
Multi-View Factorization Techniques

Suppose{~xj,n}
J,N
j=1,n=1 is a set ofcorresponding image coordinates

for N scene points inJ images. That is,~xj,n denotes the location in

thejth image for thenth 3D scene point,~Xn.
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Such corresponding points may be obtained from local feature points,

for example.

Problem: Estimate the 3D point positions,{ ~Xn}
N
n=1, along with the

placement and calibration parameters for theJ cameras.

Tutorials: tutorials/3dRecon/orthographic/orthoMassageDino.m, and

3dRecon/projective/projectiveMassageDino.m (both in utvis)
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Perspective Projection

The image points,~pj,n, and the 3D scene points,~Pn, are related by

perspective projection,

~pj,n =
1

zj,n
Mj

~Pn . (1)

• ~pj,n = (xj,n, yj,n, 1)T is given in homogeneous pixel coordinates;

• ~Pn = (Pn,1, Pn,2, Pn,3, 1)T is also in homogeneous coordinates;

• Mj = Min,j Mex,j is the3 × 4 camera matrix formed from the

product of the intrinsic and extrinsic calibration matrices;

• zj,n is the projective depth,zj,n = ~e T
3 Mj

~Pn, where~e T
3 = (0, 0, 1)

(i.e.,~e3 is the third standard unit vector).

For convenience we assume the intrinsic matrices have the form

Min,j =









fj 0 0

0 fj 0

0 0 1









. (2)

The extrinsic calibration matrices are in general given by

Mex,j =
(

Rj, − Rj
~dj

)

, (3)

whereRj is the rotation from the world to thejth-camera’s coordi-

nates, and~dj is the position, in world coordinates, of the nodal point

for thejth camera.

2503: Multi-View Factorization Page: 2



Bundle Adjustment

We wish to solve for the point positionsP ≡ { ~Pn}
N
n=1 and the cam-

era matricesM ≡ {Mj}
J
j=1 by minimizing

O(M,P) ≡
∑

j,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

xj,n

yj,n

)

−
1

~e T
3 Mj

~Pn

(

I2, ~0
)

Mj
~Pn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

, (4)

where the camera matricesMj must be of the formMin,jMex,j, as

above in (2) and (3).

This nonlinear LS optimization problem is calledbundle adjust-

ment. For Gaussian IID measurement noise it is a ML estimator.

In these notes we discuss two approximations to bundle adjustment:

1. Approximate perspective projection by scaled orthographic pro-

jection.

2. Rescale each term in the bundle adjustment objective function

(4) and solve a bilinear problem.

2503: Multi-View Factorization Page: 3



Scaled-Orthographic Projection

Scaled-orthographic projection provides an approximation of per-

spective projection (1) for the case of narrow fields of view,

max{|xj,n|, |yj,n|} ≪ fj ,

and relatively shallow depth variations; i.e.,

zj,n ≈ 1/s ,

for some constant scale factors.

For scaled-orthographic projection, the image points and the scene

points are related by
(

I2, ~0
)

~pj,n = s
(

I2, ~0
)

Mj
~Pn. (5)

Here~pj,n, ~Pn andMj are as above. This isbilinear in the scaled

camera matrix,sMj, and the 3D point,~Pn.
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Differences from Mean Image Points

Let ~̄pj = 1
N

∑N
n=1 ~pj,n be the average image position. Similarly, let

the average 3D scene position be~̄P = 1
N

∑N
n=1

~Pn. Then, using (5),

we can show
~dj,n = M̃j

~Dn, (6)

where

~dj,n =
(

I2, ~0
)

(~pj,n − ~̄pj) ,

~Dn =
(

I3, ~0
)

( ~Pn −
~̄P ) ,

M̃j = s
(

I2, ~0
)

Mj

(

I3, ~0
)T

.

Moreover, from the form of the internal and external camera cali-

bration matrices, (2) and (3), it follows that the scaled-orthographic

projection matrixM̃j has the form

M̃j = s

(

fj 0 0

0 fj 0

)

Rj = sfj

(

I2, ~0
)

Rj, (7)

whereRj is the rotation matrix for thejth camera, as above.
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Derivation: Difference from Mean

Let ~̄pj = 1
N

∑N

n=1 ~pj,n be the average image point in thejth image, and~̄P = 1
N

∑N

n=1
~Pn be the

average scene point.

Then, by equation (5), we have

(

I2, ~0
)

~̄pj = s
(

I2, ~0
)

Mj
~̄P

Subtracting this from (5) we find

(

I2, ~0
)

(~pj,n − ~̄pj) = s
(

I2, ~0
)

Mj(~Pn − ~̄P ) .

Note the4th component of~Pn−
~̄P is equal to1−1 = 0. Therefore we can drop this4th component,

and obtain
~dj,n = M̃j

~Dn,

where

~dj,n =
(

I2, ~0
)

(~pj,n − ~̄pj) ,

~Dn = (I3, ~0)(~Pn − ~̄P ) ,

M̃j = s
(

I2, ~0
)

Mj

(

I3, ~0
)T

.

Which is what we set out to show.

Notice we can use the definitions ofMin,j andMex,j to simplify M̃j above. We find

M̃j = s
(

I2, ~0
)

Mj

(

I3, ~0
)T

, (8)

= s
(

I2, ~0
)

Min,jMex,j

(

I3, ~0
)T

, (9)

= s

(

fj 0 0

0 fj 0

)

Rj (10)

This gives equation (7) above.
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Scaled-Orthographic Factorization

As defined above,~dj,n = ~xj,n − ~̄xj are the centred 2D observations

(~xj,n is the observed position of thejth point in thenth image, and~̄xj

is the average of these over alln).

Let C =
(

~dj,n

)

be the2J × N data matrix, where thejth column is

formed by stacking the~dj,n for all N frames:

C =















~d1,1
~d1,2 · · · ~d1,N

~d2,1
~d2,2 · · · ~d2,N

... ... . . . ...
~dJ,1

~dJ,2 · · · ~dJ,N















(11)

From equation (6), i.e.,~dj,n = M̃j
~Dn , we then have

C =















M̃1

M̃2

...

M̃J















(

~D1
~D2 · · · ~DN

)

= MD . (12)

That is,M is the2J×3 matrix formed by stacking thẽMj matrices,

andD is the3×N shape matrix with columns~Dn.

This equation implies thatthe data matrix has at most rank 3

(in the ideal case without considering noise).
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Factorization via SVD

Performing an SVD on the data matrixC, for a case withJ = 3

images, providesC = WΣV T with the singular values shown below:
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See the 3dRecon Matlab tutorialorthoMassageDino.m (σn = 1

pixel).
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Affine Shape

What does the factorizationC = WΣV T tell us about the shape of

the objects being imaged? For notational convenience, we assume

that all but the first 3 singular values ofΣ have been set to zero or,

equivalently,Σ is 3 × 3, W is 2J × 3 andV T is 3 × N .

We now have two rank 3 factorizations ofC, namelyMD andWΣV T .

And there are multiple ways that we could specifyM andD in terms

of W , Σ andV . For example, we could letM = W andD = ΣV T .

In fact it is easy to see that the facotization is only unique up to a

nonsingular3 × 3 matrixA; for some nonsingularA we have

D = A−1ΣV T (13)

M = WA (14)

We therefore know the shape matrix,D, up to the 9 parameters inA,

namelyAD = ΣV T . This is known as anaffine reconstruction of

the shapeD.
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Affine Shape (Cont.)

What canA do to a shape?

For example, consider a configuration of 3D points as specified by

the3 × N matrix D, and suppose we have a nonsingular matrixA.

What does the configuration of pointsAD look like?

Use SVD to decomposeA into UaΣaV
T
a . SoAD = Ua(Σa(V

T
a D)) is

obtained by rotating/reflectingD usingV T
a , then stretching/shrinking

the result along the axes according toΣa, and finally rotating/reflecting

this result usingUa. Affine shape preserves parallel lines and inter-

secting lines, but not angles and lengths.

The equivalence class of all configurations that can be obtained with

transformations of this form is calledaffine shape.

See Tomasi and Kanade (1992) for the original factorizationmethod.
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Euclidean Reconstructions

We can determine many of the parameters inA from knowledge

about the cameras.

In particular, as above, suppose the projection matrixM̃j satisfies

M̃j = sfj

(

I2, ~0
)

Rj ,

for some value ofsfj. Then, based onM = WA in (13), letWj be

thejth 2×3 block in W . That is,Wj occupies the same rows ofW

asM̃j does inM , soM̃j = WjA. And sinceRjR
T
j = I3 we have

M̃j M̃T
j = s2f 2

j I2 = Wj AAT W T
j . (15)

Here, the only unknowns are the scale factor for thejth image,sfj,

and the3×3 symmetric positive definite matrixQ = AAT .

For eachj, (15) provides 2 linear homogeneous equations for the

coefficients ofQ. ForJ ≥ 3 we have2J ≥ 6 homogeneous linear

equations which we can solve forQ, up to a scalar multipler2
q .

Then, sinceQ is symmetric positive definite, it can be factored as

Q = UqΛqU
T
q . The columns ofUq are the eigenvectors ofQ, and the

diagonalΛq are its eigenvalues. Assuming non-negative eigenvalues,

we can writeA = 1
rq

UqΛ
1/2
q RT

q . Here,rq represents the unknown

scale factor inA, andRq is an arbitrary orthogonal3×3 matrix.
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Euclidean Reconstruction (Cont.)

Therefore we have recoveredA = 1
rq

KqR
T
q whereKq = UqΛ

1/2
q is

known. As a consequence we have recovered the shape matrixDr

and the camera matrixMr as

D = rq Rq Dr , for Dr = K−1
q Σ V T , (16)

M =
1

rq
Mr RT

q , for Mr = W Kq . (17)

This is called aEuclidean reconstruction. We have recovered the

shape up to a 3D scalerq, and a rotation/reflectionRq. Equivalently,

this is referred to asmetric shaperecovery.

Ambiguities:

• The ambiguity of the rotationRq reflects the fact that we cannot

recover the true orientation of the world coordinate frame.The

unknown rotationRq affects the shape, viaD = RqDr, and the

camera matrices, viaM = MrR
T
q . That is,Rq rotates both the

scene and the cameras together.

• The ambiguity in the scalerq reflects the fact that we do not

know the scale of the world coordinate frame. We could be

imaging a tiny scene with large scale factorssfj, and we could

not tell from the images alone. (Think about making the movie

Titanic.) Hererq scales the shape viaD = rqDr, and also the

scale parametersfj in the cameras, viaM = 1
rq

Mr.
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Remaining Ambiguities

The remaining ambiguity inRq is the Necker ambiguity, that is,

Rq could be a reflection (sayRq = diag(1, 1,−1)). Effectively,

with orthographic projection we cannot tell the differencebetween a

concave-in shape viewed from the left, and the reflected concave-out

shape viewed from the right. Unlike the previous two ambiguities,

this ambiguity does not persist (mathematically) when we switch to

perspective projection.

For J = 2 orthographic views there is an additional ambiguity,

known as thebas-relief ambiguity. For this ambiguity, there is an

additional unknown parameter (inKq above), which ties the overall

depth variation of the shape to the amount of rotation between the

two cameras. SeeorthoMassageDino.m.

Refs: See the classic paper by Koenderink and van Doorn (1991).
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Dino Example, Orthographic Case

−100 −50 0 50 100

−100

−50

0

50

X

Dino Model

Y

−100 0 100

−100

−50

0

50

100

Euclidean Reconstruction

X

Y

0 100 200 300 400
−200

−150

−100

−50

0

50

100

150

200
Recovered Coord (b), True(r)

Point index

3D
 c

oo
rd

 X

0 100 200 300 400
−150

−100

−50

0

50

100
Recovered Coord (b), True(r)

Point index

3D
 c

oo
rd

 Y

0 100 200 300 400
−100

−80

−60

−40

−20

0

20
Recovered Coord (b), True(r)

Point index

3D
 c

oo
rd

 Z

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5
Error in estimated projection directions

Image Number

E
rr

or
 in

 D
eg

re
ss

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Scale estimation (Est(b) True(r) %Error(k))

Image Number

S
ca

le
 o

r 
%

 E
rr

or

2503: Multi-View Factorization Page: 14



Introduction to Projective Reconstruction

Returning to perspective projection, recall the form of theoriginal

bundle adjustment objective function in (4):

O ≡
∑

j,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

xj,n

yj,n

)

−
1

~e T
3 Mj

~Pn

(

I2, ~0
)

Mj
~Pn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

It might be tempting to modify this objective function by multiplying

each term in the sum by the depths,zj,n = ~e T
3 Mj

~Pn. In doing so, we

obtain areweighted objective function:

O′ =
∑

j,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

zj,n









xj,n

yj,n

1









− Mj
~Pn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (18)

The unknowns in (18) are the depthszj,n, the camera matricesMj,

and the 3D scene points~Pn, for j = 1, . . . , J andn = 1, . . . , N .

The form of (18) suggests the following factorization approach.

2503: Multi-View Factorization Page: 15



Projective Factorization

Suppose we knew the projective depthszj,n. We could then build a

new data matrixC in terms of the 3D pointszj,n~pj,n. Accordingly, we

can form C = [zj,n ~pj,n], by stacking the depth-scaled image points

just as we did in the orthographic case. NowC is 3J × N .

The perspective projection of the scene point~Pn onto thejth image

plane (1) can be written as

zj,n ~pj,n = Mj
~Pn ,

whereMj is now3×4, and~Pn is 4×1.

By stacking up the camera matrices,Mj, to form the3J × 4 matrix

M , and lettingP = ( ~P1, . . . , ~PN) be the4×N shape matrix, we

obtain a factorization of the data matrix:

C = MP . (19)

Of course, this assumes we knew the correct depthszj,n that we used

to formC. And as above, from the form of (19) it is clear thatC is,

at most, rank 4 (ignoring noise).
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Iterative Projective Factorization

Suppose we normalizeB = CL so the columns have unit length

(using a diagonal matrixL). Then we factorB using SVD:

B = WΣV T , (20)

where we set all but the first 4 singular values to zero. Equivalently,

we haveW is 3J × 4, Σ is 4 × 4, andV T is 4 × N .

We can rewrite thenth column ofB asZn~zn, whereZn is a3J × J

matrix obtained from the image points~pj,n and thenth weightLn,n.

Here~zn = (z1,n, . . . , zJ,n)
T comprises the projective depths for the

nth point in all J frames. We then update~zn to better match the

current factorization. That is, we wish to minimize

||Zn~zn − WΣV T~en || (21)

wrt ~zn, subject to the constraint that the updated column ofB still

has unit length, i.e.,||Zn~zn|| = 1. Here~en is thenth standard unit

vector,en,i = δn,i.

Once all the projective depths have been updated, we reform the data

matrix C and the normalized data matrixB, and redo the factoriza-

tion (20), etc. This process is iterated until convergence.
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Details for Iterative Projective Reconstruction

Assume that, at the beginning of iterationi we have a current guess (or estimate) for the depths

z
(i)
j,n. With these depths we formulate the data matrix:

C(i) = [ z
(i)
j,n ~pj,n ] ≡ (~c

(i)
1 , . . . ,~c

(i)
N ) (22)

Let L(i) be anN ×N diagonal matrix with elementsL(i)
n,n = 1/||~c

(i)
n ||. Then define the normalized

data matrix

B(i) = C(i) L(i) (23)

Then, we form the best rank 4 approximation toB(i), denotedB̂(i). That is, compute the SVD,

B(i) = WΣV T , and then define

B̂(i) = W Σ̂V T , (24)

whereΣ̂ is simplyΣ with all but the first 4 singular values set to zero.

Now, for the update of depths of thenth point (at allJ frames), we defineZ(i)
n to be the matrix that

satisfies

Z(i)
n ~z (i)

n = ~c (i)
n , (25)

where~z
(i)
n = ( z

(i)
1,n, . . . , z

(i)
J,n ) comprises the current depth estimates for thenth scene point in all

J frames. That is,Z(i)
n is the3J × J matrix given by

Z(i)
n = L(i)

n,n













~p1,n
~0 · · · ~0

~0 ~p2,n · · · ~0
...

...
. . .

...
~0 ~0 · · · ~pJ,n













. (26)

The only change inZ(i)
n at each iteration is the normalization constant.

Then, to find the depth update for thenth point (forJ frames), we solve for~z (i+1)
n which minimizes

||Z(i)
n ~z (i+1)

n −
~̂
b(i)
n || , (27)

subject to the constraint||Z(i)
n ~z

(i+1)
n || = 1, where~̂b(i)

n is thenth column ofB̂(i). In the tutorial

codeprojectiveMassageDino.m, this update of~zn is done with one step along the gradient

direction for the constrained optimization problem. Giventhe new depths, we begin the next

iteration with the formation of the data matrix as above, butnow using depthsz (i+1)
j,n .

The convergence of this algorithm is discussed in the paper.
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Projective Reconstruction

Upon convergence we have a projective factorizationB = WΣV T .

As in the orthographic case, this factorization is only unique up to a

nonsingular matrixH. In this case,H is a 4 × 4, 3D homography

matrix. In particular, we have the factorization,C = BL−1 = MP

with

P = H−1 Σ V T L−1 (28)

M = W H . (29)

Since the shape matrixP is known up to a 3D homographyH, this

is called aprojective reconstruction.

This projective reconstruction can be “upgraded” to a metric recon-

struction by using information about the camera matricesMj to con-

strain the 3D homography matrixH. In order to understand this, we

must first introduce the absolute dual quadric from projective geom-

etry.
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Absolute Dual Quadric (Canonical Coords)

The equation of a plane in 3D is

~m T ~P = 0 ,

where~P = (X, Y, Z, 1)T is a 3D point written in homogeneous co-

ordinates.

Imagine two planes, with coefficient vectors~m1 and ~m2. Then the

angle between these two planes isθ where

cos(θ) =
~m T

1 Q̂∞~m2
√

(~m T
1 Q̂∞~m1) (~m T

2 Q̂∞~m2)
. (30)

HereQ̂∞ is the absolute dual quadric in canonical coordinates,

Q̂∞ =

(

I3
~0

~0 T 0

)

. (31)
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Absolute Dual Quadric (General Coords)

SupposeH is any nonsingular 3D homography matrix, and consider

the projective coordinates~P ′ = H ~P . The planes~mk · ~P = 0 can be

expressed in these new coordinates as

~m′
k ·

~P ′ = 0, where ~m′
k = H−T ~mk .

We can measure the same angle between these two planes using the

absolute dual quadric in general projective coordinates, namely

Q∞ = HQ̂∞HT . (32)

In fact, it follows that

cos(θ) =
(~m′

1)
TQ∞~m′

2
√

((~m′
1)

TQ∞~m′
1) ((~m′

2)
TQ∞~m′

2)
.

The general idea behind upgrading a projective reconstruction to a

metric one is to use the absolute dual quadric to express known prop-

erties of the camera coordinates, such as the fact that the planes per-

pendicular to the X, Y, and Z axes are mutually perpendicular(i.e.

cos(θ) = 0).
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Upgrading to a Metric Reconstruction

In particular, from (2) and (3) it follows that

Mj Q̂∞ MT
j =









f 2
j 0 0

0 f 2
j 0

0 0 1









. (33)

This is the analogue of equation (15) in the orthographic case. From

equation (28) we also haveM = WH, whereW is known from the

projective factorization. So

Mj Q̂∞ MT
j = Wj H Q̂∞ HT W T

j = Wj Q∞ W T
j . (34)

We see that, for thejth camera, (34) and (33) provide 5 linear equa-

tions forQ∞ (6 linear equations iffj is known). So we have (at least)

5J linear constraints onQ∞.

Since we knowQ∞ is a symmetric4×4 matrix there are only 10 de-

grees of freedom to determine, andJ = 2 frames are enough. (Note

we also knowQ∞ has rank 3 and has non-negative eigenvalues.)
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Solving for H

Given Q∞ (which is symmetric, positive semi-definite, rank 3) we

can compute its eigenvalue decompositon

Q∞ = Uq Λq UT
q , Λq = diag[λ1, λ2, λ3, 0] ,

with λi > 0. It then follows from (32) that

H = Uq diag[λ
1/2
1 , λ

1/2
2 , λ

1/2
3 , 1] A , (35)

whereA is the matrix for a general 3D similarity transform

A =

(

R ~d

~0T s

)

.

HereR is a unitary matrix. The reasonA remains unknown is that

the absolute dual quadriĉQ∞ is invariant to similarity transforma-

tions

AQ̂∞ AT = Q̂∞ .

This is easy to verify from the forms ofA andQ̂∞.

Finally, equations (2, 3, 28) can be used to remove the reflection am-

biguity. The only remaining ambiguities are the overall orientation,

origin and scale of the world coordinate frame.
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Dino Example, Projective Case
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Dino Example, Projective Case
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Structure from Motion

The use of the theoretical rank for a set of observations provides a key insight into the structure

from motion problems (see Jepson and Heeger, 1991).

Consider a camera travelling through a stationary environment. Then the scene appears to move

with translational velocity~T and angular velocity~Ω. In the camera’s coordinates, the motion of

any scene point~X is
d ~X

dt
= ~T + ~Ω × ~X.

Suppose we observe the motion field~u(~xk) at K image points,{~xk}
K
k=1, in this camera’s image.

Let ~X(~xk) be the 3D scene point associated with thekth image point~xk. Then it can be shown that
~U T ≡ (~u T

1 , . . . , ~u T
K) satisfies

~U = C(~T )

(

~z

~Ω

)

= A(~T )~z + B~Ω. (36)

Here~z is a K-vector, with elementszk = 1/|| ~X(~xk)||, A(~T ) is a 2K × K matrix that depends

linearly on~T , andB is a2K × 3 matrix that depends only on the image points~xk.

Notice, for ~T = ~0 we haveA(~T ) = 0, and (36) states that the flow field~U must be in the rank 3

subspace formed by the range of the matrixB. Similarly, for nonzero~T , equation (36) states that

the2K-dimensional flow field~U must be in theK + 3-dimensional subspace formed by the range

of C(~T ).

This range condition can be used to identify~T (up to a speed ambiguity, i.e.,||~T || remains un-

known) and~Ω given the motion field~U . Moreover, given~T/||~T || and~Ω, equation (36) can be used

to solve for the inverse depths~z (up to an overall scale ambiguity).
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