
Robust Estimation

Introduction. A common computational problem in vision is to esti-

mate the parameters of a model from image data.

Examples of parameterized models to be fit to image data include lines

and ellipses, camera calibration models, image motion models, 3D pla-

nar regions, 3D models, and human face models.

Key Difficulties:

• The models must be fit to noisy image data.

• Initial guesses for the models must be generated automatically.

• Multiple occurrences of the models are often represented inthe

data. But the number and types of models are typically unknown a

priori. They must also be determined from the data.

• The data typically contains (structured) outliers, i.e., observations

that do not belong to the model being fitted. These must somehow

be ignored during the model fitting.

Reading: Chapter 15 of Forsyth and Ponce (skip Sec. 15.6 for now).
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Working Example Problem: Fitting Lines

Example Problem: Find the best fitting line(s) to a set of image edgel

positions,

D = {~xk}
K
k=1.

For simplicity, we ignore edgel strengths and orientationshere.
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Robust line estimator output. The Canny edgel positions{~xk} are

marked (red dots), along with the fitted line segments (green).
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Current Goals

We use the example of estimating image lines to:

• Introduce robust M-estimation and show how it deals with outliers.

• Discuss leverage points.

• Introduce methods for generating initial guesses.

• Introduce issues in model selection.

– We have more to say about this difficult issue later in this course.

Here we briefly consider selecting the number of models (i.e.,

lines), but not the model type (eg. lines versus curves).

• Discuss the general types of errors to be expected.
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Perpendicular Error

The equation for points~x on one infinite lineL is

~n · ~x + c = 0 .

Here we normalize||~n|| = 1. The error in an observed point~xk (relative

to the lineL) is defined to be the perpendicular distance

e(~xk;~n, c) ≡ ~n · ~xk + c .
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Note that the error perpendicular to the line is used here. This is differ-

ent from the usual linear regression model for which only theerror in

they component is minimized.
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Least Squares Problem

Given a set of edgel positionsD = {~xk}
K
k=1, consider estimating the

line parameters(~n, c) by minimizing the squared error

O(~n, c) ≡

K
∑

k=1

(~n T~xk + c)2 , for ||~n|| = 1. (1)

By the theory of Lagrange multipliers, the solution must satisfy

∂L

∂(~n, c, λ)
(~n, c, λ) = ~0 , for L(~n, c, λ) ≡ O(~n, c)− λ(||~n||2 − 1).

The derivatives ofL with respect to~n, c, andλ give (respectively):

K
∑

k=1

2(~n T~xk + c)~xk − 2λ~n = ~0 ,

K
∑

k=1

2(~n T~xk + c) = 0 ,

||~n||2 − 1 = 0 .

(2)
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Least Squares Solution

The solution to the LS problem above satisfies three necessary conditions:

∑

K

k=1
(~n T~xk + c)~xk − λ~n = ~0 , (3)
∑

K

k=1
~n T~xk + c = 0 , (4)

||~n||2 − 1 = 0 . (5)

First, it is straightforward to show from Eqn. (4) thatc must satisfy

c = − ~nT ~m , (6)

where ~m = 1

K

∑

K

k=1
~xk is the mean edgel location. Substituting−~mT~nT for c into the objective

function (on the previous page) yields

O =
K
∑

k=1

(~n T (~xk − ~m))2 . (7)

In this form it is clear that the optimal line passes through the mean of the edgel positions.

Using (6) and minor algebraic manipulation, we can also rewrite the first constraint above in (3) as

∑

K

k=1
~xk(~xk − ~m) T~n = λ~n (8)

This is further simplified using the covariance matrix of theedgel locations, i.e.,

C =
1

K

K
∑

k=1

(~xk − ~m)(~xk − ~m) T =
1

K

(

K
∑

k=1

~xk~x
T

k

)

− ~m~m T (9)

That is, Eqn. (8) is equivalent to

C~n = µ~n , (10)

which shows that~n is an eigenvector of the covariance matrixC.

Finally, using (5), (6) and (10), we can simplify the objective function to obtain:

O =
K
∑

k=1

(~n T (~xk − ~m))2 = K~nTC~n = Kµ . (11)

Therefore, to minimizeO, we select the eigenvector corresponding to the smallest eigenvalue ofC.
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Least Squares Solution

The gradient equations (2) can be simplified using

~m =
1

K

K
∑

k=1

~xk , C =
1

K

K
∑

k=1

(~xk − ~m)(~xk − ~m)T ,

namely the mean and covariance of the data.

With ~m andC one can show that the least squares solution,(~n, c), must

satisfy
C~n = µ~n, ||n|| = 1,

c = −~n T ~m.
(12)

That is,

• ~n must be an eigenvector ofC;

• c must be chosen such that the estimated line passes through the

mean of the points;

• and for the solution to be a local minimum, it also can be shown

that~n must be the eigenvector for theminimumeigenvalue ofC .

The solution is therefore unique and easy to compute. No initial guess

is required.
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Least Squares and Outliers

Unfortunately, least squares solutions are sensitive to outliers in the

data.

For example, consider the set of edgel point data{~xk}
K
k=1 depicted by

red dots:
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The least squares estimate (blue line, above) is strongly influenced by

the small cluster of outliers.

In other words, this LS approach is not directly suitable forfitting data

with outliers or when multiple solutions are expected.
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Hough Transform

The Hough transform (HT) is an early method for dealing with outliers

and multiple solutions in parameter estimation problems.

For our working example, image lines~n T (θ)~x + c = 0 are parameter-

ized byθ andc, with ~n(θ) = (cos(θ), sin(θ))T .

A discrete voting space is formed by quantizingθ ∈ [0, π) andc. For

each edgel~xk, and each discreteθi, we add one vote to the bin(θi, cj)

which has minimal absolute error, that is

~n T (θi) ~xk + cj ∈ [−δc/2, δc/2). (13)

Hereδc is the bin spacing forc.

Eqn. (13) dictates that each edgel~xk votes for a sinusoidal curve in the

Hough space (see example below).

The accumulation of votes for all the edgels~xk provides the Hough

transformH.
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Hough Example

For example, the Hough transform for only the three blue edgels below

is shown on the right.
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The maximum number of votes here is2, not 3, since the three edgels

are not precisely colinear. The centers of the bins with2 votes provide

the parameters for blue lines below.
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Increasing the bin sizeδc would allow

one (or more) bins to have votes from

all three edgels. In practice, selecting

appropriate bin sizes for the HT can be

tricky.
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Hough Example (Cont.)

The Hough transform for all the edgels in the previous example is

shown on the right. Note the symmetryH(θi, cj) = H(θi + π,−cj),

which is due to the symmetry of the errore = ~n T (θ)~x + c.
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Three strong peaks are visible in the HT, corresponding roughly to the

three line segments apparent in the data. (Enlarge the neighbourhood

of these peaks when viewing an electronic copy.)
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The blue lines result from local non-

max suppression of the HT above, then

thresholding the results at 10 votes.

Results are sensitive to the particular

values used for this threshold and the

bin sizes. Good values for these param-

eters often depend on the image data.
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Hough Transform Summary

The Hough transform is a reasonable approach for simple data, for

which clear peaks can be expected. However,

• Goldilocks’ problem: It is difficult to set appropriate bin sizes:

– Too large: Poor resolution of parameters.

– Too small: Peaks in HT broken into pieces, each with fewer

votes.

– Just right: Isolated peaks at appropriate parameter values.

• Poor detector performance (i.e. the trade-off between false posi-

tives and false negatives). In noisy and/or cluttered datasets many

extraneous bins can have vote counts comparable to, or larger than,

the counts for the desired models.

• In practice, fractional votes for neighbouring Hough bins are also

included to help smooth the HT and reduce discretization artifacts.

• The number of bins grows exponentially with the dimension ofthe

unkown parameters (eg.nd for n bins in each ofd dimentions).

For more complex data sets, a much better alternative is to use robust

M-estimation, which we discuss next.
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Robust M-estimation

We seek line parameters(~n, c) which (locally) solve the minimization

problem

minO(~n, c) , for ||~n|| = 1 , (14)

O(~n, c) ≡

K
∑

k=1

ρ(e(~xk ; ~n, c)) . (15)

Hereρ(e) is the “estimator”, which provides a cost for any given error

e. Common choices include:

ρ(e) = e2, Least squares (LS) estimator,

ρ(e) = |e|, L1 estimator,

ρ(e) =
e2

σ2 + e2
, Geman-McLure (GM) estimator.
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Influence Function

The influence function describes the sensitivity of the overall estimate,

(~n, c), on data with errore.

Definition: Given the estimator,ρ(e), the influence function,ψ(e), is

defined to be:

ψ(e) =
dρ

de
(e) . (16)
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Remark:Unlike LS, the influence functions forL1 and GM are bounded.

Moreover, GM is a ‘redescending estimator’, that is,ψ(e) → 0 as

|e| → ∞.
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Objective Function Examples: LS andL1

Given a data set{~xk}Kk=1, we can plot the objective functionO(~n(θ), c)

for ~n(θ) = (cos(θ), sin(θ))T . Note that, since~n(θ + π) = −~n(θ), the

objective function is periodic inθ with O(~n(θ + π), c) = O(~n(θ),−c).
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The LS estimator always provides auniquelocal minimum (blue line

in top figure). The L1 estimator can have multiple local minima. In this

case, there are two local minima (red lines in top figure).

These surfaces (and the fits above) indicate the significant influence of

data with large errors.
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Objective Function Examples: GM (with σ = 1)

In contrast, for the GM estimator the influence of a data pointwith large

error (essentially) vanishes. For the same data as before:
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For the GM estimator, the objective function exhibits 3 strong minima

(the green lines below). The outer pair of the deep valleys above are

actually parts of the same valley, due to periodicity inθ.

There are many weaker local minima (red lines below).
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We show only those local minima for

whichO < K − 10, whereK is the

number of data points.

Note thatρ(e) ≤ 1, soK is the max-

imum possible value forO.
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Objective Function Examples: GM, Varying σ

Increasingσ in the GM-estimator smooths the objective function:
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• Note there are fewer local minima for largerσ. (We showall the

local minimum beyond minor fluctuations.)

• As σ is increased, outliers receive greater influence, and therefore

the bias in the estimates often increases (e.g., bottom right plot).

• As σ → ∞ the objective function can be shown to approximate

the one for least squares (with a unique solution).
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Robust Objective Function and the Hough Transform

The robust objective functionO(θ, c) is closely related to a smoothed

Hough transform (e.g., see the figures on p. 10 and 15).

Theorem. Supposeρ(e) is a smooth redescending estimator such as

GM, with ρ(e) → 1 as|e| → ∞. LetH(θi, cj) be the Hough transform

of K edgels using small bin sizesδθ and δc. Consider the discrete

1D filter kernelf(cj) obtained by sampling1 − ρ(c) at cj = jδc, j =

0,±1,±2, . . .. Define

S(θi, cj) = (f ∗2 H)(θi, cj).

Here∗2 denotes convolution with respect to the second argument. So

S(θi, cj) is simplyH(θi, cj) blurred in thec-direction byρ(cj). Then

O(θi, cj) = K − S(θi, cj) +O(δθ + δc),

asδθ, δc → 0. That is, the blurred Hough transformS approximates

O, up to a sign change and additive constant.

The smoothness ofO(θ, c) is useful for locating local minima precisely.

Indeed, as mentioned above, the HT is often smoothed in practice.

Moreover, on the next few pages we show how to find local minima

without densely sampling the objective function, which can providea

considerable computational savings over HT.
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Weight Function

It is sometimes convenient to re-express a robust estimatorin a form

resembling weighted least squares.

The gradient of the objectiveO =
∑

i ρ(ei(
~θ)) with respect to model

parameters~θ is
∂O

∂~θ
=
∑

i

∂ρ

∂e
(ei)

∂ei

∂~θ
(~θ) =

∑

i

w(ei) ei(~θ)
∂ei

∂~θ
(~θ) (17)

with weights

w(ei) =
1

ei

∂ρ

∂e
(ei) =

1

ei
ψ(ei) . (18)
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Remarks:

• Forρ(e) = e2, the weights are constant,w = 2, and (17) is just LS.

• If the weights were independent of~θ, then (17) would be the gra-

dient of aweightedLS estimator.

• For robust estimators, for bounded weights, Eqn (17) has theform

of weightedLS, but it is nonlinear as the weights depend on~θ.
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Weighted Mean and Covariance

Back to our robust line fitting problem: MinimizeO(~n, c), but without

densely sampling the parameter space.

Extending our previous solution, we now use the weighted mean and

covariance:

~m =
1

s

K
∑

k=1

w(ek) ~xk, (19)

C =
1

s

K
∑

k=1

w(ek) (~xk − ~m)(~xk − ~m)T , (20)

wheres ≡
∑K

k=1w(ek) andek ≡ ~n T~xk + c.

We show in the subsequent notes that a necessary condition for (~n, c)

to be a solution of (14) is that

C~n = µ~n, (21)

c = −~n T ~m, ||~n|| = 1. (22)

whereµ is the minimum eigenvalue of the2× 2 covariance matrixC.

Properties of the solution:

• C typically depends on(~n, c) through the weightsw(ek) (as does

~m), and therefore (21) is anonlineareigenvalue problem for~n.

• For LS, (21) becomes thelinear eigenvalue problem in (12).

• Eqn. (22) implies the line must pass through the weighted mean ~m.
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Notes: Conditions for Objective Function Minima

Supposeρ(e) is an estimator with a bounded weight functionw(e). We wish to minimizeO(~n, c),

subject to the constraint||~n|| = 1. A standard approach for such a constrained optimization problem

is to introduce a Lagrange multiplierλ, and consider

L(~n, c, λ) = O(~n, c)− λ(||~n||2 − 1).

A necessary condition for(~n, c) is that this LagrangianL has a stationary point at(~n, c, λ), that is

∂L

∂(~n, c, λ)
(~n, c, λ) = ~0.

ForO(~n, c) as in (14) the derivatives ofL with respect to~n, c, andλ give (respectively):

sA~n+ s~mc− 2λ~n = ~0,

s~m T~n+ sc = 0,

||~n||2 − 1 = 0.

(23)

Heres ≡
∑

K

k=1
w(ek) is the sum of the weights for errorsek ≡ ~n T~xk+c, ~m ≡ 1

s

∑

K

k=1
w(ek)~xk is the

weighted mean of the data{~xk}Kk=1
, andA ≡ 1

s

∑

K

k=1
w(ek)~xk~x

T

k
is the weighted correlation matrix.

Solving the second equation forc givesc = −~m T~n. Substituting this into the first equation gives the

(nonlinear) eigenvalue problemfor ~n,

s

2
(A− ~m~m T )~n = λ~n. (24)

A short calculation shows that the weighted covariance matrix in (20) satisfiesC = A − ~m~m T .

Therefore (24) takes the desired form,C~n = µ~n, for µ = 2λ/s. Finally, it can be shown that the

objective function is locally minimized only when~n is chosen to be the eigenvector for theminimum

eigenvalue ofC.
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Iteratively Reweighted Least Squares Algorithm

There are many ways to compute minima ofO. Here we consider one

approach, motivated by Eqn (17), that is intuitive and ofteneffective.

(That is, there may be better ways to optimizeO.)

For the robust line fitting problem, given an initial guess for the line

parameters,(~n0, c0), we can update the parameters as follows:

1. Compute the weightswk = w(~n T
0 ~xk + c0).

2. Compute~m andC as in (19) and (20).

3. Set~n to be the eigenvector for the minimum eigenvalue ofC.

4. Setc = −~n T ~m.

Note that the updated estimate for(~n, c) is not necessarily a local min-

ima of (14), since~m andC were computed using(~n0, c0) instead of

(~n, c).

Resetting(~n0, c0) to be the newly computed(~n, c), we iterate the above

steps until the update of both~n andc are small.

This is known as the iteratively reweighted least squares (IRLS) algo-

rithm. See the Matlab tutorialrobustDemo.m (available from the

course homepage) for a demonstration.

2503: Robust Estimation Page: 22



Example Results

For the GM estimator (withσ equal to the standard deviation of the

noise for the edgels near the dominant line) the iterations of the IRLS

algorithm are shown below (black lines). The initial guesses (green)

and the converged states (blue) are also shown.
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The solution on the left indicates the outliers have been rejected, while

the iterations on the right show the algorithm converging toone of sev-

eral undesirable local minimum. How can we avoid these?
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Analysis of Influence

To understand these extraneous local minima it is useful to first con-

sider the influence of outliers in detail.

Given a solution(~n0, c0) of (14), we consider the effect of one addi-

tional outlier~xK+1. We wish to estimate the perturbation to the solution

caused by this outlier. The size of this perturbation will determine the

influenceof that outlier.

To simplify the analysis, we freeze the weights for the original data,

wk = w(~n T
0 ~xk+c0) for k = 1, . . . , K, and setwK+1 = w(~n T

0 ~xK+1+c0).

With all these weights frozen, we seek the solution of the weighted least

squares problem

minOWLS(~n, c, ǫ), for ||~n|| = 1, (25)

OWLS(~n, c, ǫ) ≡

[

K
∑

k=1

wk
2
(~n T~xk + c)2

]

+ ǫ
wK+1

2
(~n T~xK+1 + c)2.

(26)

For ǫ = 0 we recover Eqns (21) and (22) for the original solution

(~n0, c0). For ǫ = 1 the solution is the first update of the IRLS algo-

rithm given the initial guess(~n0, c0) and the additional point~xK+1.
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Influence of Outliers on Line Parameters

Theorem. Let ψK+1 = ψ(~n T
0 ~xK+1 + c0) be the influence function

evaluated at~xK+1, and~t0 be a unit vector tangent to the initial line (i.e.,

~t0 ⊥ ~n0 ). Then the optimal solution(~n(ǫ), c(ǫ)) of (25) satisfies

dc

dǫ

∣

∣

∣

∣

ǫ=0

= −
ψK+1

s
, (27)

d~n

dǫ

∣

∣

∣

∣

ǫ=0

= −
ψK+1

(µ1 − µ2)s
~t0~t

T
0 (~xK+1 − ~m) , (28)

where s ≡
∑K

k=1wk , ~m = 1
s

∑K
k=1wk~xk , and µ1 > µ2 are the two

eigenvalues ofC =
∑K

k=1wk(~xk − ~m)(~xk − ~m)T .

The proof of this theorem is left to the reader.

Observations:

• Eqn. (27) showsdc/dǫ is proportional toψ(e), motivating the name

‘influence function’ forψ(e).

• Eqn. (27) shows the sense in whichc is stable whenψ(e) is bounded.

• Eqn. (28) shows~n may not be stable, even for a bounded influence

functionψ(e) (since|~t0
T
(~xK+1 − ~m)| may be large). In addition,

notice the effect ofµ1− µ2, which measures the eccentricity of the

original data points.

• Points~xK+1 for which |ψK+1~t0
T
(~xK+1 − ~m)| is large are called

leverage points.
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Controlling Leverage

The previous Theorem shows that even a redescending estimator, such

as GM, is not robust to leverage points.
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In this example (from p. 23) the estimator fails to reject a cluster of out-

liers in favour of points on the dominant line. For some initial guesses,

this cluster has enough leverage to unduly influence the solution.

A simple strategy for dealing with leverage points is:

1. Estimate the distribution of data support along the fittedline (eg.

project the weightswk from ~xk onto the line and blur).

2. Determine a contiguous region of support along the fitted line, that

is, an interval of support without any large gaps.

3. Reduce the weightswk in the IRLS algorithm for points~xk sig-

nificantly outside the region of contiguous support (eg. setsuch

weights to0).

We show an example of this next.
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Leverage Example

We can reduce leverage problems by controlling the support interval

within the robust line estimation algorithm.
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Iterations 0 to 2 above. Current line estimate (black). Edgels with sig-

nificant weights (blue). The estimate for a contiguous region of support

is also shown (green segment).
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The remaining iterations 3 to 5, at which point the algorithmhas con-

verged.
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Successive Estimation

This approach can be applied to find lines one at a time:
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Fitted Line Segment (it = 1)
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Fitted Line Segment (it = 2)
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Fitted Line Segment (it = 3)

The first fitted segment is shown (left). Edgels having significant robust

weights (blue), can then be removed from the active data set (red).

A second line segment is fit (middle) to the remaining edgels,and the

new supporting edgels (blue) are removed. Then a third segment is fit.
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This fitting process continues until no further lines with contiguous

support regions can be fit. The remaining active edgels are outliers.
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Outline of a Robust Line Estimation Algorithm

1. Initial Guess.

• Randomly sample from the data. Eg. Set(~n0, c0) according the

the position and orientation of a sampled edgel.

2. Iterative Fitting.

• Use the iteratively reweighted least squares algorithm to fit the

line parameters. Maintain information about the support (from

the data) for the line along its length, and use it to downweight

data likely to cause leverage problems.

3. Verification.

• Given a converged solution, decide whether that line has suffi-

cient data support (e.g., consider the sum of the weights). Dis-

card solutions with insufficient support.

4. Model Selection.

• For each verified line segment, remove the edgels that provide

significant support for it from the data set.

Repeat steps 1 through 4.

See page 2 and the next two pages for sample results. Similar strategies

can be applied to many other estimation problems.
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Linefinder Results

Edgel positions are shown in red, with fitted lines in green. (Try zoom-

ing into small regions, such as the rocking chair, to see the fit in detail)
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Linefinder Results

Parkbench Image Colour-coded Edgel Orientation

Orientation Tensor Estimated Lines

Random seeds for lines were obtained by sampling the edgelsonly

within oriented regions (i.e., red regions in bottom-left image).
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Types of Errors

There are instances of several general types of errors visible in the pre-

vious line finder results:

• Drop-outs: Parts or all of a true line that are missing in the esti-

mation results.

• False positives:An estimated line which does not correspond to

any combination of true lines.

• Over-segmentation:Breaking one true line into several estimated

segments (possibly colinear, parallel or otherwise).

• Under-segmentation:Joining two or more true lines into one es-

timated segment.

• Parameter noise:Small errors in the position and orientation es-

timates.

• Model-type errors: The somewhat inappropriate use of our cur-

rent model (i.e., line segments fitted to edgels) for curves,texture,

or thin bars in the image. More generally, model-type errorsoccur

when the system can fit several types of models (eg. curves versus

lines), but selects the wrong choice.
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Evaluation of Results

We have not provided any quantitative evaluation of the results which,

almost certainly, would provide invaluable data. Why not?

What should we use for ground truth? Human data? Synthetic data?

How should the results from different line-finder algorithms be com-

pared? What evaluation metric should be used? Different algorithms

which use the line finder results can be expected to vary in their sensi-

tivity to different types of errors.

In the end what matters is how cost-effective various algorithms are

when included in a working robot. (For an example of this style of

assessment, see Doughtery and Bowyer, 1998, Objective evaluation of

edge detectors using a formally defined framework.)

Here we simply punt (i.e., accept our current gains and move on).
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Robust Estimation: Summary

For the estimation of model parameters from image data:

• A redescending M-estimator, such as the Geman-McLure estima-

tor, downweights the influence of data with large errors.

• The use of such an estimator leads to a non-linear optimization

problem for the model parameters.

• The optimization problem typically has multiple local minima, some

of which provide useful estimates while others are extraneous.

• The iteratively reweighted least squares algorithm provides one

way to find local minima of the resulting objective function.

• Leverage points can significantly skew the parameter estimates,

and can be controlled by limiting the spatial extent of the data be-

ing fit. This can also reduce the number of extraneous minima.

• Initial guesses can be generated by randomly sampling the data

(see RANSAC). Another approach uses continuation with decreas-

ing σ (see deterministic annealing and graduated non-convexity).

• One way to choose the number of models is to iteratively fit indi-

vidual models, removing the data providing support for eachmodel

before fitting the next (see also Bayesian model selection).
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