing in the esti-
mation results.

e False positives:An estimated line which does not correspond to
any combination of true lines.

e Over-segmentation:Breaking one true line into several estimated
segments (possibly colinear, parallel or otherwise).

e Under-segmentation:Joining two or more true lines into one es-
timated segment.

e Parameter noise:Small errors in the position and orientation es-
timates.

e Model-type errors: The somewhat inappropriate use of our cur-
rent model (i.e., line segments fitted to edgels) for curtedure,
or thin bars in the image. More generally, model-type eromeur
when the system can fit several types of models (eg. curveswer
lines), but selects the wrong choice.
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Evaluation of Results

We have not provided any quantitative evaluation of theltesvhich,
almost certainly, would provide invaluable data. Why not?

What should we use for ground truth? Human data? Syntheta®?da

How should the results from different line-finder algorithime com-
pared? What evaluation metric should be used? Differemtrigigns
which use the line finder results can be expected to vary in $kasi-
tivity to different types of errors.

In the end what matters is how cost-effective various atgors are
when included in a working robot. (For an example of this estyf
assessment, see Doughtery and Bowyer, 1998, Objectivaeatial of
edge detectors using a formally defined framework.)

Here we simply punt (i.e., accept our current gains and maye o
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Robust Estimation: Summary

For the estimation of model parameters from image data:

¢ A redescending M-estimator, such as the Geman-McLure astim
tor, downweights the influence of data with large errors.

e The use of such an estimator leads to a non-linear optiroizati
problem for the model parameters.

e The optimization problem typically has multiple local nrima, some
of which provide useful estimates while others are extraseo

e The iteratively reweighted least squares algorithm presidne
way to find local minima of the resulting objective function.

e Leverage points can significantly skew the parameter etgsna
and can be controlled by limiting the spatial extent of theadze-
ing fit. This can also reduce the number of extraneous minima.

e |nitial guesses can be generated by randomly sampling ttee da
(see RANSAC). Another approach uses continuation withesbeser
ing o (see deterministic annealing and graduated non-conyexity

e One way to choose the number of models is to iteratively fit-ind
vidual models, removing the data providing support for eackel
before fitting the next (see also Bayesian model selection).
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