Multi-View Factorization Techniques

Suppose{fj,n}jﬁ)nz1 IS a set ofcorresponding image coordinates

for N scene points ity images. That isi;,, denotes the location in
the j™ image for then!" 3D scene pointX,..

Image 1 Image 2
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Such corresponding points may be obtained from local fegdaints,
for example.

Problem: Estimate the 3D point positiong)_(}, N along with the

n:l’

placement and calibration parameters for freameras.

Tutorials: tutorials/3dRecon/orthographic/orthoMassageDinomnd, a
3dRecon/projective/projectiveMassageDino.m (both wunsiit
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Perspective Projection

The image pointsy;,, and the 3D scene points,, are related by
perspective projection,

S 1 >4

Pin = —M;P, . (1)

J,n

e pin = (zjn,yjn 1)! is given in homogeneous pixel coordinates;
o« P — (Po1, Pua, P, 1) is also in homogeneous coordinates;

o M; = M, ; M., ; is the3 x 4 camera matrix formed from the
product of the intrinsic and extrinsic calibration matsce

e z;, isthe projective depthy;,, = & M, P,, wherezy = (0,0, 1)
(i.e.,e3 is the third standard unit vector).

For convenience we assume the intrinsic matrices have the fo

Ji 00
Mm)j — 0 fj 0 . (2)
0 0 1

The extrinsic calibration matrices are in general given by
M, = (Rj — R; CZ;) : (3)

whereR; is the rotation from the world to thg"-camera’s coordi-
nates, andfj is the position, in world coordinates, of the nodal point
for the j'* camera.
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Bundle Adjustment
We wish to solve for the point positior® = {P,}"_, and the cam-
era matrices\ = {M;}_; by minimizing
X j 1 - —
OM,P) = ") - ———= (L, 0) M,P,
M yzn: |<?Jjn> 53TMJ'Pn<2 ) :

where the camera matricég; must be of the form\/;, ;M., ;, as
above in (2) and (3).

, (4)

This nonlinear LS optimization problem is call&édindle adjust-
ment. For Gaussian |ID measurement noise it is a ML estimator.

In these notes we discuss two approximations to bundle &akgur:

1. Approximate perspective projection by scaled ortholgi@pro-
jection.

2. Rescale each term in the bundle adjustment objectivetimc
(4) and solve a bilinear problem.
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Scaled-Orthographic Projection

Scaled-orthographic projection provides an approxinmatb per-
spective projection (1) for the case of narrow fields of view,

max{ |z, [Yjnl} < fi
and relatively shallow depth variations; i.e.,
Zin = 1/s,

for some constant scale factar

For scaled-orthographic projection, the image points &edstene
points are related by

(12, 6) Fin = s (12, 6) M,B,. (5)

Herep; ,, ﬁn and M; are as above. This isilinear in the scaled
camera matrixsM;, and the 3D pointﬁn.
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Differences from Mean Image Points

Letp, = % fo:lp*j,n be the average image position. Similarly, let
the average 3D scene positionée: % 25:1 P,. Then, using (5),
we can show

djn = M; D, (6)

where

7,n
D, = (13, 6) (P, — P),
- . NI
M, = s (12, o) M, (13, 0) |
Moreover, from the form of the internal and external camexia c

bration matrices, (2) and (3), it follows that the scalethographic
projection matrix}/; has the form

~ 0 0 S
Mj_s(ﬁjfj O)Rj_sfj(IQ;o)Rj (7)

whereR; is the rotation matrix for thg'” camera, as above.

2503: Multi-View Factorization Page: 5



Derivation: Difference from Mean

Letp; = + SN | 7. be the average image point in t}i& image, andP — ~ SN P, be the
average scene point.

Then, by equation (5), we have
(1'2, 6) 5i=s (12, 6) M,P
Subtracting this from (5) we find
(£2: 0) (G = 5) = s (f2, 0) M;(P = P).

Note thet** component of, _Pis equal tal — 1 = 0. Therefore we can drop thi¢" component,
and obtain

where

Which is what we set out to show.

Notice we can use the definitions bf;,, ; and M. ; to simplify M, above. We find

M, = 5(12, 6) M, (13, 6)T, 8)
— (12, 6) MM, (Ig,, 6)T, 9)
:s<fg?8>3j (10)

This gives equation (7) above.
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Scaled-Orthographic Factorization

As defined above];, = #;, — Z; are the centred 2D observations
(Z;,, is the observed position of th€" point in then!" image, and’;

is the average of these over all.

LetC = (c@n) be the2J x N data matrix, where thg" column is
formed by stacking thé_;-,n for all N frames:

(dy dia - dix )
O - 2.1 dao 2N (11)
Kdiu CZJ,Q JJ,N)
From equation (6), i.ed;,, = M; D, , we then have
(31, )
MQ — — —
c=|" <D1 Dy --- DN) _ MD. (12)
\ M

That is, M is the2.J x 3 matrix formed by stacking thMj matrices,
andD is the3 x N shape matrix with columnB,,.

This equation implies thahe data matrix has at most rank 3
(in the ideal case without considering noise).
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Factorization via SVD

Performing an SVD on the data matriX, for a case with/ = 3
images, provide€' = WXV’ with the singular values shown below:

Singular Values of Data Matrix
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See the 3dRecon Matlab tutor@ t hoMassageDi no. m(o, = 1
pixel).
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Affine Shape

What does the factorizatiol = WXV tell us about the shape of
the objects being imaged? For notational convenience, senaes
that all but the first 3 singular values bfhave been set to zero or,
equivalently> is3 x 3, Wis2J x 3andV’is3 x N.

We now have two rank 3 factorizations@f namelyM D andiW V7,
And there are multiple ways that we could specdifyandD in terms
of W, ¥ andV. For example, we could et/ = W andD = XV,

In fact it is easy to see that the facotization is only unigpeaa
nonsingulaB x 3 matrix A; for some nonsingulad we have
D = A xv! (13)
M = WA (14)

We therefore know the shape matrix, up to the 9 parameters i,

namelyAD = XV, This is known as aaffine reconstruction of
the shapeD.
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Affine Shape (Cont.)
What canA do to a shape?

For example, consider a configuration of 3D points as speldifie
the3 x N matrix D, and suppose we have a nonsingular ma#trix
What does the configuration of pointsD look like?

Use SVD to decomposéinto U,%, V.. SOAD = U,(3,(V.ID))is
obtained by rotating/reflecting usingV!, then stretching/shrinking
the result along the axes accordinglg and finally rotating/reflecting
this result usind/,. Affine shape preserves parallel lines and inter-
secting lines, but not angles and lengths.

The equivalence class of all configurations that can be obdaivith
transformations of this form is calleaffine shape

See Tomasi and Kanade (1992) for the original factorizahethod.
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Euclidean Reconstructions

We can determine many of the parametersdirirom knowledge
about the cameras.

In particular, as above, suppose the projection ma\f{fjﬁatisfies
Mj = Sfj <]2, 6) Rj
for some value ot f;. Then, based o/ = WA in (13), letiW; be

the ;" 2x 3 block in W . That is,IW/; occupies the same rows f
asM; does inM, soM; = W;A. And sinceR;RT = I; we have

MM} = s°f7 1, = W; AATW] . (15)

Here, the only unknowns are the scale factor for ffidmage,s;,
and the3 x 3 symmetric positive definite matriQ = AA”.

For eachj, (15) provides 2 linear homogeneous equations for the
coefficients of). ForJ > 3 we have2J > 6 homogeneous linear
equations which we can solve @, up to a scalar multipleg.

Then, sinced) is symmetric positive definite, it can be factored as
Q = U,\U; . The columns ot/ are the eigenvectors ¢f, and the
diagonal\, are its eigenvalues. Assuming non-negative eigenvalues,
we can writeA — %Uq/\é/ “RT. Here,r, represents the unknown
scale factor in4, and R, is an arbitrary orthogonalx 3 matrix.
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Euclidean Reconstruction (Cont.)

Therefore we have recoveretl= LK R! whereK, = UqAé/2 IS

q
known. As a consequence we have recovered the shape matrix
and the camera matrik/, as

D = r,R,D,, for D,=K 'SV, (16)
1

M = —M,R;, for M,=WK,. (17)
T

q
This is called &Euclidean reconstruction We have recovered the

shape up to a 3D scatg, and a rotation/reflectioR,,. Equivalently,
this is referred to ametric shaperecovery.

Ambiguities:

e The ambiguity of the rotatio®?, reflects the fact that we cannot
recover the true orientation of the world coordinate fraffiee
unknown rotation?, affects the shape, vie = R,D,, and the
camera matrices, vial = MquT. That is, R, rotates both the
scene and the cameras together.

e The ambiguity in the scale, reflects the fact that we do not
know the scale of the world coordinate frame. We could be
imaging a tiny scene with large scale facteys, and we could
not tell from the images alone. (Think about making the movie
Titanic.) Herer, scales the shape via = r,D,, and also the
scale parameter§ in the cameras, vid/ = %Mr.
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Remaining Ambiguities

The remaining ambiguity iz, is the Necker ambiguity, that is,
R, could be a reflection (say, = diag(1,1,—1)). Effectively,
with orthographic projection we cannot tell the differefetween a
concave-in shape viewed from the left, and the reflectedaaiout
shape viewed from the right. Unlike the previous two ambigai
this ambiguity does not persist (mathematically) when wicthwio
perspective projection.

For J = 2 orthographic views there is an additional ambiguity,
known as thebas-relief ambiguity. For this ambiguity, there is an
additional unknown parameter (i, above), which ties the overall
depth variation of the shape to the amount of rotation betwke
two cameras. Sear t hoMassageDi no. m

Refs: See the classic paper by Koenderink and van Doorn (1991).
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Dino Example, Orthographic Case

Dino Model

Euclidean Reconstruction
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Introduction to Projective Reconstruction

Returning to perspective projection, recall the form of dnginal
bundle adjustment objective function in (4):

X 1 S S
O = o — = <]2, O) M]Pn
Z ‘ (y]n> ej M;P,

7,n
It might be tempting to modify this objective function by rtiplying

2

each term in the sum by the depths, = égMjﬁn. In doing so, we
obtain areweighted objective function:

2
Ljn
O — Z Zin | Yjn | — M; Pul|| - (18)
7,n
1

The unknowns in (18) are the depths,, the camera matrice¥/;,
and the 3D scene poinﬂél, forj=1,...,.Jandn=1,...,N.

The form of (18) suggests the following factorization aguio.
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Projective Factorization

Suppose we knew the projective depths. We could then build a
new data matrix' in terms of the 3D points; ,,p; .. Accordingly, we
can formC' = [z;,, p; ., by stacking the depth-scaled image points
just as we did in the orthographic case. NOWs 3J x N.

The perspective projection of the scene pcﬁntonto thej* image
plane (1) can be written as

Zj,np},n — Mj Pn )
where)M; is now3 x4, andP, is 4 x 1.

By stacking up the camera matricég;, to form the3.J x 4 matrix
M, and lettingP = (P,, ..., Py) be the4 x N shape matrix, we
obtain a factorization of the data matrix:

C = MP. (19)

Of course, this assumes we knew the correct degththat we used
to form C'. And as above, from the form of (19) it is clear tlais,
at most, rank 4 (ignoring noise).
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Iterative Projective Factorization

Suppose we normaliz8 = ('L so the columns have unit length
(using a diagonal matrix). Then we factoi using SVD:

B = wWxvl, (20)

where we set all but the first 4 singular values to zero. Edgemtby,
we havelV is3J x 4, Y is4 x 4, andV7’ is4 x N.

We can rewrite the!” column of B asZ,z,, whereZ, is a3J x J
matrix obtained from the image poings,, and thent” weight L, ..
Herez, = (z1,,...,2s,)" comprises the projective depths for the
n'™ point in all J frames. We then updatg, to better match the
current factorization. That is, we wish to minimize

| ZoZ, — WEVTE, || (21)

wrt Z,, subject to the constraint that the updated columm cHtill

has unit length, i.e||Z,z,|| = 1. Hereg, is then!" standard unit

vector,e, ; = 0Op ;.

Once all the projective depths have been updated, we refaaidta
matrix C' and the normalized data matri, and redo the factoriza-
tion (20), etc. This process is iterated until convergence.
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Details for Iterative Projective Reconstruction

Assume that, at the beginning of iteratiowe have a current guess (or estimate) for the depths
zJ(ZZL With these depths we formulate the data matrix:

c = 2951 = (e9,..., &%) (22)

j,TL j,TL
Let L) be anV x N diagonal matrix with elements), = 1/||5,Ei)H. Then define the normalized

data matrix
B — o 1,6 (23)

Then, we form the best rank 4 approximation6’, denotedB”. That is, compute the SVD,
BYW = WwxVT, and then define
BY =wxvT, (24)

whereX: is simply X with all but the first 4 singular values set to zero.

Now, for the update of depths of thé&" point (at all.J frames), we defin&’” to be the matrix that
satisfies

ZVz0 =W, (25)
wherez{” = (2" ... 2y comprises the current depth estimates for cene pointin a
herez,” o o th t depth estimates fortHes tin all

J frames. ThatisZ\” is the3.J x J matrix given by

_)l,n 6 6

‘ ‘ 0 fon 0
20 = o | ™ (26)

0 0 Pin

The only change i\ at each iteration is the normalization constant.

Then, to find the depth update for thé point (for.J frames), we solve for, "™ which minimizes

|20 Z0+D — 50|, (27)

subject to the constraintz!” z'™|| = 1, whereb{ is then column of B®. In the tutorial

codepr oj ect i veMassageDi no. m this update of;, is done with one step along the gradient
direction for the constrained optimization problem. Giuee new depths, we begin the next
iteration with the formation of the data matrix as above,rmw using depthsj(jjl).

The convergence of this algorithm is discussed in the paper.
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Projective Reconstruction

Upon convergence we have a projective factorizafioas WXV7.
As in the orthographic case, this factorization is only ueigip to a
nonsingular matrix. In this caseH is a4 x 4, 3D homography
matrix. In particular, we have the factorizatiait,= BL™' = M P
with

P =H'yvip?! (28)
M = WH. (29)

Since the shape matrik is known up to a 3D homography, this
is called aprojective reconstruction.

This projective reconstruction can be “upgraded” to a me&con-
struction by using information about the camera matrigeso con-
strain the 3D homography matriX. In order to understand this, we
must first introduce the absolute dual quadric from proyeageom-
etry.
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Absolute Dual Quadric (Canonical Coords)

The equation of a plane in 3D is

mTP=0,
whereP = (X,Y, Z,1)! is a 3D point written in homogeneous co-
ordinates.

Imagine two planes, with coefficient vectafs andm,. Then the

angle between these two plane$ \where
- T A —
cos(f) = Aml ooty - : (30)
\/(mlTQooml) (mngomQ)

Here(Q., is the absolute dual quadric in canonical coordinates,

. I 0
0o — = . 31
o (1) -
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Absolute Dual Quadric (General Coords)

Supposéed is any nonsingular 3D homography matrix, and consider
the projective coordinate®’ = H P. The planesn,, - P = 0 can be
expressed in these new coordinates as

m) - P’ = 0, where m) = H 1my, .

We can measure the same angle between these two planeshesing t
absolute dual quadric in general projective coordinatasaly

Qoo - HQOOHT‘ (32)
In fact, it follows that

(1117) ' Qoo

V) TQoorith) (17th) TQoorith)

The general idea behind upgrading a projective reconsbrutd a

cos(f) =

metric one is to use the absolute dual quadric to expresstkpovp-
erties of the camera coordinates, such as the fact thatdinepbper-
pendicular to the X, Y, and Z axes are mutually perpendic{ilar
cos(6) = 0).

2503: Multi-View Factorization Page: 21



Upgrading to a Metric Reconstruction

In particular, from (2) and (3) it follows that

20 0
0 0 1

This is the analogue of equation (15) in the orthographie cksom
equation (28) we also havd = W H, wherelV is known from the
projective factorization. So

M;Qu M = W HQu H' W] = W; Qe W/ . (34)

We see that, for thg/"” camera, (34) and (33) provide 5 linear equa-
tions for@) (6 linear equations if; is known). So we have (at least)
5J linear constraints oy ...

Since we know), is a symmetricl x 4 matrix there are only 10 de-
grees of freedom to determine, aiid= 2 frames are enough. (Note
we also know(),, has rank 3 and has non-negative eigenvalues.)
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Solving for H

Given (), (which is symmetric, positive semi-definite, rank 3) we
can compute its eigenvalue decompositon

Qw = U AU, Ay = diag[hy, Ao, A3, 0]
with \; > 0. It then follows from (32) that
H = U,diag[A)*, 0% 0% 1] A (35)
whereA is the matrix for a general 3D similarity transform
R d
A = :

Here R is a unitary matrix. The reasafl remains unknown is that
the absolute dual quadr@OO IS invariant to similarity transforma-
tions

AQ AT = Q.

This is easy to verify from the forms of andQ...

Finally, equations (2, 3, 28) can be used to remove the raffeam-
biguity. The only remaining ambiguities are the overalkotation,
origin and scale of the world coordinate frame.
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Dino Example, Projective Case

Singular Values of Data Matrix
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Dino Example, Projective Case

Euclidean Reconstruction
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Structure from Motion

The use of the theoretical rank for a set of observationsigesva key insight into the structure
from motion problems (see Jepson and Heeger, 1991).

Consider a camera travelling through a stationary enviemtmThen the scene appears to move
with translational velocityl" and angular velocity). In the camera’s coordinates, the motion of
any scene poink is )

B TdxX
Suppose we observe the motion figid,) at K image points{7;,}X |, in this camera’s image.
Let X (i,) be the 3D scene point associated with #eimage pointz,.. Then it can be shown that
UT = (al,..., aF) satisfies

U =cC(T) ( ) — A(T)Z + BSL. (36)

DLy

Here 7 is a K-vector, with elements, = 1/||X (||, A(T) is a2K x K matrix that depends
linearly onT’, andB is a2K x 3 matrix that depends only on the image poifits

Notice, forT = ( we haveA(T') = 0, and (36) states that the flow field must be in the rank 3
subspace formed by the range of the maBixSimilarly, for nonzerdl’, equation (36) states that
the 2 K -dimensional flow field/ must be in thex” + 3-dimensional subspace formed by the range
of C(T).

This range condition can be used to idenfify(up to a speed ambiguity, i.e1.|f|| remains un-
known) and(} given the motion field/. Moreover, giver?’/||T'|| and(}, equation (36) can be used
to solve for the inverse depthqup to an overall scale ambiguity).
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