Optical Flow Estimation

Goal: Introduction to image motion and 2D optical flow estimation.

Motivation:
e Motion is a rich source of information about the world:

— segmentation

— surface structure from parallax
— self-motion

— recognition

— understanding behavior

— understanding scene dynamics

e Other correspondence / registration problems:

— stereo disparity (short and wide baseline)
— computer-assisted surgery (esp. multi-modal registatio
— multiview alignment for mosaicing or stop-frame animation

Readings: Fleet and Weiss (2005)

Matlab Tutorials: intromotionTutorial.m, motionTutorial.m
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Introduction to Image Motion

3d path of camera
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A 3D pointX follows a space-time patK(t). Its velocity isV is

L dX(t)  (dX(t) dY(t) dZ(t)\"
V_T_< dt * dt dt) '

Perspective projection (for nodal lengfh of the 3D path onto the
image plane produces a 2D path,

i) = o) = (S D)

the instantaneous 2D velocity of which is

o (dfﬂ(t) dy(t)>T

dt ~ dt
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Definition: 2D Motion Field — 2D velocities for all visible points.
Optical Flow Field — Estimate of the 2D motion field.
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Optical Flow

Two Key Problems:

1. Determine what image property to track.
2. Determine how to track it

Brightness constancy: Let’s track points of constant brightness,
assuming that surface radiance is constant over time:

Ix,y,t+1) = I(x —uy,y —us,t) .
Brightness constancy is often assumed by researchers ftand/m-

lated by Mother Nature; so the optical flow field is sometimg®ar
approximation to the 2D motion field.

E.g., a rotating Lambertian sphere with a static light seynm-
duces a static image, but a stationary sphere with a mowghdy i
source produces drifting reflection (figure from Jahne et@99).
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Gradient-Based Motion Estimation

How do we find the motion of a 1D greylevel functigitz)? E.g.,
let's say thatf(x) is displaced by distancéfrom time 1 to time2:

faoz) = filz —d).

We can express the shifted signal as a Taylor expansignaijoutz:

filz —d) = filz) —d fi(z) + O(d”) ,

in which case the difference between the two signals is diyen

fola) = filz) = —d fi(z) +O(d*).
Then, a first-order approximation to the displacement is

_ Nile) = folx) |

d
fi(z)

For linear signals the first-order estimate is exact.

' A@ R ! fi(@) fa(@)

/ @ - HE
. He

v—d = v-d
For nonlinear signals, the accuracy of the approximatiqredds on
the displacement magnitude and the higher-order signattsite.
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Gradient Constraint Equation

In two spatial dimensions we express the brightness consit@im-
straint as

f(a?+u1,y+u2,t+l) — f(ﬂf, Y, t) (1)
As above, we substitute a first-order approximation,

flx+up,y+u, t+1)~
f(il?,y,t) +u1fx(x7y7t) —I-’LLny(l’,y,t) + ft(xayat) (2)

into the left-hand side of (1), and thereby obtain tradient con-
straint equation

Uy fx(xa Y, t) + ) fy(xa Y, t) =+ ft(wa Y, t) = 0.
Written in vector form, withV f = (f.., f,)7:

ﬁTﬁf(xayat) + ft(xayat) = 0.

When the duration between frames is large, it is sometimes o
propriate to use only spatial derivatives in the Tayloresapproxi-
mation in (2). Then one obtains a different approximation

d'V f(,y,t) + Af(x,y,t) = 0

whereAf(z,y,t) = f(z,y,t+1) — f(z,y,t).
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Brightness Conservation
One can also derive the gradient constraint equation ¢jirigotn brightness conservation.

Let (z(t), y(¢)) denote a space-time path along which the image intensitgirenis constant; i.e.,
the time-varying imag¢ satisfies

Fat). y(t). ) = c

Taking the total derivative of both sides gives

& Fle),u(t), 1) = 0

The total derivative is given in terms of its partial derivas

of dv  Of dy = Of dt
= frur + fyus + fi
= @'Vf+f
= 0

This derivation assumes that there is no aliasing, so thatan in principle reconstruct the contin-
uous underlying signal and its derivatives in space and.tiFhere are many situations in which this
is a reasonable assumption. But with common video camengsai@l aliasing is often a problem
with many video sequences, as we discuss later in these notes
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Normal Velocity

The gradient constraint provides one constraint in two omkrs. It

defines a line in velocity space:

N —_
~u Sn
\\ /] Ul
.~ motion
N, constraint
u2v line

@'V f=0

The gradient constrains the velocity in the direction ndrtoathe
local image orientation, but does not constrain the tanglerglocity.
That is, it uniquely determines only the normal velocity:
N I
VAT IV

When the gradient magnitude is zero, we get no constraint!

In any case, further constraints are required to estimdteddlements
of the 2D velocityd = (uy, us)?’.
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Area-Based Regression

Smoothness Assumption: 2D motion is smooth in the local image
neighborhood of the point at which we are estimating opfical.

E.g., Let’s say we have gradient constraints at two adjguests,x;
andx,, which have the same velocity,= (u;, uy)’:

[fx(x17y17t> fy($17y17t>] <U1> N [ft(xhyht)] _G
fo(22,92, 1) fy(fUQ,yQ,t) U2 fi(@a, 1, 1) |

_|_ = % ! >
@ //\ T ul
P u
uz‘

More generally, we can use many constraints from within alloe-
gion about the point at which we wish to estimate the optica.fl
Here is an example from the Pepsi sequence:
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Area-Based Regression (Linear LS)

We will not satisfy all constraints exactly. Rather we sdek\elocity
that minimizes the squared error in each constraint (caliedeast-
squares (LS) velocity estimate):

E(Ul, UQ) - Z g(l’, y) [ulfx(xa Y, t) + u2fy(x> Y, t) + ft(xa Y, t)}2 (3)

T,y
whereg(z,y) is a low-pass window that helps give more weight to

constraints at the center of the region.

Solution: Differentiate ' with respect tquy, us) and set to zero:

b -
b -
a SZ;U2) ) 2% g(x’y) [Uny2+u1 fxfy+fyft =0

The constraints thus yield two linear equationsdpandus,.

In matrix notation, theseormal equationsnd their solution are
Mid+b=0, = -M"'b

(assumingVI ! exists), where

M — Z ( ) fx; fy) _ [ngx ngx];y]

Y 9fefy Y9y

o fx _ ngxft
-2 af (fy> (ngyf)
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Area-Based Regression (Implementation)

Since we want the optical flow at each pixel, we can computedhgponents of the normal equa-

tions with a set of image operators. This is much prefereddpihg over image pixels.

1. First, compute 3 image gradientimages at time t, corredipg to the gradient measurements:
f(X), fX), filX)

2. Point-wise, we compute the quadratic functions of thévdeve images. This produces five

images equal to:
. &, @6, ELE, (&L

3. Blurring the quadratic images corresponds to the accatngl of local constraints under the
spatial (or spatiotemporal) support windgwbove. This produces five images, each of which

contains an element of the normal equations at a specificanoagtions:

9X) = [2(%) . 9@ * f(%)

9X) * [Lo(X) [,(X)] . 9F) * [fi(X) [,(X)] . 9(X) * [fi(X) fo(X)]

4. Compute the two images containing the components of apiimwy at each pixel. This is
given in closed form since the inverse of the normal matrix (M above) is easily expressed

in closed form.
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Aperture Problem

Even with the collection of constraints from within a regitime esti-
mation will be undetermined when the math% is singular:

Gl
o >

.- ul

Uy

When all image gradients are parallel, then the normal médrithe
least-squares solution becomes singular (rank 1). E.ggréaients
m(x,y)n, wherem(x,y) is the gradient magnitude at pixel, y)

M = (Zg(ﬂf,y) mz(ﬂf;?/)) nn

Aperture Problem: For sufficiently small spatial apertures the nor-
mal matrix,M, will be singular (rank deficient).

Generalized Aperture Problem: For small apertured/ becomes
singular, but for sufficiently large apertures the 2D mofietd may
deviate significantly from the assumed motion model.

Heuristic Diagnostics: Use singular values; > s, > s3, of Zw g h HT,
for h = (fe, [y, f1)T, to assess the rank of the local image structure:
—if s is "too small” then only normal velocity is available
—if s3 is "large” then the gradient constraints do not lie in a plane
so a single velocity will not fit the data well.
Such "bounds” will depend on the LS region size and the noise.
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Ilterative Estimation

The LS estimate minimized an approximate objective fumctio
(since we linearized the image to obtain the gradient camg®):

A

E<u17u2) - Zg<m7y) [ulfx<m7y7t)+u2fy<$7y7t)+ft(x7y7t)]2

)y

Nevertheless, the real objective function of interest is

Eluy, up) = Zg(w,y) fala, y, t+1) = fulz—us, y—ug, t)

The estimation errors caused by this approximation arengeoader

in the magnitude of the displacement:
A

f1(x) fo(x)

d—d| < w+0(d3)

2| filz)]

So we might converge toward a solution, with a sufficientlpdai-
tial guess, by iterating the estimation, decreasing thplaitement
error in each iteration. That is, repeat the steps:

1. estimate the shift given the two images,
2. warp one image toward the other
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lterative Estimation (cont)

fo(x)

Initial guess: dg = 0

=Y

Estimate: do =dy +d

=V

estimate
update
d 1
Xo
Mz —d)_fo(a)
estimate Initial guess: d1
update
d
X0
Rz =d2) _ fo(x)
estimate Initial guess: dp
update

Estimate: d3 =do +d
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=Y

Estimate: dy =dg +d

Page: 13



Image Warps

Example:3 iterations of refinement (from the motion tutorial). Here,
vSandv denote the preshift velocity and the LS estimate. Figure axe
represent incremental horizontal and vertical velocifgggenvs).

LBCCvS:00v: 1.9-2.7 LBCCvS:3-4v: 3.2-4.0

dVy (pixels/frame)
dVy (pixels/frame)
dVy (pixels/frame)

d 2= SV NS 4 N 4 714 A
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
dVx (pixels/frame) dVx (pixels/frame) dVx (pixels/frame)

LBCCvS:00v:-5.0 0.8 LBCCvS:-51v:-8.7 0.6

dVy (pixels/frame)
dVy (pixels/frame)
dVy (pixels/frame)

u

4 4 A\ 4 AN
-4 - 0 2 4 4 -2 0 2 4
dVx (pixels/frame) dVx (pixels/frame)

Some practical issues:

e initially, if the displacement is large, many of the consita
might be very noisy

e warping is time-consuming and introduces interpolatiols®oso
stick to integer warps where possible.

e warp one image, take derivatives of the other so you don'tinee
to re-compute the gradient after each iteration.

e often useful to low-pass filter the images before motionmeesti
tion (for better derivative estimation, and somewhat bdiear
approximations to image intensity)
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Aliasing

When a displacement between two frames is too large (i.eenveh
sinusoid is displaced a half a wavelength or more), the iigmltased.
This is caused by fast shutter speeds in most cameras.

A A

no aliasing

ﬁ@\’g\g Lé\d
d d
> >

Aliasing often results in convergence to the wrong 2D opfioav.

aliasing

Possible Solutions:

1. prediction from previous estimatesye-warpthe next image

2. use feature correspondence to establish rough initiedhma

3. coarse-to-fine estimation: Progressive flow estimation from
coarse to fine levels within Gaussian pyramids of the two #sag

e start at coarsest levek, = L, warp images with initial guess,
then iterate warping & LS estimation until convergencéo

e warp levelsk = L. — 1 using —u,, then apply iterative esti-
mation until convergenca;_;.

e warp levelsk = 0 (i.e., the original images) using;, then
apply iterative estimation until convergence.
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Higher-Order Motion Models

Constant flow model within an image neighborhood is often @rpo
model, especially when the regions become larger. Affineeaisod
often provide a more suitable model of local image deforamati

T (3 [T

Translation Scaling Rotation Shear

Affine flow for an image region centered at locatinis given by

(%) = (‘“ a2> (X — %)) + <a5> — AR %4
as ay ag

wherea = (a1, as, -+, ag)’ and

r—x9 Yy—1yo O 0 1 O]

( ) [ 0 0 x—x9 y—1yo 0 1

Then the gradient constraint becomes:

0 = t(z,y)" Vi(z,y,t)+ filz,y,1)
= 5TA(x,y)T§f(x,y,t) + fi(x,y,t),

S0, as above, the weighted least-squares solutioa fgiven by:
a=M"'b
where, for weighting with the spatial windoyy
M=> gRA'VIVFIA, b=-> gRA'VSf]
.y
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Similarity Transforms

There are many classes of useful motion models. Simplelatams and affine deformations are the
commonly used motion models.

Another common motion model is a special case of affine dedtian called a similarity deforma-
tion. It comprises a uniform scale change, along with a iatedind translation:

() cosf) —sinf (& — %) + dq
ux) = « X —X
sinf cos6 0 do

We can also express this transform as a linear function ofreesdat different set of motion model
parameters. In particular, in matrix form we can write a ity transform as

U(z,y) = Alz,y)a
wherea = («a cosf, a sinf, dy, do)*, and
— — 10
A [T Y + Yo
Yy—Y% zT—z0 0 1
With this form of the similarity transform, we can formulaté.S estimator for similarity transforms
in the same way we did for the affine motion model.

There are other classes of motion model that are also vergriant. One such class is the 2D
homography (we’ll discuss this later).
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Robust Motion Estimation

Sources of heavy-tailed noise (outliers): specularitieBighlights,
jpeg artifacts, interlacing, motion blur, large displa@gits, and mul-
tiple motions (occlusion boundaries, transparency, etc.)

Problem: Least-squares estimators are extremely sensitive teogitli

error penalty function influence function
> dp(e)
p(e) = € ple) = — = = 2e

Solution: Redescending error functions (e.g., Geman-McClure) help
to reduce influence of outliers:

error penalty function influence function
2 2¢€s
¢ v(e s) = —— s
€, 8) = ' 2)2
p(e; s) s+ 2 (s + €2)

Previous objective function:

)y

Robust objective function:

E(d) =) g(R) p(f(R t+1) = f(

%l
|
£l
=
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Probabilistic Motion Estimation

Probabilistic formulations allow us to address issues a$ynmea-
surements, confidence measures, and prior beliefs abontdhen.

Formulation: Measurements of image derivatives, especiallare
noisy. Let's assume that spatial derivatives are accupatdemporal
derivative measurements have additive Gaussian noise:

ft(xayﬂf) — ft(xayat) +?7(l’,y,t)

wheren(x, y,t) has a mean-zero Gaussian density with variartce

Then, given the gradient constraint equation, it followet th
G'Vf+fi ~ N0, o

So, if we knowd, then the probability of observingV f, f;) is

- ~ . — T 72
p(V ) = ¢217m exp< (i ZUJ;+ ﬁ))

Assuming constraints aY pixels, each with IID Gaussian noise, the
joint likelihood is the product of the individual likelihals:

L<ﬁ) - H p(ﬁf(}_(), t), ﬁ(iv t) ‘ ﬁ)
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Optimal Estimation

Maximum likelihood (ML): Find the flowd that maximizes the
probability of observing the data given Often we instead minimize
the negative log likelihood:

L(@) = =3 logp(VF(R 1), i(%,1) | )

Note: L is identical to our previous objective functidt except for
the suppory(z, y) and the constant term.

Maximum A Posteriori (MAP): Include prior beliefsp(i), and use
Bayes’ rule to express the posterior flow distribution:

UV S, fi}s| W) p(T)
p({V [, fit=)

For example, assume a (Gaussian) slow motion prior:

. 1 —a'd
p(u) = oy O\ 302

Then the flow that maximizes the posterior is given by

1\t
0= (M+—I) b

p(E|{V], fi}s) =
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ML / MAP Estimation (cont)

Remarks:

e The inverse Hessian of the negative log likelihood provides
measure of estimator covariance (easy for Gaussian des)siti

e The noise variance;?, could vary as function of. For example,
one might expect an affine flow model to fit well near the patch
centre,X,, but not as well further from the centre. d4f(xX) =
1/g9(X—X,) for a low-pass windowy, then one obtains a weighted
LS estimator like that introduced in (3).

¢ Alternative noise models can be incorporated in spatialtand
poral derivatives (e.g., total least squares). One canaasome
non-Gaussian noise and outliers (to obtain robust estisjato

e Other properties of probabilistic formulation: Ability faropa-
gate "distributions” to capture belief uncertainty.

e Use of probabilistic calculus for fusing information fronther
sources
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Layered Motion Models

,;:’/ p-/ .:-/
.Frf/ &f .ﬁ-/
S S S
Infendity map Alpha map Velacity map
——— —_— —_
—ar —ia L
- - e
Tntenaity map Alpha manp Velacity map

Frame 1 Frams 2 Frame &

Layered Motion:

The scene is modeled as a cardboard cutout. Each layer has an a
sociated appearance, an alpha map (specifying opacitycoipaacy

in the simplest case), and a motion model. Layers are warnpéeb
motion model, texture-mapped with the appearance modélitan
combined according to their depth-order using the alphasmap
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