
Object Recognition

Goal: Introduce central issues of object recognition, basic techniques,

and emerging directions.

Outline:

1. What is object recognition and why is it challenging?

2. Historical perspective

3. Basic view-based classifiers and common problems

4. Boosting

5. Feature-based models

6. Multiple classes, context, and parsing

Matlab Tutorials and Demo Code:

• SIFT tutorial

Acknowledgements: Slides on Bag-of-Words models adapted from

CVPR 2007 tutorial on recognition by Torralba, Fei-Fei and Fergus.
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Background

Types of visual recognition problems:

• validation

• detection

• instance recognition (identification)

• category recognition

• scene/context recognition

• activity recognition

Challenges:

• variation in view point and lighting

• variation in shape, pose and appearance

• clutter and occlusion

• function versus morphology

Historical Perspective:

• Blocks world

• 3D shape and part decomposition

• Perceptual organization

• Appearance-based models

• Context (3D and 2D) and Parsing

Let’s begin by considering the linear subspace model (aka eigen-model)

for appearance variations.

2503: Object Recognition Page: 2



Subspace Models for Detection

Mean Eye:

Basis Images(1−6, and 10 :5 :35):

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)
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Subspace Models for Detection

Generative model,M, for random eye images:

~I = ~m +

(

K
∑

k=1

ak~bk

)

+ ~e

where ~m is the mean eye image,ak ∼ N (0, σ2
k), σ2

k is the sample

variance associated with thekth principal direction in the training data,

and~e ∼ N (0, σ2
e IN2) whereσ2

e =
1
N2

∑N2

k=K+1 σ
2
k is the per pixel out-

of-subspace variance. (The coefficients and errors are assumed to be

independent.)

Random Eye Images:

Random draws from generative model  (with K = 5, 10, 20, 50, 100, 200)

So the likelihood of an image under this model of eyes is

p(~I |M) =

(

K
∏

k=1

p(ak|M)

)

p(~e |M)

where

p(ak|M) =
1√
2πσk

e
− a2

k

2σ2
k , p(~e |M) =

N2
∏

j=1

1√
2πσe

e
−

e2
j

2σ2e .
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Eye Detection

The log likelihood of the model is given by

L(M) ≡ log p(~I |M) =

(

K
∑

k=1

log p(ak|M)

)

+ log p(~e |M)

=

(

K
∑

k=1

−a2k
2σ2

k

)

+





N2
∑

j=1

−e2j
2σ2

e



 + const

≡ Sin(~a) + Sout(~e) + const

Detector:

1. Given an image~I

2. Compute the subspace coefficients~a = BT (~I− ~m)

3. Compute residual~e = ~I− ~m−B~a

4. For S(~a,~e) = Sin(~a)+Sout(~e), and a given thresholdτ , the image

patch is classified as an eye when

S(~a,~e) > τ .
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Performance Measures

classified positives classified negatives

true examples Tpos true positives Fneg false negativesNpos = Tpos+Fneg

false examples Fpos false positives Tneg true negatives Nneg = Fpos+Tneg

Cpos Cneg N

• true positive (detection) rate:ρtp = Tpos/Npos

• true negative (reject) rate:ρtn = Tneg/Nneg

• false positive (false alarm / type I error) rate:ρfp = 1−ρtn

• false negative (miss / type II error) rate:ρfn = 1−ρtp

Receiver Operating Characteristic (ROC) Curves: trade-off between
sensitivity (detection rate) and specificity (false positive rate), as a
function of the decision threshold.
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Disjoint test and training sets; non-eyes drawn at random from images.
Notice the over-fitting at low FP rates.
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Performance Measures (cont)
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Detection is often done by sliding boxes of multiple sizes over an image, and testing each box for the

presence of the target object. Here we should expect a large ratio of negative examples to positive

examples,r = Nneg/Npos. (E.g., sliding a single box over a640 × 480 image, subsampling by 2

pixels, gives about104 boxes. Since all but a handful are negatives,r ≈ 104.)

Precision-Recall Curves(LEFT)

• Precision:Tpos/Cpos . What fraction of positive responses are correct hits?

• Recall: ρtp = Tpos/Npos . What fraction of the true eyes do we actually find?

• Note: Beware of test sets with too few negatives, thereby biasing precision upwards (see below).

The above-left plot usedr ≈ 1.5.

Detection Error Trade-off (DET) Curves (RIGHT)

• Miss rate (i.e., false negative rate,ρfn) versus false alarm rate (i.e., false positive rate,ρfp).

• Log-log axes highlight the important regime of small false negative and positive rates.

• For a particular application with an estimated ratio ofr = Nneg/Npos, the precision is

P ≡ Tpos/Cpos =
(1− ρfn)Npos

(1− ρfn)Npos + ρfpNneg

=
(1− ρfn)

(1− ρfn) + rρfp
.

Therefore the precision decreases as the ratio,r, increases.

• With ρfn andρfp about 5% (see ROC or DET plots above) andr ≈ 104, we find the precision

P ≈ 0.002 (i.e., of every 1000 hits, roughly 2 are expected to be eyes – this is exceptionally

noisy). This motivates the reduction ofρfp by several orders of magnitude.
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Face Detection

The wide-spread use of PCA for object recognition began withthe work Turk and Pentland (1991)

for face detection and recognition.

Shown below is the model learned from a collection of frontalfaces, normalized for contrast, scale,

and orientation, with the backgrounds removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigen-images. The first three show strong

variations caused by illumination. The next few appear to correspond to the occurrence of certain

features (hair, hairline, beard, clothing, etc).
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Face Detection/Recognition

Moghaddam, Jebara and Pentland (2000): Subspace methods are used for head detection and then

feature detection to normalize (warp) the facial region of the image.

Recognition: Are these two images (test and target) the same?

Approach 1:Single Image Subspace Recognition:

Project test and target faces onto the face subspace, and look at distance within the subspace.

Approach 2:Intra/Extra-Personal Subspace Recognition:

• An intra-personal subspace is learned from difference images of the same persion under varia-

tion in lighting and expression.

• The extra-personal subspace learned from difference between images of different people under

similar conditions.
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Object Recognition

Murase and Nayar (1995)

• images of multiple objects, taken from different positionson the viewsphere

• each object occupies a manifold in the subspace (as a function of position on the viewsphere)

• recognition: nearest neighbour assuming dense sampling ofobject pose variations in the train-

ing set.
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Gaussian Class-Conditional Models

Consider Gaussian models for multiple classes (e.g., eyes and non-

eyes). For modelMk, we assume a Gaussian observation densityp(~d |Mk),

e.g., over subspace coefficients~d.

For two classes,M1 andM2, let the prior probabilities bep(M1) and

p(M2) = 1 − p(M1). The observation densities are Gaussian with

means~µk and covariancesCk (for k = 1, 2). Then, the posterior prob-

ability for modelMk, given the data~d, is

p(Mk | ~d) =
p(Mk)G(~d; ~µk, Ck)

p(~d)
.

The log oddsa(~d) for modelM1 overM2 is defined to be

a(~d) ≡ log

[

p(M1 | ~d )

p(M2 | ~d )

]

= log

[

p(M1) |C2|1/2
p(M2) |C1|1/2

]

+

1

2

[

(~d− ~µ2)
TC−1

2 (~d− ~µ2)− (~d− ~µ1)
TC−1

1 (~d− ~µ1)
]

(1)

Thresholding the log odds at zero yields the decision boundary.

The decision boundary is a quadratic surface in~d space (a quadratic

discriminant). When both classes have the same covariance,i.e.,C1 =

C2, the quadratic terms in (1) cancel and the decision boundarybe-

comes a hyperplane.
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Logistic Regression

Let’s return to the posterior class probability:

p(M1 | ~d) =
p(~d |M1) p(M1)

p(~d |M1) p(M1) + p(~d|M2) p(M2)
. (2)

Dividing the numerator and denominator byp(~d |M1)p(M1) gives:

p(M1 | ~d) =
1

1 + e−a(~d)
, a(~d) = ln

p(~d |M1) p(M1)

p(~d |M2) p(M2)
. (3)

The posterior probability ofM1 grows asa grows, and whena = 0, the

posterior isP (M1 | ~d) = 1
2. That is,a(~d) = 0 is the decision boundary.

Let’s assume a linear decision boundary (independent of anyspecific

parametric form for the observation densities); i.e., let

a(~d) = ~wT~d + b (4)

To learn a classifier, given IID training exemplars,{~dj, yj}, whereyj =

{1, 2}, we minimize the negative log likliehood:

log p({~dj, yj} |w, b) ∝ p({yj} | {~dj},w, b)

=
∑

j:yj=1

p(M1 | ~dj)
∑

j:yj=2

(1− p(M1 | ~dj)) (5)

Although this objective function cannot be optimized in closed-form,

it is convex; it has a single minimum. So we can optimize it with some

form of gradient descent, and the initial guess is not critical.
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Issues with Class-Conditional and LR Models

Class-Conditional Models:

• The single Gaussian model is often rather crude. PCA coefficients

often exhibit significantly more structure (cf. Murase & Nayar).

• A Gaussian model will also be a poor model of non-eye images.

• As a result of this unmodelled structure, detectors based onsingle

Gaussian models are often poor.

Logistic Regression:

• Discriminative model does not require a model of the observa-

tions, and often hasfewer parameters as a result.

• LR with its linear decision boundary is only expressive enough for

simple problems.

Alternatives:

• An alternative approach is to consider warped and aligned view

based models (see Cootes, Edwards, & Taylor, 1998).

• Richer density models of the subspace coefficients are possible

(e.g., nearest neighbour as in Murase & Nayar, or mixture models).

Breakthrough:

• More sophisticated discriminative models with simple (fast) fea-

ture extraction (see Viola & Jones, 2004).
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AdaBoost: Binary Classification Problem

Given training data{~xj, yj}Nj=1, where

• ~xj ∈ R
d is the feature vector for thejth data item,

• yj ∈ {−1, 1} denotes the class membership of thejth item~xj,

we seek a classifierF (~x) such thaty(x) ≡ sign(F (~x)) approximates (in

some sense) the training data; i.e., the given class indicator yj should

agree with the modelsign(F (~xj)) as much as possible.

AdaBoost is an algorithm for greedily training classifiersF (~x ) which

take the form ofadditive linear models:

Fm(~x) =

m
∑

k=1

αkfk(~x; ~θk) (6)

= Fm−1(~x) + αmfm(~x; ~θm).

Herem ≥ 1 and

• Fm(~x) is a weighted (i.e.αk) sum of simpler functionsfk(~x; ~θk) .

• Note the simpler functions depend on parameters~θk, which we

need to fit along with the weightsαk.

• Here we take the simpler functionsfk(~x; ~θk) to be weak classifiers,

providing values in{−1, 1} (e.g., decision stumps).

• We useF0(~x) ≡ 0 in the recursive definition above.
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Exponential Loss

We seek a modelFm(~x) such thatsign(Fm(~xk)) agrees with the class

indicatoryj ∈ {−1, 1}, as much as possible, in the training data.

How should we measure agreement/disagreement? Sinceyk should

have the same sign asFm(~xk), it is convenient to considerykFm(~xk),

which should be positive.

Loss(cost) functions ofz ≡ yF (~x):

• 0-1 Loss (classification error):C(z) = 1 if z ≤ 0, else0. This

loss function is hard to optimize because it is discontinuous.

• Quadratic Loss: C(z) = (z− 1)2. Easy to optimize but penalizes

F (~x) when it’s large with the correct sign (confident and correct).

• Exponential Loss: C(z) = exp(−z). Smooth and monotonic in

z. Large cost forF (~x) with wrong sign and large magnitude (i.e.

confident and wrong). Still a crude approximation to 0-1 loss.
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Greedy Fitting and AdaBoost

Suppose we have trained a classifierFm−1(~x) with m−1 additive com-

ponents, and we wish to add one more component, i.e.,

Fm(~x) = Fm−1(~x) + αm fm(~x; ~θm) .

Suppose we chooseαm and~θm to minimize the exponential loss

N
∑

j=1

C(yjFm(~xj)) ≡
N
∑

j=1

e−yjFm(~xj)

=
N
∑

j=1

e−yjFm−1(~xj)e−yjαmfm(~xj ,~θm)

=

N
∑

j=1

w
(m−1)
j e−yjαmfm(~xj ,~θm)

Here the weightw(m−1)
j = e−yjFm−1(~xj) is just the exponential loss for

the previous functionFm−1(~x) on thejth training item.

• The weights are largest for data points which the previous function

Fm−1(~x) confidently classifies incorrectly, i.e.,yjFm−1(~xj) ≪ 0.

• The weights are smallest for points confidently classified correctly,

i.e., foryjFm−1(~xj) ≫ 0.

This greedy fitting of the weak classifiers in an additive model leads to

the AdaBoost learning algorithm (see Friedman et al, 2000).
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AdaBoost Algorithm

for all training exemplars:j = 1...N , w
(1)
j = 1

for m = 1 toM do

Fit weak classifierm to minimize the objective function:

ǫm =
∑

j w
(m)
j I(fm(~xj ,~θm) 6=yj)
∑

j w
(m)
j

whereI(b) = 1 if booleanb is true, and0 otherwise

αm = ln
(

1−ǫm
ǫm

)

for all i do

w
(m+1)
j = w

(m)
j eαmI(fm(~xj) 6=yj)

end for

end for

After learning, the final classifier is

g(~x) = sign

(

M
∑

m=1

αmfm(~x, ~θm)

)

(7)
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Viola and Jones Face Detector

Rejection cascade architecture (sequence of classifiers with thresholds

chosen to keep the false negative rate low):

Features are formed from Haar filters...

These features can be computed rapidly using integral images.

The result is a real-time face detector with good classification perfor-

mance (Viola and Jones, 2004).
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Viola and Jones, Results
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Feature-Based Near Duplicate Detection

Sufficiently similar images will contain similar features,occurring in

similar spatial configurations.

Training: Extract SIFT descriptors from training image(s).

Testing:

• For each SIFT feature in test image, find a match from training

features (ANN search with good near neighbour distance ratio).

• Select training images with sufficiently many matching features

• Robustly fit a parametric warp (eg, affine), and rank selectedim-

ages based on the number of inliers.

Applications:

• Detecting / tracking images of same scene/object with smallvari-

ations in viewpoint, occlusion, and lighting (eg, see [Lowe2004])

• Image retrieval – eg, Google Goggles searches108 images, with

103 features/image and a distributed KD-tree for ANN search.

Works surprisingly well on specific types of images.
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Bag of Words

Feature-based approach tocategory recognition (and unsupervised dis-

covery), modeling appearance by first-order feature statistics (the fre-

quency of feature occurrence), thereby ignoring spatial layout and higher-

order statistics.

Recognition:

1. feature detection

2. compute distribution (histogram) of feature occurrence

3. matching (generative or discriminative)
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Bag of Words: Feature-Based Representation

Feature Detection: Harris/DOG maxima, regular grid or random patches,

maximally stable extremal regions (MSER) [Matas et al 2002], etc.

Canonical Coordinates: for affine region detectors, warp elliptical re-

gions to circular disks (for robustness to viewpoint, see [Mikolajczyk

et al 2005; Sivic et al 2005])

Local Descriptor: patch descriptor, such as SIFT, w or w/o rotation

Codebook formation using vector quantization. This simplifies the fea-

ture space, and provides robustness intra-class variability.

• K-Means: Given N data vectors{~yi}Ni=1, assign each vector to

one ofK disjoint clusters; letlij be 1 when~yi belongs to cluster

j and 0 otherwise. Find cluster centers~µj and assignmentslij to

minimize

E =
∑

i,j

lij ||~yi − ~cj||2 , s.t.
K
∑

j=1

lij = 1 .
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Generative Bag-of-Words Models

Naive Bayes: Class-conditional models of the frequency of visual words

{wj}Mj=1, for classes{ck}Kk=1. (For unsupervised learning, cluster the

empirical word distributions for a set of training images.)

Inference:

c∗ = argmax p(w1:M | c) p(c) , p(w1:M | c) =
M
∏

j=1

p(wj | c)

Latent Topic Models: Low-dimensional latent models for categorydis-

covery. In Probabilistic Latent Semantic Analysis, for imaged and

visual wordw we defineK latent topic models{ck}Kk=1 for which

p(w | d) =
K
∑

k=1

p(w | ck) p(ck | d) (8)

Learning: Estimatep(w | ck) andp(ck | d) using EM to maximize the

data likelihood, given images{di}Ni=1, and visual words{wj}Mj=1:

L =

N
∑

i=1

M
∑

j=1

p(wj | di)n(wj ,di) (9)

wheren(wj, di) is the number of times wordwj occurs in imagedi.

Inference: Given a test imaged and word countsn(wj, d), consider the

data likelihood (9) withN = 1. The termsp(wj | d) can be expanded

using (8), with the learned values forp(wj | ck). Then EM can be used

to infer the topic distributionp(ck | d). [Sivic et al ’05; Hofmann ’01]
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And of course there’s more ...

Kernel methods for discriminative classification, e.g., with the pyramid

match kernel [Grauman & Darrell, 2005].

Discriminative methods with spatial structure, e.g., using spatial pyra-

mid kernels [Lazebnik et al, 2009]

Part-based deformable models, e.g. [Felzenswalb et al, 2010]

and more ...
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