Object Recognition

Goal: Introduce central issues of object recognition, basic techniques, and emerging directions.

Outline:

- 1. What is object recognition and why is it challenging?
- 2. Historical perspective
- 3. Basic view-based classifiers and common problems
- 4. Boosting
- 5. Feature-based models
- 6. Multiple classes, context, and parsing

Matlab Tutorials and Demo Code:

• SIFT tutorial

Acknowledgements: Slides on Bag-of-Words models adapted from CVPR 2007 tutorial on recognition by Torralba, Fei-Fei and Fergus.

Background

Types of visual recognition problems:

- validation
- detection
- instance recognition (identification)
- category recognition
- scene/context recognition
- activity recognition

Challenges:

- variation in view point and lighting
- variation in shape, pose and appearance
- clutter and occlusion
- function versus morphology

Historical Perspective:

- Blocks world
- 3D shape and part decomposition
- Perceptual organization
- Appearance-based models
- Context (3D and 2D) and Parsing

Let's begin by considering the linear subspace model (aka eigen-model) for appearance variations.

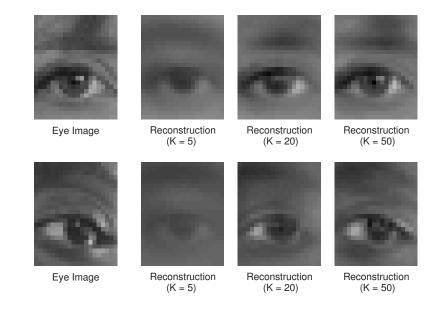
Subspace Models for Detection

Mean Eye:



Basis Images (1-6, and 10:5:35):

Reconstructions (for K = 5, 20, 50):



Subspace Models for Detection

Generative model, \mathcal{M} , for random eye images:

$$\vec{\mathbf{I}} = \vec{\mathbf{m}} + \left(\sum_{k=1}^{K} a_k \vec{\mathbf{b}}_k\right) + \vec{\mathbf{e}}$$

where $\vec{\mathbf{m}}$ is the mean eye image, $a_k \sim \mathcal{N}(0, \sigma_k^2)$, σ_k^2 is the sample variance associated with the k^{th} principal direction in the training data, and $\vec{\mathbf{e}} \sim \mathcal{N}(0, \sigma_e^2 \mathbf{I}_{N^2})$ where $\sigma_e^2 = \frac{1}{N^2} \sum_{k=K+1}^{N^2} \sigma_k^2$ is the per pixel out-of-subspace variance. (The coefficients and errors are assumed to be independent.)

Random Eye Images:

Random draws from generative model (with K = 5, 10, 20, 50, 100, 200)

So the likelihood of an image under this model of eyes is

$$p(\vec{\mathbf{I}} \mid \mathcal{M}) = \left(\prod_{k=1}^{K} p(a_k \mid \mathcal{M})\right) p(\vec{\mathbf{e}} \mid \mathcal{M})$$

where

$$p(a_k|\mathcal{M}) = \frac{1}{\sqrt{2\pi\sigma_k}} e^{-\frac{a_k^2}{2\sigma_k^2}} \quad , \qquad p(\vec{\mathbf{e}} \mid \mathcal{M}) = \prod_{j=1}^{N^2} \frac{1}{\sqrt{2\pi\sigma_e}} e^{-\frac{e_j^2}{2\sigma_e^2}}$$

2503: Object Recognition

Eye Detection

The log likelihood of the model is given by

$$L(\mathcal{M}) \equiv \log p(\vec{\mathbf{I}} \mid \mathcal{M}) = \left(\sum_{k=1}^{K} \log p(a_k \mid \mathcal{M})\right) + \log p(\vec{\mathbf{e}} \mid \mathcal{M})$$
$$= \left(\sum_{k=1}^{K} \frac{-a_k^2}{2\sigma_k^2}\right) + \left(\sum_{j=1}^{N^2} \frac{-e_j^2}{2\sigma_e^2}\right) + const$$
$$\equiv S_{in}(\vec{\mathbf{a}}) + S_{out}(\vec{\mathbf{e}}) + const$$

Detector:

- 1. Given an image \vec{I}
- 2. Compute the subspace coefficients $\vec{\mathbf{a}} = \mathbf{B}^T (\vec{\mathbf{I}} \vec{\mathbf{m}})$
- 3. Compute residual $\vec{e} = \vec{I} \vec{m} B\vec{a}$
- 4. For $S(\vec{a}, \vec{e}) = S_{in}(\vec{a}) + S_{out}(\vec{e})$, and a given threshold τ , the image patch is classified as an eye when

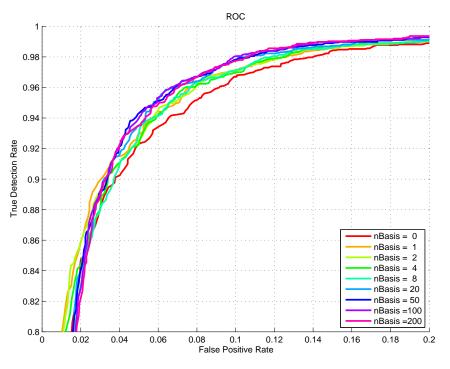
$$S(\vec{\mathbf{a}},\vec{\mathbf{e}}) \ > \ \tau$$
 .

Performance Measures

	classified positives	classified negatives	
true examples	T_{pos} true positives	F_{neg} false negatives	$N_{pos} = T_{pos} + F_{neg}$
false examples	F_{pos} false positives	T_{neg} true negatives	$N_{neg} = F_{pos} + T_{neg}$
	C_{pos}	C_{neg}	Ν

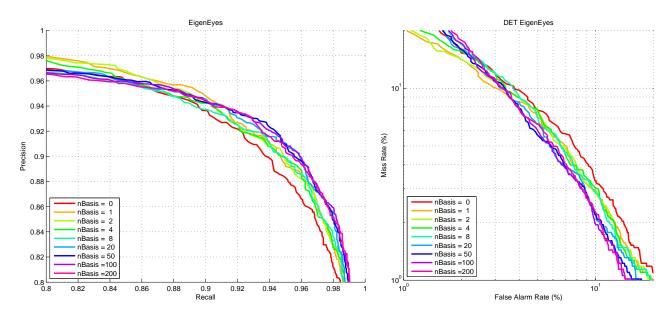
- true positive (detection) rate: $\rho_{tp} = T_{pos}/N_{pos}$
- true negative (reject) rate: $\rho_{tn} = T_{neg}/N_{neg}$
- false positive (false alarm / type I error) rate: $\rho_{fp} = 1 \rho_{tn}$
- false negative (miss / type II error) rate: $\rho_{fn} = 1 \rho_{tp}$

Receiver Operating Characteristic (ROC) Curves: trade-off between sensitivity (detection rate) and specificity (false positive rate), as a function of the decision threshold.



Disjoint test and training sets; non-eyes drawn at random from images. Notice the over-fitting at low FP rates.

2503: Object Recognition



Detection is often done by sliding boxes of multiple sizes over an image, and testing each box for the presence of the target object. Here we should expect a large ratio of negative examples to positive examples, $r = N_{neg}/N_{pos}$. (E.g., sliding a single box over a 640×480 image, subsampling by 2 pixels, gives about 10^4 boxes. Since all but a handful are negatives, $r \approx 10^4$.)

Precision-Recall Curves (LEFT)

- Precision: T_{pos}/C_{pos} . What fraction of positive responses are correct hits?
- Recall: $\rho_{tp} = T_{pos}/N_{pos}$. What fraction of the true eyes do we actually find?
- Note: Beware of test sets with too few negatives, thereby biasing precision upwards (see below). The above-left plot used $r \approx 1.5$.

Detection Error Trade-off (DET) Curves (RIGHT)

- Miss rate (i.e., false negative rate, ρ_{fn}) versus false alarm rate (i.e., false positive rate, ρ_{fp}).
- Log-log axes highlight the important regime of small false negative and positive rates.
- For a particular application with an estimated ratio of $r = N_{neg}/N_{pos}$, the precision is

$$P \equiv T_{pos}/C_{pos} = \frac{(1-\rho_{fn})N_{pos}}{(1-\rho_{fn})N_{pos}+\rho_{fp}N_{neg}} = \frac{(1-\rho_{fn})}{(1-\rho_{fn})+r\rho_{fp}}$$

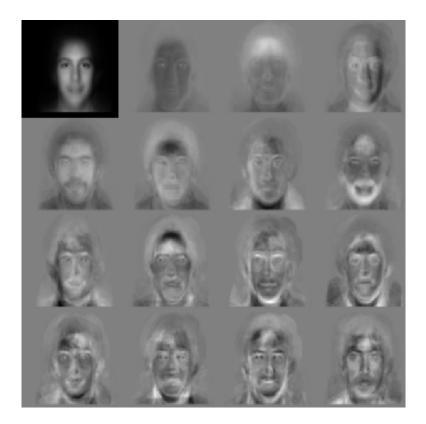
Therefore the precision decreases as the ratio, r, increases.

With ρ_{fn} and ρ_{fp} about 5% (see ROC or DET plots above) and r ≈ 10⁴, we find the precision P ≈ 0.002 (i.e., of every 1000 hits, roughly 2 are expected to be eyes – this is exceptionally noisy). This motivates the reduction of ρ_{fp} by several orders of magnitude.

Face Detection

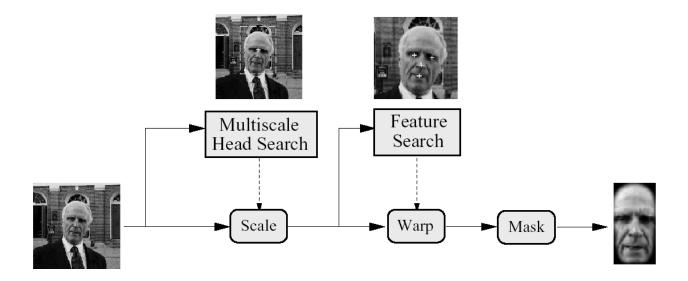
The wide-spread use of PCA for object recognition began with the work Turk and Pentland (1991) for face detection and recognition.

Shown below is the model learned from a collection of frontal faces, normalized for contrast, scale, and orientation, with the backgrounds removed prior to PCA.



Here are the mean image (upper-left) and the first 15 eigen-images. The first three show strong variations caused by illumination. The next few appear to correspond to the occurrence of certain features (hair, hairline, beard, clothing, etc).

Face Detection/Recognition



Moghaddam, Jebara and Pentland (2000): Subspace methods are used for head detection and then feature detection to normalize (warp) the facial region of the image.

Recognition: Are these two images (test and target) the same?

Approach 1: Single Image Subspace Recognition:

Project test and target faces onto the face subspace, and look at distance within the subspace.

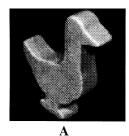
Approach 2: Intra/Extra-Personal Subspace Recognition:

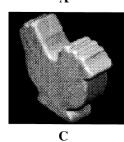
- An intra-personal subspace is learned from difference images of the same persion under variation in lighting and expression.
- The extra-personal subspace learned from difference between images of different people under similar conditions.

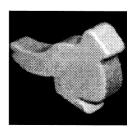
Object Recognition

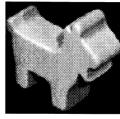
Murase and Nayar (1995)

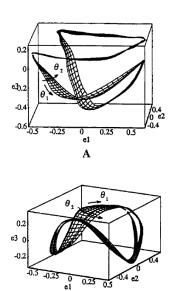
- images of multiple objects, taken from different positions on the viewsphere
- each object occupies a manifold in the subspace (as a function of position on the viewsphere)
- recognition: nearest neighbour assuming dense sampling of object pose variations in the training set.



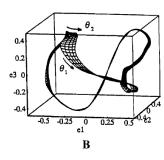


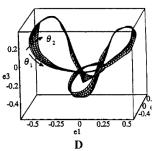






С





Gaussian Class-Conditional Models

Consider Gaussian models for multiple classes (e.g., eyes and noneyes). For model M_k , we assume a Gaussian observation density $p(\vec{\mathbf{d}} | M_k)$, e.g., over subspace coefficients $\vec{\mathbf{d}}$.

For two classes, M_1 and M_2 , let the prior probabilities be $p(M_1)$ and $p(M_2) = 1 - p(M_1)$. The observation densities are Gaussian with means $\vec{\mu}_k$ and covariances C_k (for k = 1, 2). Then, the posterior probability for model M_k , given the data \vec{d} , is

$$p(M_k \,|\, \vec{\mathbf{d}}) \;=\; rac{p(M_k) \, G(\vec{\mathbf{d}}; \, \vec{\mu}_k, \, C_k)}{p(\vec{\mathbf{d}})}.$$

The log odds $a(\vec{\mathbf{d}})$ for model M_1 over M_2 is defined to be

$$a(\vec{\mathbf{d}}) \equiv \log \left[\frac{p(M_1 \mid \vec{\mathbf{d}} \,)}{p(M_2 \mid \vec{\mathbf{d}} \,)} \right] \\ = \log \left[\frac{p(M_1) \mid C_2 \mid^{1/2}}{p(M_2) \mid C_1 \mid^{1/2}} \right] + \frac{1}{2} \left[(\vec{\mathbf{d}} - \vec{\mu}_2)^T C_2^{-1} (\vec{\mathbf{d}} - \vec{\mu}_2) - (\vec{\mathbf{d}} - \vec{\mu}_1)^T C_1^{-1} (\vec{\mathbf{d}} - \vec{\mu}_1) \right]$$
(1)

Thresholding the log odds at zero yields the decision boundary.

The decision boundary is a quadratic surface in \vec{d} space (a quadratic discriminant). When both classes have the same covariance, i.e., $C_1 = C_2$, the quadratic terms in (1) cancel and the decision boundary becomes a hyperplane.

Logistic Regression

Let's return to the posterior class probability:

$$p(M_1 \mid \vec{\mathbf{d}}) = \frac{p(\vec{\mathbf{d}} \mid M_1) \, p(M_1)}{p(\vec{\mathbf{d}} \mid M_1) \, p(M_1) + p(\vec{\mathbf{d}} \mid M_2) \, p(M_2)} \,.$$
(2)

Dividing the numerator and denominator by $p(\mathbf{d} | M_1)p(M_1)$ gives:

$$p(M_1 \mid \vec{\mathbf{d}}) = \frac{1}{1 + e^{-a(\vec{\mathbf{d}})}} , \quad a(\vec{\mathbf{d}}) = \ln \frac{p(\vec{\mathbf{d}} \mid M_1) \, p(M_1)}{p(\vec{\mathbf{d}} \mid M_2) \, p(M_2)} .$$
(3)

The posterior probability of M_1 grows as a grows, and when a = 0, the posterior is $P(M_1 | \vec{\mathbf{d}}) = \frac{1}{2}$. That is, $a(\vec{\mathbf{d}}) = 0$ is the decision boundary.

Let's assume a linear decision boundary (independent of any specific parametric form for the observation densities); i.e., let

$$a(\vec{\mathbf{d}}) = \vec{\mathbf{w}}^T \vec{\mathbf{d}} + b \tag{4}$$

To learn a classifier, given IID training exemplars, $\{\vec{\mathbf{d}}_j, y_j\}$, where $y_j = \{1, 2\}$, we minimize the negative log liklichood:

$$\log p(\{\vec{\mathbf{d}}_{j}, y_{j}\} | \mathbf{w}, b) \propto p(\{y_{j}\} | \{\vec{\mathbf{d}}_{j}\}, \mathbf{w}, b)$$

= $\sum_{j:y_{j}=1} p(M_{1} | \vec{\mathbf{d}}_{j}) \sum_{j:y_{j}=2} (1 - p(M_{1} | \vec{\mathbf{d}}_{j}))$ (5)

Although this objective function cannot be optimized in closed-form, it is convex; it has a single minimum. So we can optimize it with some form of gradient descent, and the initial guess is not critical.

Issues with Class-Conditional and LR Models

Class-Conditional Models:

- The single Gaussian model is often rather crude. PCA coefficients often exhibit significantly more structure (cf. Murase & Nayar).
- A Gaussian model will also be a poor model of non-eye images.
- As a result of this unmodelled structure, detectors based on single Gaussian models are often poor.

Logistic Regression:

- Discriminative model does not require a model of the observations, and often has *fewer* parameters as a result.
- LR with its linear decision boundary is only expressive enough for simple problems.

Alternatives:

- An alternative approach is to consider warped and aligned view based models (see Cootes, Edwards, & Taylor, 1998).
- Richer density models of the subspace coefficients are possible (e.g., nearest neighbour as in Murase & Nayar, or mixture models).

Breakthrough:

• More sophisticated discriminative models with simple (fast) feature extraction (see Viola & Jones, 2004).

AdaBoost: Binary Classification Problem

Given training data $\{\vec{x}_j, y_j\}_{j=1}^N$, where

- $\vec{x}_j \in \mathbb{R}^d$ is the feature vector for the j^{th} data item,
- $y_j \in \{-1, 1\}$ denotes the class membership of the j^{th} item \vec{x}_j ,

we seek a classifier $F(\vec{x})$ such that $y(x) \equiv \operatorname{sign}(F(\vec{x}))$ approximates (in some sense) the training data; i.e., the given class indicator y_j should agree with the model $\operatorname{sign}(F(\vec{x}_j))$ as much as possible.

AdaBoost is an algorithm for greedily training classifiers $F(\vec{x})$ which take the form of *additive linear models*:

$$F_m(\vec{x}) = \sum_{k=1}^m \alpha_k f_k(\vec{x}; \vec{\theta}_k)$$

$$= F_{m-1}(\vec{x}) + \alpha_m f_m(\vec{x}; \vec{\theta}_m).$$
(6)

Here $m \ge 1$ and

- $F_m(\vec{x})$ is a weighted (i.e. α_k) sum of simpler functions $f_k(\vec{x}; \vec{\theta_k})$.
- Note the simpler functions depend on parameters $\vec{\theta_k}$, which we need to fit along with the weights α_k .
- Here we take the simpler functions f_k(x
 i, θ
 i) to be weak classifiers, providing values in {-1, 1} (e.g., decision stumps).
- We use $F_0(\vec{x}) \equiv 0$ in the recursive definition above.

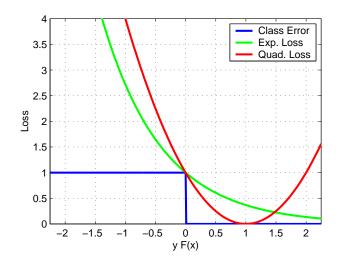
Exponential Loss

We seek a model $F_m(\vec{x})$ such that $sign(F_m(\vec{x}_k))$ agrees with the class indicator $y_j \in \{-1, 1\}$, as much as possible, in the training data.

How should we measure agreement/disagreement? Since y_k should have the same sign as $F_m(\vec{x}_k)$, it is convenient to consider $y_k F_m(\vec{x}_k)$, which should be positive.

Loss (cost) functions of $z \equiv yF(\vec{x})$:

- O-1 Loss (classification error): C(z) = 1 if z ≤ 0, else 0. This loss function is hard to optimize because it is discontinuous.
- Quadratic Loss: $C(z) = (z 1)^2$. Easy to optimize but penalizes $F(\vec{x})$ when it's large with the correct sign (confident and correct).
- Exponential Loss: C(z) = exp(−z). Smooth and monotonic in z. Large cost for F(x) with wrong sign and large magnitude (i.e. confident and wrong). Still a crude approximation to 0-1 loss.



Greedy Fitting and AdaBoost

Suppose we have trained a classifier $F_{m-1}(\vec{x})$ with m-1 additive components, and we wish to add one more component, i.e.,

$$F_m(\vec{x}) = F_{m-1}(\vec{x}) + \alpha_m f_m(\vec{x}; \vec{\theta}_m).$$

Suppose we choose α_m and $\vec{\theta}_m$ to minimize the exponential loss

$$\sum_{j=1}^{N} C(y_j F_m(\vec{x}_j)) \equiv \sum_{j=1}^{N} e^{-y_j F_m(\vec{x}_j)}$$
$$= \sum_{j=1}^{N} e^{-y_j F_{m-1}(\vec{x}_j)} e^{-y_j \alpha_m f_m(\vec{x}_j, \vec{\theta}_m)}$$
$$= \sum_{j=1}^{N} w_j^{(m-1)} e^{-y_j \alpha_m f_m(\vec{x}_j, \vec{\theta}_m)}$$

Here the weight $w_j^{(m-1)} = e^{-y_j F_{m-1}(\vec{x}_j)}$ is just the exponential loss for the previous function $F_{m-1}(\vec{x})$ on the j^{th} training item.

- The weights are largest for data points which the previous function $F_{m-1}(\vec{x})$ confidently classifies incorrectly, i.e., $y_j F_{m-1}(\vec{x}_j) \ll 0$.
- The weights are smallest for points confidently classified correctly,
 i.e., for y_jF_{m-1}(x_j) ≫ 0.

This greedy fitting of the weak classifiers in an additive model leads to the AdaBoost learning algorithm (see Friedman et al, 2000).

AdaBoost Algorithm

for all training exemplars: j = 1...N, $w_j^{(1)} = 1$

for m = 1 to M do

Fit weak classifier m to minimize the objective function:

$$\epsilon_m = \frac{\sum_j w_j^{(m)} I(f_m(\vec{x}_j, \vec{\theta}_m) \neq y_j)}{\sum_j w_j^{(m)}}$$

where I(b) = 1 if boolean b is true, and 0 otherwise

$$\alpha_m = \ln\left(\frac{1-\epsilon_m}{\epsilon_m}\right)$$

for all i do

$$w_j^{(m+1)} = w_j^{(m)} e^{\alpha_m I(f_m(\vec{x}_j) \neq y_j)}$$

end for

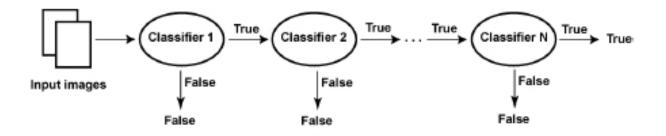
end for

After learning, the final classifier is

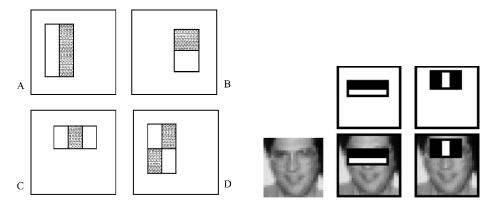
$$g(\vec{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m f_m(\vec{x}, \vec{\theta}_m)\right)$$
(7)

Viola and Jones Face Detector

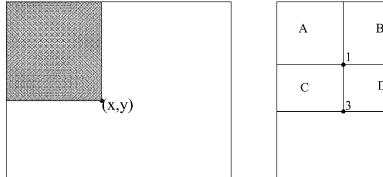
Rejection cascade architecture (sequence of classifiers with thresholds chosen to keep the false negative rate low):

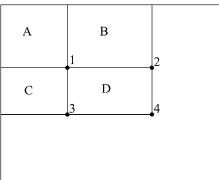


Features are formed from Haar filters...



These features can be computed rapidly using integral images.

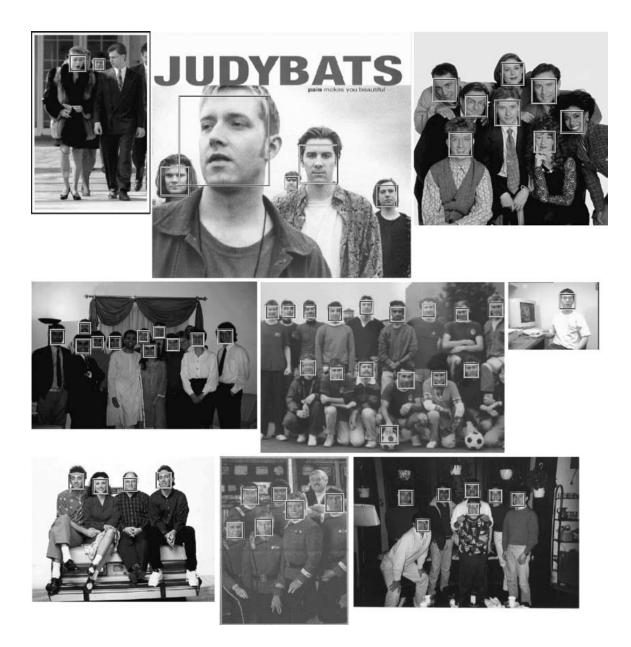




The result is a real-time face detector with good classification performance (Viola and Jones, 2004).

2503: Object Recognition

Viola and Jones, Results



Feature-Based Near Duplicate Detection

Sufficiently similar images will contain similar features, occurring in similar spatial configurations.

Training: Extract SIFT descriptors from training image(s).

Testing:

- For each SIFT feature in test image, find a match from training features (ANN search with good near neighbour distance ratio).
- Select training images with sufficiently many matching features
- Robustly fit a parametric warp (eg, affine), and rank selected images based on the number of inliers.

Applications:

- Detecting / tracking images of same scene/object with small variations in viewpoint, occlusion, and lighting (eg, see [Lowe 2004])
- Image retrieval eg, Google Goggles searches 10^8 images, with 10^3 features/image and a distributed KD-tree for ANN search.

Works surprisingly well on specific types of images.

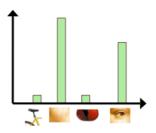
Bag of Words

Feature-based approach to *category* recognition (and unsupervised discovery), modeling appearance by first-order feature statistics (the frequency of feature occurrence), thereby ignoring spatial layout and higher-order statistics.

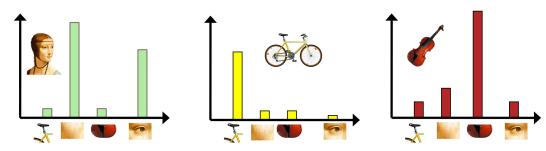
Recognition:

1. feature detection

2. compute distribution (histogram) of feature occurrence



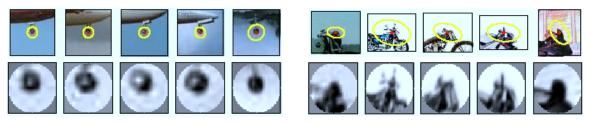
3. matching (generative or discriminative)



Bag of Words: Feature-Based Representation

Feature Detection: Harris/DOG maxima, regular grid or random patches, maximally stable extremal regions (MSER) [Matas et al 2002], etc.

Canonical Coordinates: for affine region detectors, warp elliptical regions to circular disks (for robustness to viewpoint, see [Mikolajczyk et al 2005; Sivic et al 2005])



Local Descriptor: patch descriptor, such as SIFT, w or w/o rotation

Codebook formation using vector quantization. This simplifies the feature space, and provides robustness intra-class variability.

K-Means: Given N data vectors {**y**_i}^N_{i=1}, assign each vector to one of K disjoint clusters; let l_{ij} be 1 when **y**_i belongs to cluster j and 0 otherwise. Find cluster centers μ_j and assignments l_{ij} to minimize

$$E = \sum_{i,j} l_{ij} ||\vec{\mathbf{y}}_i - \vec{\mathbf{c}}_j||^2$$
, s.t. $\sum_{j=1}^{K} l_{ij} = 1$.

Generative Bag-of-Words Models

Naive Bayes: Class-conditional models of the frequency of visual words $\{w_j\}_{j=1}^M$, for classes $\{c_k\}_{k=1}^K$. (For unsupervised learning, cluster the empirical word distributions for a set of training images.) Inference:

$$c^* = \arg \max p(w_{1:M} \mid c) p(c), \quad p(w_{1:M} \mid c) = \prod_{j=1}^{M} p(w_j \mid c)$$

Latent Topic Models: Low-dimensional latent models for category *discovery*. In Probabilistic Latent Semantic Analysis, for image d and visual word w we define K latent topic models $\{c_k\}_{k=1}^{K}$ for which

$$p(w \mid d) = \sum_{k=1}^{K} p(w \mid c_k) p(c_k \mid d)$$
(8)

Learning: Estimate $p(w | c_k)$ and $p(c_k | d)$ using EM to maximize the data likelihood, given images $\{d_i\}_{i=1}^N$, and visual words $\{w_j\}_{j=1}^M$:

$$L = \sum_{i=1}^{N} \sum_{j=1}^{M} p(w_j \mid d_i)^{n(w_j, d_i)}$$
(9)

where $n(w_j, d_i)$ is the number of times word w_j occurs in image d_i .

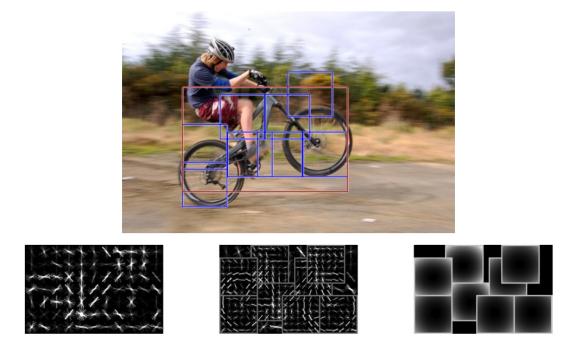
Inference: Given a test image d and word counts $n(w_j, d)$, consider the data likelihood (9) with N = 1. The terms $p(w_j | d)$ can be expanded using (8), with the learned values for $p(w_j | c_k)$. Then EM can be used to infer the topic distribution $p(c_k | d)$. [Sivic et al '05; Hofmann '01]

And of course there's more ...

Kernel methods for discriminative classification, e.g., with the pyramid match kernel [Grauman & Darrell, 2005].

Discriminative methods with spatial structure, e.g., using spatial pyramid kernels [Lazebnik et al, 2009]

Part-based deformable models, e.g. [Felzenswalb et al, 2010]



and more ...

Further Readings

- P. Belhumeur et al (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. *IEEE PAMI*, 19(7):711-720
- T. Cootes, G. Edwards, and C.J. Taylor (1998) Active appearance models, Proc. ECCV.
- S. Dickinson (1999) The evolution of object categorization and the challenge of image abstraction.
- P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan. Object detection with discriminatively trained part based models. *IEEE PAMI*, 32
- J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting, *Ann. Statistics* 28, 2000, pp. 337-407.
- G. Golub and C. van Loan (1984) Matrix Computations. Johns Hopkins Press, Baltimore.
- K. Grauman and T. Darrell (2007) The Pyramid Match Kernel: Efficient learning with sets of features. *JMLR* 8: 725–760.
- T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning, Data Mining, Inference, and Prediction*, Springer, 2001.
- T. Hofmann (2001) Unsupervised learning by probabilistic latent semantic analysis. *MLJ* 42:177–196
- S. Lazebnik, C. Schmid, and J. Ponce (2009) Spatial pyramid matching. in *Object Categorization: Computer and Human Vision Perspectives*, S. Dickinson et al (eds), Cambridge University Press
- J. Matas, O. Chum, M. Urba, and T. Pajdla (2002) Robust wide baseline stereo from maximally stable extremal regions." *Proc BMVC*, pp. 384-396.
- K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir and L. Van Gool (2005) A Comparison of Affine Region Detectors. *IJCV* 65(12):43–72.
- B. Moghaddam, T. Jebara, T. and A. Pentland, A. (2000) Bayesian face recognition. *Pattern Recognition*, 33(11):1771-1782
- H. Murase and S. Nayar, S. (1995) Visual learning and recognition of 3D objects from appearance. *IJCV* 14:5–24.
- J. Sivic, B. Russel, A. Efros, A. Zeisserman, W. Freeman (2005) Discovering objects and their location in images. *Proc ICCV*
- M. Turk and A. Pendland (1991) Face recognition using eigenfaces, J. Cog. Neurosci., 3(1):71-86.
- P. Viola, and M. Jones (2004) Robust real-time face detection, IJCV 58:137-154.