Object Recognition

Goal: Introduce central issues of object recognition, basicrieples,
and emerging directions.

Outline:

1. What is object recognition and why is it challenging?
Historical perspective
Basic view-based classifiers and common problems
Boosting

Feature-based models

S R

Multiple classes, context, and parsing

Matlab Tutorials and Demo Code:

e SIFT tutorial

Acknowledgements: Slides on Bag-of-Words models adapted from
CVPR 2007 tutorial on recognition by Torralba, Fei-Fei amrddts.
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Background

Types of visual recognition problems:
e validation
e detection
e instance recognition (identification)
e category recognition
e scene/context recognition
e activity recognition

Challenges:
e variation in view point and lighting
e Vvariation in shape, pose and appearance
e clutter and occlusion
e function versus morphology

Historical Perspective:
e Blocks world
e 3D shape and part decomposition
e Perceptual organization
e Appearance-based models
e Context (3D and 2D) and Parsing

Let’s begin by considering the linear subspace model (aderemodel)
for appearance variations.
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Subspace Models for Detection

Mean Eye:

Basis Imageg1—6, and 10:5

SHSE
M=

A=
=]

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K=150)

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K=50)
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Subspace Models for Detection
Generative modelM, for random eye images:
K
I = m+ <Zakbk> + &
k=1
wherem is the mean eye imagey, ~ N(0,03), o: is the sample
variance associated with thé&' principal direction in the training data,
andé ~ N(0, 07 Iy2) whereo? = < Zk x.1 03 is the per pixel out-

of-subspace variance. (The coefficients and errors arenessto be
independent.)

Random Eye Images:

Random draws from generative model (with K=5, 10, 20, 50, 100, 200)

So the likelihood of an image under this model of eyes is

<Hp ay| M) ) €| M)

where
1 _ﬁ N2 ]_ 63
ag|M) = e i & M) = ¢ 207
plalM) = —— pelm =TI o5
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Eye Detection

The log likelihood of the model is given by

K
LM) = logp(I| M) = (Zlogp(ak/\/l)> + logp(€| M)

k=1
K 2 N? 2
—aj, — %
= — | + + const
(Z 20]%) (Z 203)
k=1 Jj=1
= S,(a) + Sout(€)  + const

Detector:

1. Given an imagé

2. Compute the subspace coefficiesits B”(I — m)

3. Compute residua = I — m — B&

4. For S(d, €) = S;,(a) + S,u(€), and a given threshold, the image

patch is classified as an eye when

S(@a €) > 7.
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Performance Measures

classified positive$ classified negative

92}

true exampleg 7, true positives| F,,., false negatives N,,s = T)os+ Feq

false examples ), false positives 7)., true negative§ N,,.; = Fjos+Theq
Cpos Cneg N

e true positive (detection) ratev, = T0s/Npos
e true negative (reject) ratep, = Theq/Nney
o false positive (false alarm / type | error) ragg; = 1—py,

o false negative (miss/ type Il error) rate;, = 1—py,

Receiver Operating Characteristic (ROC) Curves. trade-off between
sensitivity (detection rate) and specificity (false pesitrate), as a
function of the decision threshold.

ROC
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True Detection Rate
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False Positive Rate

Disjoint test and training sets; non-eyes drawn at random fmages.
Notice the over-fitting at low FP rates.
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Performance Measures (cont)

EigenEyes DET EigenEyes
1~ . . .
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Precision
Miss Rate (%)

0.88
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nBasis = 0
nBasis = 1
nBasis = 2
0.84H nBasis = 4
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nBasis =100
nBasis =200
T T

0.86

0.82H

0.8 L L L L L L
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 10° 10"

Recall False Alarm Rate (%)

Detection is often done by sliding boxes of multiple sizesran image, and testing each box for the
presence of the target object. Here we should expect a latigeaf negative examples to positive
examplesy = N,.,/Ny.s. (E.Q., sliding a single box over &0 x 480 image, subsampling by 2
pixels, gives about0* boxes. Since all but a handful are negatives; 10%.)

Precision-Recall Curves(LEFT)

e Precision: T,,s/C,,s . What fraction of positive responses are correct hits?
e Recall: pi, = T,0s/Nyos - What fraction of the true eyes do we actually find?
e Note: Beware of test sets with too few negatives, therelsifggorecision upwards (see below).
The above-left plot used~ 1.5.
Detection Error Trade-off (DET) Curves (RIGHT)

e Missrate (i.e., false negative rajg,,) versus false alarm rate (i.e., false positive ratg).
e Log-log axes highlight the important regime of small falsgative and positive rates.

e For a particular application with an estimated ratio-6f N,,.,/N,,s, the precision is

P = Thu/Chos = (L= pyn) Nios __d=ppm)
p p (1_pfn>Npos+pprneg (1_pfn>+,rpfp

Therefore the precision decreases as the ratiocreases.
e With p;, andp, about 5% (see ROC or DET plots above) ang 10%, we find the precision

P ~ 0.002 (i.e., of every 1000 hits, roughly 2 are expected to be eydss-g exceptionally
noisy). This motivates the reduction pf, by several orders of magnitude.
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Face Detection

The wide-spread use of PCA for object recognition began thighwork Turk and Pentland (1991)
for face detection and recognition.

Shown below is the model learned from a collection of froféaks, normalized for contrast, scale,
and orientation, with the backgrounds removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigagé@s The first three show strong
variations caused by illumination. The next few appear twespond to the occurrence of certain
features (hair, hairline, beard, clothing, etc).
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Face Detection/Recognition

—» Multiscale | Feature
Head Search Search

aﬁa

Moghaddam, Jebara and Pentland (2000): Subspace metleodseal for head detection and then
feature detection to normalize (warp) the facial regiorhefimage.

Recognition: Are these two images (test and target) the same?

Approach 1:9ngle Image Subspace Recognition:
Project test and target faces onto the face subspace, andtldstance within the subspace.
Approach 2:Intra/Extra-Personal Subspace Recognition:

e An intra-personal subspace is learned from difference @saq the same persion under varia-

tion in lighting and expression.

e The extra-personal subspace learned from difference leetweages of different people under

similar conditions.
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Object Recognition

Murase and Nayar (1995)

e images of multiple objects, taken from different positioamsthe viewsphere
e each object occupies a manifold in the subspace (as a furatjoosition on the viewsphere)

e recognition: nearest neighbour assuming dense sampliolgje€t pose variations in the train-

ing set.
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Gaussian Class-Conditional Models

Consider Gaussian models for multiple classes (e.g., eygan-
eyes). For model/,, we assume a Gaussian observation depsity 1/;,),
e.g., over subspace coefficients

For two classes)/; and M, let the prior probabilities bg()/;) and
p(My) = 1 — p(M;). The observation densities are Gaussian with
meansi; and covariance§’,. (for k£ = 1,2). Then, the posterior prob-
ability for model M, given the datal, is

p(My | d) = p(My) G(CE L, Ck).

p(d)

—

The log odds:(d) for model M, over M, is defined to be

— — —

5 | = i) O (d = fio) = (d = )¢ — i) ()
Thresholding the log odds at zero yields the decision bogynda

The decision boundary is a quadratic surfacel igpace (a quadratic
discriminant). When both classes have the same covariaegé;; =
(5, the quadratic terms in (1) cancel and the decision boundary
comes a hyperplane.
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Logistic Regression

Let’s return to the posterior class probability:

p(d | M) p(My)

p(M;|d) = — _ .
p(d | My) p(My) + p(d|Ma) p(Ms)

(2)

Dividing the numerator and denominator pid | M:)p(M;) gives:

(3)

1 . d| M) (M
- a(d)zlnp(_,| 1) P 1).
1 + e—a(d) p(d | Ms) p(Ms)

The posterior probability of/; grows as: grows, and when = 0, the

p(My|d) =

posterior isP(M; | d) = 1. That is,a(d) = 0 is the decision boundary.

Let’'s assume a linear decision boundary (independent ospagific
parametric form for the observation densities); i.e., let

a(d) = wid+b (4)

To learn a classifier, given |ID training exempla{é},-, y;}, wherey; =
{1,2}, we minimize the negative log likliehood:

log p({d;, y;} |w,b) < p({y;}|{d;}, w,0)
= > p(Mi|d) > (1—p(Mi|d;) (5)

Jiy;=1 J:y;=2

Although this objective function cannot be optimized insgd-form,
it is convex; it has a single minimum. So we can optimize itvgbme
form of gradient descent, and the initial guess is not @itic
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Issues with Class-Conditional and LR Models

Class-Conditional Models:

e The single Gaussian model is often rather crude. PCA cosfiigi
often exhibit significantly more structure (cf. Murase & Nay
e A Gaussian model will also be a poor model of non-eye images.

e As a result of this unmodelled structure, detectors basesinge
Gaussian models are often poor.

Logistic Regression:

e Discriminative model does not require a model of the observa
tions, and often hafewer parameters as a result.

e LR with its linear decision boundary is only expressive agtofor
simple problems.

Alternatives:

e An alternative approach is to consider warped and aligned vi
based models (see Cootes, Edwards, & Taylor, 1998).

¢ Richer density models of the subspace coefficients are ljessi
(e.g., nearest neighbour as in Murase & Nayar, or mixturegis)d

Breakthrough:

e More sophisticated discriminative models with simple {fdsa-
ture extraction (see Viola & Jones, 2004).
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AdaBoost: Binary Classification Problem

Given training datd z;, y;}_,, where
e 7; € R%is the feature vector for thg" data item,
e y; € {—1,1} denotes the class membership of jHeitem z;,

we seek a classifigr () such thay(z) = sign(F' (7)) approximates (in
some sense) the training data, i.e., the given class iradigashould
agree with the modeilgn(F'(%;)) as much as possible.

AdaBoost is an algorithm for greedily training classifiérsr ) which
take the form ofdditive linear models:

Foul@) = ) onful;6) (6)

Herem > 1 and
e F,(7)is aweighted (i.ea;) sum of simpler functiong;.(; §k) :

e Note the simpler functions depend on parame&érswhich we
need to fit along with the weights..

e Here we take the simpler functiorfig(z; 9}) to be weak classifiers,
providing values if—1,1} (e.g., decision stumps).

e We useF;(¥) = 0 in the recursive definition above.
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Exponential Loss

We seek a modek,, (%) such thasign(F,, (7)) agrees with the class
indicatory; € {—1, 1}, as much as possible, in the training data.

How should we measure agreement/disagreement? $ginskould
have the same sign ds,(7}), it is convenient to considey, F,,, (%),
which should be positive.

Loss(cost) functions ot = yF'(7):
e 0-1 Loss (classification error):C'(z) = 1 if z < 0, else0. This
loss function is hard to optimize because it is discontirsuou
e Quadratic Loss: C'(z) = (z — 1)%. Easy to optimize but penalizes
F (%) when it's large with the correct sign (confident and correct)

e Exponential Loss: C(z) = exp(—z). Smooth and monotonic in
z. Large cost forF'(Z) with wrong sign and large magnitude (i.e.
confident and wrong). Still a crude approximation to 0-1 loss

4—

- Class Error
35+ . Exp. Loss |4
= Quad. Loss

3t

251

2,

Loss

151

1

0.5

ol ; ; ;
-2 -15 -1 -05 0 05 1 15 2
y F(x)
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Greedy Fitting and AdaBoost

Suppose we have trained a classifigr | () with m—1 additive com-
ponents, and we wish to add one more component, i.e.,

—

Fm(f) — m—l(f) + Quy fm(fu em) .

Suppose we chooseg, andd,, to minimize the exponential loss

N N
S ClyFuliy) = 3 et
j=1 j=1

N
— E e_ijm—l(fj)e_?/jamfm(fjﬁm)

J=1

N
— E w<m_1) e_yjamfm(fjaem)
J
J=1

Here the Weighwﬁm‘l) = e ¥m-1(%) is just the exponential loss for
the previous functior},,_; (%) on the;'" training item.

e The weights are largest for data points which the previonstfan
F,,—1(Z) confidently classifies incorrectly, i.ey F,,_1(Z;) < 0.

e The weights are smallest for points confidently classifiedeamtly,
l.e., fory; F,_1(Z;) > 0.

This greedy fitting of the weak classifiers in an additive maekeds to
the AdaBoost learning algorithm (see Friedman et al, 2000).
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AdaBoost Algorithm

for all training exemplarsj = 1... N, wj(.l) =1
for m =1to M do
Fit weak classifiern to minimize the objective function:

5 0™ T fon&7.0m) ;)
=5y

€Em —

wherel(b) = 1 if booleand is true, and) otherwise

;= In <%)

for all 7 do

W™t w](.m)eosz(fm(fj)#yj)

J

end for

end for

After learning, the final classifier is

M
9(7) = sign (Z U fn(T, 5m)> (7)
m=1
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Viola and Jones Face Detector

Rejection cascade architecture (sequence of classifidrghvesholds
chosen to keep the false negative rate low):

T T
— o Classifier 1 1%, (Classifior 2 ) — oy . .. %, ( Classifier N )% True

Input images False False Falsa

Faloe Falza Falsa

Features are formed from Haar filters...
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The result is a real-time face detector with good classibogberfor-
mance (Viola and Jones, 2004).
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Viola and Jones, Results
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Feature-Based Near Duplicate Detection

Sufficiently similar images will contain similar featuresgcurring in
similar spatial configurations.

Training: Extract SIFT descriptors from training image(s).
Testing:
e For each SIFT feature in test image, find a match from training
features (ANN search with good near neighbour distance)rati
e Select training images with sufficiently many matching feas

e Robustly fit a parametric warp (eg, affine), and rank seleicted
ages based on the number of inliers.

Applications:

e Detecting / tracking images of same scene/object with svaail
ations in viewpoint, occlusion, and lighting (eg, see [La&2@©4])

¢ Image retrieval — eg, Google Goggles searchigsmages, with
10° features/image and a distributed KD-tree for ANN search.

Works surprisingly well on specific types of images.
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Bag of Words

Feature-based approacicategory recognition (and unsupervised dis-
covery), modeling appearance by first-order feature sitzgifthe fre-
guency of feature occurrence), thereby ignoring spatyailéand higher-
order statistics.

Recognition:

1. feature detection
VLEECTY AT,

2. compute distribution (histogram) of feature occurrence

il

— Ld
Th @ =
- K

3. matching (generative or discriminative)
4 - 4 4
] X /,? >
>

[ 1 =
T h @ = IThL @ = T h @™
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Bag of Words: Feature-Based Representation

Feature Detection: Harris/DOG maxima, regular grid or random patches,
maximally stable extremal regions (MSER) [Matas et al 2068].

Canonical Coordinates: for affine region detectors, warp elliptical re-
gions to circular disks (for robustness to viewpoint, se&Najczyk
et al 2005; Sivic et al 2005])

o] o [ o |or |0 = FRIERIEN
QRO EEI@Q

Local Descriptor: patch descriptor, such as SIFT, w or w/o rotation

Codebook formation using vector quantization. This simplifies tha-fe
ture space, and provides robustness intra-class vatyabili

e K-Means: Given N data vectors[y;}¥ ,, assign each vector to
one of i’ disjoint clusters; let;; be 1 wheny; belongs to cluster
J and O otherwise. Find cluster centgfsand assignments; to
minimize

K
E = ZZUH}?Z_E}HQ’ Stlezl
1,] j=1
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Generative Bag-of-Words Models

Naive Bayes. Class-conditional models of the frequency of visual words
{w;};L,, for classeq¢; }i . (For unsupervised learning, cluster the
empirical word distributions for a set of training images.)

Inference:

M
¢ = argmax p(wi.s |c)plc), plwi|c) = Hp(wj | c)
j=1

Latent Topic Models: Low-dimensional latent models for categalig-
covery. In Probabilistic Latent Semantic Analysis, for imageand
visual wordw we defineK latent topic model$c; } %, for which

pw|d) = pr\ck (ck | d) (8)

Learning: Estimate(w | c¢;) andp(c; | d) using EM to maximize the
data likelihood, given imageisi;}% |, and visual Words{wj}j]‘il:

N M
= D> plw;|d)"® 9)

i=1 j=1
wheren(w;, d;) is the number of times word; occurs in image,.

Inference: Given a test imagleand word counts(w,, d), consider the
data likelihood (9) withV = 1. The term(w; | d) can be expanded
using (8), with the learned values fpfw; | ¢;). Then EM can be used
to infer the topic distributiom(cy, | d). [Sivic et al '05; Hofmann '01]
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And of course there’s more ...

Kernel methods for discriminative classification, e.gthwhe pyramid
match kernel [Grauman & Darrell, 2005].

Discriminative methods with spatial structure, e.g., gspatial pyra-
mid kernels [Lazebnik et al, 2009]

Part-based deformable models, e.g. [Felzenswalb et a] 201

and more ...
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