
Chapter 12

Models for grids

In the previous chapter we discussed models which were structured as chains or
trees. In this chapter, we consider models that associate a label with each pixel of
an image. Since the unknown quantities are defined on the pixel lattice, models
defined on a grid structure are appropriate. In particular we will consider graphical
models in which each label has a direct probabilistic connection to each of its four
neighbours. Critically, this means that there are loops in the underlying graphical
model and so the dynamic programming and belief propagation approaches of the
previous chapter are no longer applicable.

These grid models are predicated on the idea that the pixel provides only very
ambiguous information about the associated label. However, certain spatial con-
figurations of labels are known to be more common than others and we aim to
exploit this knowledge to resolve the ambiguity. In this chapter, we describe the
relative preference for configurations of labels with a pairwise Markov random field
or MRF. As we shall see, maximum a posteriori inference for pairwise MRFs is
tractable in some circumstances using a family of approaches known collectively as
graph cuts.

To motivate the grid models we introduce a representative application. In
image denoising we observe a corrupted image in which the intensities at a certain
proportion of pixels have been randomly changed to another value according to a
uniform distribution (figure 12.1). Our goal is to recover the original clean image.
We note two important aspects of the problem.

1. Most of the pixels are uncorrupted and so the data usually tells us which
intensity value to pick.

2. The uncorrupted image is mainly smooth, with few changes between intensity
levels.

Consequently, our strategy will be to construct a generative model where the MAP
solution is an image that is mostly the same as the noisy version, but is smoother.
As part of this solution we need to define a probability distribution over images
that favours smoothness. In this chapter, we will use a discrete formulation of a
Markov random field to fulfil this role.

Copyright c©2011 by Simon Prince; to be published by Cambridge University Press 2012.
For personal use only, not for distribution.



280 12 Models for grids

   

Figure 12.1 Image denoising. a) Original binary image. b) Observed image
created by randomly flipping the polarity of a fixed proportion of pixels.
Our goal is to recover the original image from the corrupted one. c) Original
grayscale image. d) Observed corrupted image is created by setting a certain
proportion of the pixels to values drawn from a uniform distribution. Once
more, we aim to recover the original image.

12.1 Markov random fields

A Markov random field is formally determined by:

• A set of sites S = {1 . . . N}. These will correspond to the N pixel locations.

• A set of random variables {wn}Nn=1 associated with each of the sites.

• A set of neighbours {Nn}Nn=1 at each of the N sites.

To be a Markov random field, the model must obey the Markov property:

Pr(wn|wS\n) = Pr(wn|wNn). (12.1)

In other words, the model should be conditionally independent of all of the
other variables given its neighbours. If you’ve read chapter 10 then this property
should sound familiar: this is exactly how conditional independence works in an
undirected graphical model.

Consequently, we can consider a Markov Random Field (MRF) as an undirected
model (section 10.3) that describes the joint probability of the variables as a product
of potential functions so that

Pr(w) =
1

Z

J∏

j=1

φj [wCj ], (12.2)

where φj [•] is the jth potential function and always returns a non-negative value.
This value depends on the state of the subset of variables Cj ⊂ {1, . . . N}. In this
context, this subset is known as a clique. The term Z is called the partition function
and is a normalizing constant that ensures that the result is a valid probability
distribution.
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Figure 12.2 Graphical model for
worked MRF example. The variables
form a 2×2 grid. This is an undirected
model where each link represents a
potential function defined over the
two variables that it connects. Each
potential returns a positive number
that indicates the tendency of the
two variables to take these particular
values.

Alternatively, we can rewrite the model as a Gibbs distribution:

Pr(w) =
1

Z
exp



−
J∑

j=1

ψj [wCj ]



 , (12.3)

where ψ[•] = − log[φ[•]] is known as a cost function and returns either positive or
negative values.

12.1.1 Grid example

In a Markov random field, the potential functions φ[•] (or cost functions ψ[•])
each address only a small subset of the variables. In this chapter, we will mainly
be concerned with pairwise Markov random fields in which the cliques (subsets)
consist of only neighbouring pairs in a regular grid structure.

To see how the pairwise MRF can be used to encourage smoothness in an
image, consider the graphical model for a 2× 2 image (figure 12.2). Here, we have
defined the probability Pr(w1...4) over the associated discrete states as a normalized
product of pairwise terms:

Pr(w) =
1

Z
φ12(w1, w2)φ23(w2, w3)φ34(w3, w4)φ41(w4, w1), (12.4)

where φmn(wm, wn) are potential functions that take the two states wm and wn

and return a positive number.
Let’s consider the situation where the world state wn at each pixel is binary

and so takes a value of 0 or 1. The function φmn will now return four possible
values depending on which of the four configurations {00, 01, 10, 11} of wn and wm

is present. For simplicity, we will assume that the functions φ12,φ23,φ34 and φ41

are identical and that for each:

φmn(0, 0) = 1.0 φmn(0, 1) = 0.1

φmn(1, 0) = 0.1 φmn(1, 1) = 1.0. (12.5)

Since there are only four binary states, we can calculate the constant Z explicitly by
computing the un-normalized probabilities for each of the 16 possible combinations
and taking the sum. The resulting probabilities for each of the 16 possible states
are shown below:
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Figure 12.3 Samples from Markov
random field prior. Four samples from
the MRF prior which were generated
using a Gibbs sampling procedure (see
section 10.7.2). Each sample is a bi-
nary image that is smooth almost ev-
erywhere; there are only very occa-
sional changes from black to white
and vice-versa. This prior encourages
smooth solutions (like the original im-
age in the denoising problems) and
discourages isolated changes in label
(as are present in the noise).

w1...4 Pr(w1...4) w1...4 Pr(w1...4) w1...4 Pr(w1...4) w1...4 Pr(w1...4)
0000 0.47176 0100 0.00471 1000 0.00471 1100 0.00471
0001 0.00471 0101 0.00005 1001 0.00471 1101 0.00471
0010 0.00471 0110 0.00471 1010 0.00005 1110 0.00471
0011 0.00471 0111 0.00471 1011 0.00471 1111 0.47176

The potential functions in equation 12.5 encourage smoothness: the functions
Problem 12.1

φmn return higher values when the neighbors take the same state and lower values
when they differ and this is reflected in the resulting probabilities.

We can visualize this by scaling this model up to a larger image-sized grid where
there is one node per pixel and drawing samples from the resulting probability
distribution (figure 12.3). The resulting binary images are mostly smooth, with
only occasional changes between the two values.

It should be noted that for this more realistically-sized model, we cannot com-
pute the normalizing constant Z by brute force as for the 2× 2 case. For example,
with 10,000 pixels each taking binary values, the normalizing constant is the sum of
210,000 terms. In general we will have to cope with only knowing the probabilities
up to an unknown scaling factor.

12.1.2 Image denoising with discrete pairwise MRFs

Now we will apply the pairwise Markov random field model to the denoising task.
Our goal is to recover the original image pixel values from the observed noisy image.

More precisely, the observed image x = {x1, x2, . . . , xN} is assumed to con-
sist of discrete variables where the different possible values (labels) represent dif-
ferent intensities. Our goal is to recover the original uncorrupted image w =
{w1, w2, . . . , wN} which also consists of discrete variables representing the inten-
sity. We will initially restrict our discussion to generative models and compute the
posterior probability over the unknown world state w using Bayes’ rule

Pr(w1...N |x1...N ) =

∏N
n=1 Pr(xn|wn)Pr(w1...N )

Pr(x1...N )
, (12.6)
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Figure 12.4 Denoising model. The ob-
served data xn at pixel n is condi-
tionally dependent on the associated
world state wn (red directed edges).
Each world state wn has undirected
edges to its four-connected neighbors
(blue undirected edges). This is hence
a mixed model: it contains both di-
rected and undirected elements. To-
gether the world states are connected
in a Markov random field with cliques
that consist of neighbouring pairs of
variables. For example variable w5

contributes to cliques C25, C45, C65, C85.

where we have assumed that the conditional probability Pr(x1...N |w1...N ) factorizes
into a product of individual terms associated with each pixel. We will first consider
denoising binary images in which the noise process flips the pixel polarity with
probability ρ so that

Pr(xn|wn = 0) = Bernxn [ρ]

Pr(xn|wn = 1) = Bernxn [1− ρ]. (12.7)

We subsequently consider gray level denoising where the observed pixel is replaced
with probability ρ with a draw from a uniform distribution.

We now define a prior that encourages the labels wn to be smooth: we want
them to mostly agree with the observed image, but to discourage configurations
with isolated changes in label. To this end, we model the prior as a pairwise MRF.
Each pair of 4-connected neighbouring pixels contributes one clique so that

Pr(w1...N ) =
1

Z
exp



−
∑

(m,n)∈C

ψ[wm, wn,θ]



 , (12.8)

where we have assumed that the clique costs ψ[•] are the same for every (wm, wn).
The parameters θ define the costs ψ[•] for each combination of neighboring pairwise
values,

ψ[wm = j, wn = k,θ] = θjk, (12.9)

so when the first variable wm in the clique takes label j and the second variable
wn takes label k we pay a price of θjk. As before we will choose these values so
that there is a small cost when neighboring labels are the same (so θ00 and θ11
are small) and a larger one when the neighboring labels differ (so θ01 and θ10 are
large). This has the effect of encouraging solutions that are mostly smooth.

The graphical model for this model is illustrated in figure 12.4. It is a mixed
model, containing both directed and undirected links. The likelihood terms (equa-
tion 12.7) contribute the red directed links between the observed data and the
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denoised image at each pixel and the MRF prior (equation 12.8) contributes the
blue grid that connects the pixels together.

12.2 MAP inference for binary pairwise MRFs

To denoise the image, we estimate the variables {wn}Nn=1 using MAP inference; we
aim to find the set of world states {wn}Nn=1 that maximizes the posterior probability
Pr(w1...N |x1...N ) so that

ŵ1...N = argmax
w1...N

[Pr(w1...N |x1...N )]

= argmax
w1...N

[
N∏

n=1

Pr(xn|wn)Pr(w1...N )

]

= argmax
w1...N

[
N∑

n=1

log[Pr(xn|wn)] + log[Pr(w1...N )]

]
, (12.10)

where we have applied Bayes’ rule and transformed to the log domain. Because
the prior is an MRF with pairwise connections we can express this as

ŵ1...N = argmax
w1...N




N∑

n=1

log[Pr(xn|wn)]−
∑

(m,n)∈C

ψ[wm, wn,θ]





= argmin
w1...N




N∑

n=1

Un(wn) +
∑

(m,n)∈C

Pmn(wm, wn)



 , (12.11)

where Un(wn) denotes the unary term at pixel n. This is a cost for observing the
data at pixel n given state wn and is the negative log likelihood term. Similarly,
Pmn(wm, wn) denotes the pairwise term. This is a cost for placing labels wm and
wn at neighboring locations m and n and is due to the clique costs ψ[wm, wn,θ]
from the MRF prior. Note that we have omitted the term − log[Z] from the MRF
definition as it is constant with respect to the states {wn}Nn=1 and hence does not
affect the optimal solution.

The cost function in equation 12.11 can be optimized using a set of techniques
known collectively as graph cuts. We will consider three cases:

• binary MRFs (i.e., wi ∈ {0, 1}) where the costs for different combinations of
adjacent labels are “submodular” (we’ll explain what this means later in the
chapter). Exact MAP inference is tractable here.

• multi-label MRFs (i.e., wi ∈ {1, 2, . . . ,K}) where the costs are “submodular”.
Once more, exact MAP inference is possible.

• multi-label MRFs where the costs are more general. Exact MAP inference is
intractable, but good approximate solutions can be found in some cases.
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Figure 12.5 Max flow problem: we are
given a network of vertices connected
by directed edges, each of which has a
non-negative capacity cmn. There are
two special vertices s and t termed the
source and sink respectively. In the
max-flow problem we seek to push as
much ‘flow’ from source to sink while
respecting the capacities of the edges.

To solve these MAP inference tasks we will translate them into the form of
maximum flow (or max-flow) problems. Max-flow problems are well-studied and
exact polynomial time algorithms exist. In the following section we describe the
max-flow problem and its solution. In subsequent parts of the chapter we describe
how to translate MAP inference in Markov Random Fields into a max-flow problem.

12.2.1 Max-flow / Min-cut

Consider a graph G = (V, E) with vertices V and directed edges E connecting them
(figure 12.5). Each edge has a non-negative capacity so that the edge between
vertices m and n has capacity cmn. Two of the vertices are treated as special and
are termed the source and the sink.

Consider transferring some quantity (‘flow’) through the network from the
source to the sink. The goal of the max-flow algorithm is to compute the maximum
amount of flow that can be transferred across the network without exceeding any
of the edge capacities.

When the maximum possible flow is being transferred – the so-called max-flow
solution – every path from source to sink must include a saturated edge (one where
the capacity is reached). If not then we could push more flow down this path and
so by definition this is not the maximum flow solution.

It follows that an alternate way to think about the problem is to consider the
edges that saturate. We define a cut on the graph to be a minimal set of edges that
separate the source from the sink. In other words, when these edges are removed,
there is no path from the source to the sink. More precisely, a cut partitions
the vertices into two groups: vertices that can be reached by some path from the
source, but cannot reach the sink, and vertices that cannot be reached from the
source, but can reach the sink via some path. For short, we will refer to a cut as
‘separating’ the source from the sink. Every cut is given an associated cost which
is the sum of the capacities of the excised edges.

Since the saturated edges in the max-flow solution separate the source from
the sink they form a cut. In fact, this particular choice of cut has the minimum
possible cost and is referred to as the min-cut solution. Hence, the maximum flow
and minimum cut problems can be considered interchangeably.
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Figure 12.6 Augmenting paths algorithm for max-flow. Numbers attached
edges correspond to current flow / capacity. a) We choose any path from
source to sink with spare capacity and push as much flow as possible along
this path. The edge with the smallest capacity (here edge 6-t) saturates. b)
We then choose another path where there is still spare capacity and push
as much flow as possible. Now edge 6-5 saturates. c-e) We repeat this until
there is no path from source to sink that does not contain a saturated edge.
The total flow pushed is the maximum flow. f) In the min-cut problem, we
seek a set of edges that separate the source from the sink and have minimal
total capacity. The min-cut (dashed gray line) consists of the saturated edges
in the max-flow problem. In this example, I chose the paths arbitrarily, but
to ensure that this algorithm converges in the general case, we should choose
the remaining path with the greatest capacity at each step.
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Figure 12.7 Graph structure for find-
ing MAP solution for a MRF with bi-
nary labels and pairwise connections
in a 3 × 3 image. There is one vertex
per pixel and neighbors in the pixel
grid are connected by reciprocal pairs
of directed edges. Each pixel vertex
receives a connection from the source
and sends a connection to the sink.
To separate source from sink, the cut
must include one of these two edges
for each vertex. The choice of which
edge is cut will determine which of two
labels is assigned to the pixel.

Augmenting paths algorithm for maximum flow

There are many algorithms to compute the maximum flow, and to describe them
properly is beyond the scope of this volume. However, for completeness, we present
a sketch of the augmenting paths algorithm (figure 12.6).

Consider choosing any path from the source to sink and pushing the maximum
possible amount of flow along it. This flow will be limited by the edge on that path
that has the smallest capacity which will duly saturate. We remove this amount of
flow from the capacities of all of the edges along the path, causing the saturated
edge to have a new capacity of zero. We repeat this procedure, finding a second
path from source to sink, pushing as much flow as possible along it and updating
the capacities. We continue this process until there is no path from source to sink
without at least one saturated edge. The total flow that we have transferred is the
maximum flow, and the saturated edges form the minimum cut.

In the full algorithm there are some extra complications: for example, if there
is already some flow along edge i−j, it may be that there is a remaining path from
source to sink that includes the edge j−i. In this situation we reduce the flow in
i−j before adding flow to j−i. The reader should consult a specialized text on
graph-based algorithms for more details.

If we choose the path with the greatest remaining capacity at each step, the
algorithm is guaranteed to converge and has complexity O(|E|2|V|) where |E| is the
number of edges and |V| the number of vertices in the graph. From now on we will
assume that the max-flow/min-cut problem can be solved and concentrate on how
to convert MAP estimation problems with MRFs into this form.

12.2.2 MAP inference: binary variables

Recall that to find the MAP solution we must find
Algorithm 12.1

ŵ1...N = argmin
w1...N




N∑

n=1

Un(wn) +
∑

(m,n)∈C

Pmn(wm, wn)



 , (12.12)
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Figure 12.8 Graph construction for
binary MRF with diagonal pairwise
terms using simple 1D example. After
the cut, vertices attached to the source
are given label 0 and vertices attached
to the sink are given label 1. We hence
attach the appropriate unary costs to
the links between the sink/source and
the pixel vertices. The pairwise costs
are attached to the horizontal links be-
tween pixels as shown. This arrange-
ment ensures that the correct cost is
paid for each of the eight possible so-
lutions (figure 12.9).





 







where Un(wn) denotes the unary term and Pmn(wm, wn) denotes the pairwise term.
For pedagogical reasons, we will first consider cases where the unary terms are

positive and the pairwise terms have the following zero-diagonal form

Pmn(0, 0) = 0 Pmn(1, 0) = θ10

Pmn(0, 1) = θ01 Pmn(1, 1) = 0,

where θ01, θ10 > 0. We discuss the more general case later in this section.
The key idea will be to set up a directed graph G = {V, E} and attach weights

to the edges, so that the minimum cut on this graph corresponds to the maximum
a posteriori solution. In particular, we construct a graph with one vertex per pixel,
and a pair of directed edges between adjacent vertices in the pixel grid. In addition,
there is a directed edge from the source to every vertex and a directed edge from
every vertex to the sink (figure 12.7).

Now consider a cut on the graph. In any cut we must either remove the edge
that connects the source to a pixel vertex or the edge that connects the pixel vertex
to the sink or both. If we do not do this, then there will still be a path from source
to sink and it is not a valid cut. For the minimum cut, we will never cut both
(assuming the general case where the two edges have different capacities) – this is
unnecessary and will inevitably incur a greater cost than cutting one or the other.
We will label pixels where the edge to the source was cut as wn = 0 and pixels
where the edge to the sink was cut as having label wn = 1. So each plausible
minimum cut is associated with a pixel labeling.

Our goal is now to assign capacities to the edges so the cost of each cut matches
the cost of the associated labelling as prescribed in equation 12.12. For simplicity,
we illustrate this with a 1D image with 3 pixels (figure 12.8), but we stress that all
the ideas are also valid for 2D images and higher dimensional constructions.

We attach the unary costs Un(0) and Un(1) to the edges from the pixel to the
source and sink respectively. If we cut the edge between a pixel to the source (and
hence assign wn = 0) we pay the cost Un(0). Conversely, if we cut the edge to the
sink (and hence assign wn = 1) we pay the cost Un(1).
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Figure 12.9 Eight possible solutions for 3 pixel example. When we set the
costs as in figure 12.8, each solution has the appropriate cost. a) For example,
the solution (a = 0, b = 0, c = 0) requires us to cut edges s−a, s−b, s−c and
pay the cost Ua(0) +Ub(0) +Uc(0). b) For the solution (a = 0, b = 0, c = 1)
we must cut edges s−a, s−b, c−t and c−b (to prevent flow through the path
s−c−b−t). This incurs a total cost of Ua(0) + Ub(0) + Uc(1) + Pbc(0, 1). c)
Similarly, in this example with (a = 0, b = 1, c = 0), we pay the appropriate
cost Ua(0) +Ub(1) +Uc(0) +Pab(0, 1) +Pbc(1, 0). d-h) The other 5 possible
configurations.

We attach the pairwise costs Pmn(1, 0) and Pmn(0, 1) to the two edges between
adjacent pixels. Now if one pixel is attached to the source and the other to the
sink, we pay either Pmn(0, 1) = θ01 or Pmn(1, 0) = θ10 as appropriate to separate

Problem 12.2
source from sink. The cuts corresponding to all 8 possible configurations of the 3
pixel model and their costs are illustrated in figure 12.9.

Any cut on the graph in which each pixel is either separated from the source
or the sink now has the appropriate cost from equation 12.12. It follows that the
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Figure 12.10 Graph structure for gen-
eral (i.e., non-diagonal) pairwise costs.
Consider the solution (a = 0, b = 0).
We must break the edges s− a and
s− b giving a total cost of Ua(0) +
Ub(0) + Pab(0, 0). For the solution
(a = 1, b = 0) we must break the
edges a−t, a−b and s−b giving a total
cost of Ua(1)+Ub(0)+Pab(1, 0). Simi-
larly, the cuts corresponding to the so-
lutions (a = 0, b = 1) and (a = 1, b =
1) on this graph have pairwise costs
Pab(0, 1) and Pab(1, 1) respectively.





 





minimum cut on this graph will have the minimum cost and the associated labeling
w1...N will correspond to the maximum a posteriori solution.

General pairwise costs

Now let’s consider how to use the more general pairwise costs,

Pmn(0, 0) = θ00 Pmn(1, 0) = θ10

Pmn(0, 1) = θ01 Pmn(1, 1) = θ11. (12.13)

To illustrate this, we use an even simpler graph with only two pixels (figure 12.10).
Problem 12.3

Notice that we have added the pairwise cost Pab(0, 0) to the edge s−b. We will
have to pay this cost appropriately in the configuration where wa = 0 and wb = 0.
Unfortunately, we would also pay it in the case where wa=1 and wb=0. Hence, we
subtract the same cost from the edge a−b which must also be cut in this solution.
By a similar logic we add Pab(1, 1) to the edge a−t and subtract it from edge a−b.
In this way we associate the correct costs with each labeling.

Reparameterization

The above discussion assumed that the edge costs are all non-negative and can be
Algorithm 12.2

valid capacities in the max-flow problem. If they are not, then it is not possible
to compute the MAP solution. Unfortunately, this is often the case that they are
negative; even if the original unary and pairwise terms were positive, the edge a−b
in figure 12.10 with cost Pab(1, 0) − Pab(1, 1) − Pab(0, 0) could be negative. The
solution to this problem is reparameterization.

The goal of reparameterization is to modify the costs associated with the edges
in the graph in such a way that the MAP solution is not changed. In particular,
we will adjust the edge capacities so that every possible solution has a constant
cost added to it. This does not change which solution has the minimum cost, and
so the MAP labelling will be unchanged.

We consider two reparameterizations (figure 12.11). First, consider adding a
constant cost α to the edge from a given pixel to the source and the edge from
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the same pixel to the sink. Since any solution cuts exactly one of these edges, the
overall cost of every solution increases by α. We can use this to ensure that none
of the edges connecting the pixels to the source and sink have negative costs: we
simply add a sufficiently large positive value α to make them all non-negative.

A more subtle type of reparameterization is illustrated in figure 12.11c. By
Problem 12.4

changing the costs in this way, we increase the value of each possible solution by
β. For example, in the assignment (wa=0, wb=1) we must cut the links s−a, b−a
and b−t giving a total cost of Ua(0) + Ub(1) + Pab(0, 1) + β.

Applying this reparameterization to the general construction in figure 12.10, we
must ensure that the capacities on edges between pixel nodes are positive so that

θ10 − θ11 − θ00 − β ≥ 0 (12.14)

θ01 + β ≥ 0. (12.15)

Adding these equations together, we can eliminate β to get a single inequality

θ01 + θ10 − θ11 − θ00 ≥ 0. (12.16)

If this condition holds, the problem is termed submodular and the graph can be
reparameterized to have only non-negative costs. It can then be solved in poly-
nomial time using the max-flow algorithm. If the condition does not hold, then
this approach cannot be used and in general the problem is NP hard. Fortunately,
the former case is common for vision problems; we generally favour smooth solu-
tions where neighbouring labels are the same and hence the costs θ01, θ10 for labels
differing are naturally greater than the costs θ00, θ11 for the labels agreeing.

Figure 12.12 shows the MAP solutions to the binary denoising problem with
an MRF prior as we increase the strength of the cost for having adjacent labels
that differ. Here we have assumed that the costs for adjacent labels being different
are the same (θ01 = θ10) and that there is no cost when neighboring labels are the
same (θ00, θ11 = 0); we are in the ‘zero-diagonal’ regimen. When the MRF costs
are small, the solution is dominated by the unary terms and the MAP solution
looks like the noisy image. As the costs increase the solution ceases to tolerate
isolated regions and most of the noise is removed. When the costs become larger
details such as the center of the ‘0’ in ‘10’ are lost and eventually nearby regions are
connected together. With very high pairwise costs, the MAP solution is a uniform
field of labels: the overall cost is dominated by the pairwise terms from the MRF
and the unary terms merely determine the polarity.

12.3 MAP inference for multi-label pairwise MRFs

We now investigate MAP inference using MRF priors with pairwise connections
Algorithm 12.3

when the world state wn at each pixel can take multiple labels {1, 2, . . . ,K}. To
solve the multi-label problem, we change the graph construction (figure 12.13a).
With K labels and N pixels, we introduce (K+1)N vertices into the graph.
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Figure 12.11 Reparameterization. a) Original graph construction. b) Repa-
rameterization 1. Adding a constant cost α to the connections from a pixel
vertex to both the source and sink results in a problem with the same MAP
solution. Since we must cut either, but not both of these edges, every so-
lution increases in cost by α, and the minimum cost solution remains the
same. c) Reparameterization 2. Manipulating the edge capacities in this
way results in a constant β being added to every solution and so the choice
of minimum cost solution is unaffected.

  

   



Figure 12.12 Denoising results. a) Observed noisy image. b-h) Maximum
a posteriori solution as we increase zero-diagonal pairwise costs. When the
pairwise costs are low, the unary terms dominate and the MAP solution is
the same as the observed image. As the pairwise costs increase the image
gets more and more smooth until eventually it becomes a uniform field.
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Figure 12.13 a) Graph setup for multi-label case for two pixels (a, b) and
four labels (1, 2, 3, 4). There is a chain of 5 vertices associated with each
pixel. The four vertical edges between these vertices are assigned the unary
costs for the four labels. The minimum cut must break this chain to separate
source from sink, and the label is assigned according to where the chain is
broken. Vertical constraint edges of infinite capacity run between the four
vertices in the opposite direction. There are also diagonal edges between
the ith vertex of pixel a and the jth vertex of pixel b with assigned costs
Cab(i, j) (see text). b) The vertical constraint edges prevent solutions like
this example with three pixels. Here, the chain of vertices associated with
the central pixel is cut in more than one place and so the labelling has no
clear interpretation. However, for this to happen a constraint link must be
cut and hence this solution has an infinite cost.

For each pixel, the K + 1 associated vertices are stacked. The top and bottom
of the stack are connected to the source and sink by edges with infinite capacity.
Between the K + 1 vertices in the stack are K edges forming a path from source
to sink. These edges are associated with the K unary costs Un(1) . . . Un(K). To
separate the source from the sink, we must cut at least one of the K edges in this
chain. We will interpret a cut at the kth edge in this chain as indicating that the
pixel takes label k and this incurs the appropriate cost of Un(k).

To ensure that only a single edge from the chain is part of the minimum cut (and
Problem 12.5
Problem 12.6
Problem ??

hence that each cut corresponds to one valid labelling), we add constraint edges.
These are edges of infinite capacity that are strategically placed to prevent certain
cuts occurring. In this case, the constraint edges connect the vertices backwards
along each chain. Any cut that crosses the chain more than once must cut one of
these edges and will never be the minimum cut solution (figure 12.13b).
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Figure 12.14 Example cuts for multi-label case. To separate the source and
sink, we must cut all of the links that pass from above the chosen label for
pixel a to below the chosen label for pixel b. a) Pixel a is set to label 1 and
pixel b is set to label 3 meaning we must cut the links from vertex a1 to
nodes b4 and b5. b) Pixel a takes label 4 and pixel b takes label 4. c) Pixel
a takes label 4 and pixel b takes label 2.

In figure 12.13a, there are also diagonal inter-pixel edges from the vertices
associated with pixel a to those associated with pixel b. These are assigned costs
Cab(i, j) where i indexes the vertex associated with pixel a and j indexes the vertex
associated with pixel b. We choose the edge costs to be

Cab(i, j) = Pab(i, j − 1) + Pab(i− 1, j)− Pab(i, j)− Pab(i− 1, j − 1), (12.17)

where we define any superfluous pairwise costs associated with the non-existent
labels 0 or K + 1 to be zero, so that

Pab(i, 0) = 0 Pab(i,K + 1) = 0 ∀ i ∈ {0 . . .K + 1}
Pab(0, j) = 0 Pab(K + 1, j) = 0 ∀ j ∈ {0 . . .K + 1}. (12.18)

When label I is assigned to pixel a and label J to pixel b we must cut all of
Problem 12.7

the links from vertices a1 . . . aI to the vertices bJ+1 . . . bK+1 to separate the source
from the sink (figure 12.14). So, the total cost due to the inter-pixel edges for
assigning label I to pixel a and label J to pixel b is
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Figure 12.15 Reparameterization for multi-label graph cuts. The original
construction (a) is equivalent to construction (b). The label at pixel b de-
termines which edges that leave node a1 are cut. Hence, we can remove
these edges and add the extra costs to the vertical links associated with
pixel b. Similarly, the costs of the edges passing into node b5 can be added
to the vertical edges associated with pixel a. If any of the resulting vertical
edges associated with a pixel are non-negative, we can add a constant α to
each: since exactly one is broken, the total cost increases by α but the MAP
solution remains the same.

I∑

i=1

K+1∑

j=J+1

Cab(i, j) =
I∑

i=1

K+1∑

j=J+1

Pab(i, j−1)+Pab(i−1, j)−Pab(i, j)−Pab(i−1, j−1)

= Pab(I, J)+Pab(0,K + 1)−Pab(I,K + 1)−Pab(0,K + 1)

= Pab(I, J). (12.19)

Adding the unary terms, the total cost is Ua(I) + Ub(J) + Pab(I, J) as required.
Once more, we have implicitly made the assumption that the costs associated

with edges are non-negative. If the vertical (intra-pixel) edges terms have negative
costs, it is possible to reparameterize the graph by adding a constant α to all of
the unary terms. Since the final cost includes exactly one unary term per pixel,
every possible solution increases by α and the MAP solution is unaffected.

The diagonal inter-pixel edges are more problematic. It is possible to remove
the edges that leave node a1 and the edges that arrive at bK by adding terms to the
intra-pixel edges associated with the unary terms (figure 12.15). These intra-pixel
edges can then be reparameterized as described above if necessary. Unfortunately,
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Figure 12.16 Submodularity con-
straint for multi-label case. Color
at position (m,n) indicates pairwise
costs Pab(m,n). For all edges in the
graph to be positive, we require that
the pairwise terms obey Pab(β, γ) +
Pab(α, δ) − Pab(β, δ) − Pab(α, γ) ≥ 0
for all α,β, γ, δ such that β > α
and δ > γ. In other words, for any
four positions arranged in a square
configuration as in the figure, the sum
of the two costs on the diagonal from
top-left to bottom-right must be less
than the sum on the off diagonal. If
this condition holds, the problem can
be solved in polynomial time.


         

























we can neither remove nor reparameterize the remaining inter-pixel edges so we
require that

Cab(i, j) = Pab(i, j − 1) + Pab(i− 1, j)− Pab(i, j)− Pab(i− 1, j − 1) ≥ 0. (12.20)

By mathematical induction we get the more general result (figure 12.16),

Pab(β, γ) + Pab(α, δ)− Pab(β, δ)− Pab(α, γ) ≥ 0, (12.21)

where α,β, γ, δ are any four values of the state y such that β > α and δ > γ. This is
the multi-label generalization of the submodularity condition (equation 12.16). An
important class of pairwise costs that are submodular are those which are convex in
the absolute difference |wi−wj | between the labels at adjacent pixels (figure 12.17a).
Here, smoothness is encouraged as the penalty becomes increasingly stringent as
the jumps between labels increase.

12.4 Multi-label MRFs with non-convex potentials

Unfortunately, convex potentials are not always appropriate. For example, in the
denoising task we might expect the image to be piecewise smooth: there are smooth
regions (corresponding to objects) followed by abrupt jumps (corresponding to the
boundaries between objects). A convex potential function cannot describe this
situation, because it penalizes large jumps much more than smaller ones. The
result is that the MAP solution smooths over the sharp edges changing the label
by several smaller amounts rather than one large jump (figure 12.18).

To solve this problem, we need to work with interactions that are non-convex in
Problem 12.8

the absolute label difference, such as the truncated quadratic function or the Potts
model (figures 12.17b-c). These favor small changes in the label, and penalize
large changes equally or nearly equally. This reflects the fact that the exact size of
an abrupt jump in label is relatively unimportant. Unfortunately, these pairwise
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Figure 12.17 Convex vs. non-convex potentials. The method for MAP in-
ference for multi-valued variables depends on whether the costs are a convex
or non-convex function of the difference in labels. a) Quadratic function
(convex), Pmn(wm, wn) = κ(wm −wn)

2. For convex functions, it is possible
to draw a chord between any two points on the function without intersecting
the function elsewhere (e.g., dotted blue line). b) Truncated quadratic func-
tion (non-convex), Pmn(wm, wn) = min(κ1,κ2(wm − wn)

2). c) Potts model
(non-convex), Pmn(wm, wn) = κ(1− δ(wm − wn)).

 

Figure 12.18 Denoising results with convex (quadratic) pairwise costs. a)
Noisy observed image. b) Denoised image has artefacts where there are large
intensity changes in the original image. Convex costs imply that there is a
lower cost for a number of small changes rather than a single large one.

costs do not satisfy the submodularity constraint (equation 12.21). Here, the MAP
solution cannot in general be found exactly with the method described above, and
the problem is NP-hard. Fortunately, there are good approximate methods for
optimizing such problems, one of which is the alpha-expansion algorithm.
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Figure 12.19 The alpha-expansion al-
gorithm breaks the problem down into
a series of binary sub-problems. At
each step, we choose a label α and we
expand: for each pixel we either leave
the label as it is or replace it with α.
This sub-problem is solved in such a
way that it is guaranteed to decrease
the multilabel cost function. a) Ini-
tial labelling. b) Orange label is ex-
panded: each label stays the same or
becomes orange. c) Yellow label is ex-
panded. d) Red label is expanded.

 

 

12.4.1 Inference: alpha-expansion

The alpha-expansion algorithm works by breaking the solution down into a series of
Algorithm 12.4

binary problems, each of which can be solved exactly. At each iteration we choose
one label value α, and for each pixel we consider either retaining the current label,
or switching it to α. The name alpha-expansion derives from the fact that the
space occupied by label α in the solution expands at each iteration (figure 12.19).
The process is iterated until no choice of α causes any change. Each expansion
move is guaranteed to lower the overall objective function although the final result
is not guaranteed to be the global minimum.

For the alpha-expansion algorithm to work, we require that the edge costs form
a metric. In other words, we require that

P (α,β) = 0 ⇔ α = β

P (α,β) = P (β,α) ≥ 0

P (α,β) ≤ P (α, γ) + P (γ,β). (12.22)

These assumptions are reasonable for many applications in vision, and allow us to
model non-convex priors.

In the alpha-expansion graph construction (figure 12.20), there is one vertex
associated with each pixel. Each of these vertices is connected to the source (rep-
resenting keeping the original label or α) and the sink (representing the label α).
To separate source from sink, we must cut one of these two edges at each pixel.
The choice of edge will determine whether we keep the original label or set it to
α. Accordingly, we associate the unary costs for each edge being set to α or its
original label with the two links from each pixel. If the pixel already has label α
then we set the cost of being set to α to ∞.

The remaining structure of the graph is dynamic: it changes at each iteration
depending on the choice of α and the current labels. There are four possible
relationships between adjacent pixels:

• Pixel i has label α and the pixel j has label α. Here, the final configuration
is inevitably α−α, and so the pairwise cost is zero and there is no need to
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Figure 12.20 Alpha-expansion graph setup. Each pixel node (a,b,c,d,e) is
connected to the source and the sink by edges with costs U•(α) and U•(α)
respectively. In the minimum cut exactly one of these links will be cut. The
nodes and vertices describing the relationship between neighbouring pixels
depends on their current labels, which may be α−α as for pixels a and b,
α−β as for pixels b and c, β−β as for pixels c and d or β−γ as for pixels d
and e. For the last case an auxiliary node k must be added to the graph.

add further edges connecting nodes i and j in the graph. Pixels a and b in
figure 12.20 have this relationship.

• The first pixel has label α but the second pixel has a different label β. Here
the final solution may be α−α with zero cost or α−β with cost Pij(α,β).
Here we add a single edge connecting pixel j to pixel i with cost Pij(α,β).
Pixels b and c in figure 12.20 have this relationship.

• Both pixels i and j take the same label β. Here the final solution may be
α−α with zero cost, β−β with zero cost, α−β with cost Pij(α,β) or β−α
with cost Pij(β,α). We add two edges between the pixel representing the two
non-zero costs. Pixels c and d in figure 12.20 have this relationship.

• Pixel i takes label β and pixel j takes a second label γ. Here the final solution
may be α−α with zero cost, β−γ with cost Pij(β, γ), β−α with cost Pij(β,α),
or α−γ with cost Pij(α, γ). We add a new vertex k between vertices i and j
and add the three non zero costs to edges k−α, i−k and j−k respectively.
Pixels d and e in figure 12.20 have this relationship.

Three example cuts are shown in figure 12.21.
Note that this construction critically relies on the triangle inequality (equa-

tion 12.22). For example, consider pixels d and e in figure 12.21a. If the triangle
inequality does not hold so that Pde(β, γ) > Pde(β,α) + Pde(α, γ) then the wrong
costs will be assigned; rather than the link k− α, the two links d−k and e−k will
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Figure 12.21 Alpha-expansion algorithm. a-c) Example cuts on this graph
illustrate that the appropriate unary and pairwise costs are always paid.

both be cut and the wrong cost will be assigned. In practice, it is sometimes possi-
ble to ignore this constraint by truncating the offending cost Pij(β, γ) and running
the algorithm as normal. After the cut is done, the true objective function (sum
of the unary and pairwise costs) can be computed for the new label map and the
answer accepted if the cost has decreased.

It should be emphasized that although each step optimally updates the objective
Problem 12.9

function with respect to expanding α, this algorithm is not guaranteed to converge
to the overall global minimum. However, it can be proven that the result is within
a factor of two of the minimum and often it behaves much better.
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Figure 12.22 Alpha-expansion algorithm for denoising task. a) Observed
noisy image. b) Label 1 (black) is expanded, removing noise from the hair.
c-f) Subsequent iterations in which the labels corresponding to the boots,
trousers, skin and background are expanded respectively.

Figure 12.22 shows an example of multi-label denoising using the alpha-expansion
algorithm. On each iteration one of the labels is chosen and is expanded and the
appropriate region is denoised. Sometimes the label is not supported at all by the
unary costs and nothing happens. The algorithm terminates when no choice of α
causes any further change.

12.5 Conditional random fields

In the models presented in this chapter, the Markov random fields have described
the prior Pr(w) in a generative model of the image data. We could alternatively
describe the joint probability distribution Pr(w,x) with the undirected model

Pr(w,x) =
1

Z
exp

[
−
∑

c

ψC [w]−
∑

d

ζ[w,x]

]
, (12.23)

where the functions ψ[•] encourage certain configurations of the label field and the
functions ζ[•, •] encourage agreement between the data and the label field. If we
now condition on the data (i.e. assume that it is fixed) then we can use the relation
Pr(w|x) ∝ Pr(w,x) to write

Pr(w|x) = 1

Z2
exp

[
−
∑

c

ψC [w]−
∑

d

ζ[w,x]

]
. (12.24)

where Z2 = Z/Pr(x). This discriminative model is known as a conditional random
field or CRF.

We can choose the functions ζ[•, •] so that they each determine the compatibility
of one label wn to its associated measurement xn. If the functions ψ[•] are used to
encourage smoothness between neighbouring labels then the negative log posterior
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Figure 12.23Graphical model for con-
ditional random field (compare to fig-
ure 12.4). The posterior probability
of the labels w is a Markov random
field for fixed data x. In this model,
the two sets of cliques relate (i) neigh-
bouring labels and (ii) each label to its
associated measurement. Since this
model only includes unary and pair-
wise interactions between the labels,
the unknown labels {wn}Nn=1 can be
optimized using graph cut techniques.

probability will again be the sum of unary and pairwise terms. The best labels ŵ
can hence be found by minimizing a cost function of the form

ŵ = argmin
w1...N




N∑

n=1

Un(wn) +
∑

(m,n)∈C

Pmn(wm, wn)



 (12.25)

and the graphical model will be as in figure 12.23. This cost function can be
minimized using the graph cuts techniques described throughout this chapter.

12.6 Higher order models

The models that we have discussed so far have only connected immediate neigh-
bours. However, these only allow us to model relatively simple statistical properties
of the label field. One simple way to improve this situation is to consider each vari-
able wn ∈ {1 . . .K} as representing the index of a square patch of labels from
a predefined library. The pairwise MRF now encodes the affinity of neighboring
patches for each other. Unfortunately, the resulting costs are less likely to be sub-
modular, or even obey the triangle inequality, and the number K of patches in the
library is usually very large, making graph-cut algorithms inefficient.

A second approach to modelling more complex statistical properties of the label
field is to increase the number of the connections. For the undirected models (CRF,
MRF) this would mean introducing larger cliques. For example, to model local
texture, we might connect all of the variables in every 5×5 region of the image.
Unfortunately, inference is hard in these models; optimizing the resulting complex
cost functions is still an open research topic.
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Figure 12.24 Directed graphical
model for grid. Although this model
appears similar to the pairwise
Markov random field model, it rep-
resents a different factorization of
the joint probability. In particular
the factorization contains terms
involving three variables (such as
Pr(w5|w2, w4). This means that the
resulting cost function for MAP infer-
ence is no longer amenable to exact
solution using graph cut methods. In
this case an attractive alternative is
to use sampling based methods as it
is easy to generate samples from this
directed model.

12.7 Directed models for grids

The Markov random field and conditional random field models are attractive be-
cause we can use graph cuts approaches to search for the MAP solution. However,
they have the drawback that it is very hard to learn the parameters of the model
because they are based on undirected models. An obvious alternative is to use a
similar directed model (figure 12.24). Here, learning is relatively easy, but it turns
out that MAP inference using graph cuts is not generally possible.

To see this, consider the cost function for MAP inference in this model,

ŵ1...N = argmax
w1...N

[log[Pr(x1...N |w1...N )] + log[Pr(w1...N )]] (12.26)

= argmax
w1...N

[
N∑

n=1

log[Pr(xn|wn)] +
N∑

n=1

log[Pr(wn|wpa[n])]

]

= argmin
w1...N

[
N∑

n=1

− log[Pr(xn|wn)]−
N∑

n=1

log[Pr(wn|wpa[n])]

]
,

where we have multiplied the objective function by minus one and now seek the
minimum. This minimization problem now has the general form

ŵ1...N = argmin
w1...N

[
N∑

n=1

Un(wn) +
N∑

n=1

Tn(wn, wpa1[n], wpa2[n])

]
, (12.27)

where Un(wn) is called a unary term reflecting the fact that it only depends on a
single element wn of the label field and Tn(wn, wpa1[n], wpa2[n]) is called a three-wise
term reflecting the fact in general the label at a pixel is conditioned on the two
parents pa1[n] and pa2[n] above and to the left of the current position.

Notice that this cost function is fundamentally different from the cost function
for MAP inference in a pairwise MRF (equation 12.11): it includes three-wise terms
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and there is no known polynomial algorithm to optimize this criterion. However,
since this model is a directed graphical model, it is easy to generate samples from
this model and this can be exploited for approximate inference methods such as
computing the empirical max marginals.

12.8 Applications

The models and algorithms in this chapter are used in a large number of computer
vision applications, including stereo vision, motion estimation, background sub-
traction, interactive segmentation, semantic segmentation, image editing, image
denoising, image super-resolution and building 3D models. Here, we review a few
key examples. We consider background subtraction which is a simple application
with binary labels and interactive segmentation which uses binary labels in a system
which simultaneously estimates the parameters in the likelihood terms. Then we
consider stereo, motion estimation and image editing, all of which are multi-label
graph cut problems. We consider super-resolution which is a multi-label problem
where the units are patches rather than pixels and which there are so many labels
that the alpha-expansion algorithm is not suitable. Finally, we consider drawing
samples from directed grid models to generate novel images.

12.8.1 Background subtraction

First, let’s revisit the background subtraction algorithm that we first encountered
in section 6.6.2. In background subtraction the goal is to associate a binary label
{wn}Nn=1 to each of the N pixels in the image indicating whether this pixel belongs
to the foreground or background based on the observed RGB data {xn}Nn=1 at each
pixel. When the pixel is background (wn = 0), the data is assumed to be generated
from a normal distribution with known mean µn0 and covariance Σn0 when the
pixel is foreground (wn = 1) a uniform distribution over the data is assumed so
that

Pr(xn|w = 0) = Normxn [µn0,Σn0]

Pr(xn|w = 1) = κ, (12.28)

where κ is a constant.
In the original description, we assumed that the models at each pixel were

independent and when we inferred the labels the results were noisy (figure 12.25b).
We now place a Markov random field prior over the binary labels where the pairwise
cliques organized as a grid (as in most of the models in this chapter) and where
the potential functions encourage smoothness. Figure 12.25 illustrates the results
of performing inference in this model using the graph cuts algorithm. There are
now far fewer isolated foreground regions and fewer holes in the foreground object.
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Figure 12.25 Background subtraction revisited. a) Original image. b) MAP
solution of background subtraction model with independent pixels. The
solution contains noise c) MAP solution of background subtraction model
with Markov random field prior. This smoothed solution has eliminated
most of the noise.

The model has still erroneously discovered the shadow; a more sophisticated model
would be required to deal with this problem.

12.8.2 Interactive segmentation (GrabCut)

The goal of interactive segmentation is to cut out the foreground object in a photo
based on some input from the user (figure 12.26). More precisely, we aim to as-
sociate a binary label {wn}Nn=1 to each of the N pixels in the image indicating
whether this pixel belongs to the foreground or background based on the observed
RGB data {xn}Nn=1 at each pixel. However, unlike background subtraction, we do
not have any prior knowledge of either the foreground or the background.

In the GrabCut system of Rother et al. (2005) the likelihoods of observing the
background (w = 0) and background (w = 1) are each modelled as a mixture of K
Gaussians so that

Pr(xn|w = j) =
K∑

k=1

λjkNormxn [µjk,Σjk], (12.29)

and the prior over the labels is modelled as a pairwise connected Markov random
field with the potentials chosen to encourage smoothness.

In this application the image may have a wide variety of content and so there is
no suitable training data from which to learn the parameters {λjk,µjk,Σjk}2,Kj=1,k=1
of the foreground and background color models. However, we note that (i) if we
knew the colour models, we could perform the segmentation via MAP inference
with the graph cuts algorithm and (ii) if we knew the segmentation then we could
compute the foreground and background colour models based on the pixels assigned
to each category. This observation leads to an alternating approach to inference in
this model in which the segmentation and parameter are computed in turn until
the system convergence.
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Figure 12.26 Grab Cut. a) The user draws a bounding box around the object
of interest. b) The algorithm segments the foreground from the background
by alternating between building color models and segmenting the image. c-
d) A second example. e-f) Failure mode. This algorithm does not segment
‘wiry’ objects well as the pairwise costs for tracing around all the boundaries
are prohibitive. Adapted from Rother et al. (2005). c©2005 ACM.

In the Grabcut algorithm the user draws a bounding box around the desired
object to be segmented. This effectively defines a rough segmentation (pixels within
the box are foreground and pixels outside are background) from which the system
is initialized. If the segmentation is not correct after the alternating optimization
algorithm converges, the user may ‘paint’ regions of the image with a foreground
or background brush, indicating that these must belong to the appropriate class
in the final solution. In practice this means that the unary costs are set to ensure
that these take the appropriate values and the alternating solution is run again
from this point until convergence. Example results are shown in figure 12.26.

To improve the performance of this algorithm it is possible to modify the MRF
so that the pairwise cost for changing from foreground to background label is less
where there is an edge in the image. This is referred to as using geodesic distance.
From a pure probabilistic viewpoint, this is somewhat dubious as the MRF prior
should embody what we know about the task before seeing the data and hence
cannot depend on the image. However, this is largely a philosophical objection,
and the method works well in practice for a wide variety of objects. A notable
failure mode is in segmenting ‘wiry’ object such as trees. Here the model is not
prepared to pay the extensive pairwise costs to cut exactly around the many edges
of the object and so the segmentation is poor.
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Figure 12.27 Stereo vision. a) One image of the original stereo pair. b)
Disparity estimated using the method of Boykov et al. (1999). c) Ground
truth disparity. Blue pixels indicate regions which are occluded in the second
image and so do not have a valid match or disparity. The algorithm does
not take account of this fact and produces noisy estimates in these regions.
Adapted from Boykov et al. (1999).

12.8.3 Stereo vision

In stereo vision, the goal is to infer a discrete multivalued label {wn}Nn=1 represent-
ing the disparity (horizontal shift) at each pixel in the image given the observed
image data {xn}Nn=1. More details about the likelihood terms in this problem can
be found in section 11.8.2, where we described tree-based priors for the unknown
disparities. A more suitable approach is to use a MRF prior.

As for the denoising example, it is undesirable to use an MRF prior where the
costs are a convex function of the difference in neighboring labels. This results in
a MAP solution where the edges of objects are smoothed. Hence, it is usual to
use a non-convex prior such as the Potts’ function which embodies the idea that
the scene consists of smooth surfaces, with sudden jumps in depth between them
where the size of the jump is unimportant.

Boykov et al. (1999) used the alpha-expansion algorithm to perform approx-
imate inference in a model of this sort (figure 12.27). The performance of this
algorithm is good, but errors are found where there is no true match in the other
image (i.e., where the corresponding point is occluded by another object). Kol-
mogorov & Zabih (2001) subsequently developed a bespoke graph for dealing with
occlusions in stereo vision and an alpha-expansion algorithm for optimizing the
associated cost function. These methods can also be applied to optical flow in
which we attempt to identify pixel correspondences between adjacent frames in a
video sequence. Unlike in stereo vision, there is no guarantee that these matches
will be on the same scanline, but other than this the problem is very similar.

12.8.4 Rearranging Images

Markov random fields models can also be used for rearranging images; we are given
an original image I(1) and wish to create a new image I(2) by rearranging the pixels
from I(1) in some way. Depending on the application we may wish to change the
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Figure 12.28 Shift maps for image re-targeting to reduce width. a) New
image I(2) is created from b) the original image I(1) by copying piecewise
regions (5 regions shown). c) These regions are carefully chosen to produce a
seamless result. d) The underlying representation is a shiftmap – a label at
each pixel of the new image that specifies the 2D offset to the position in the
original image that will be copied from. An MRF encourages the labels to
be piecewise constant and hence the result tends to consist of large chunks
copied verbatim. Figure shows method of Pritch et al. (2009).

dimensions of the original image (termed image re-targeting), remove an object or
move an object from one place to another.

Pritch et al. (2009) constructed a model with hidden variables w = {w1 . . . wN}
at each of the N pixels of I(2). Each possible value of wn ∈ {1 . . .K} represents a
2D relative offset to image I(1) that tells us which pixel from image I(1) will appear
at the nth pixel of the new image. The label map w is hence termed a shift map
as it represents 2D shifts to the original image. Each possible shift-map defines a
different output image I(2) (figure 12.28).

Pritch et al. (2009) model the shift-map w as a MRF with pairwise costs that
encourage smoothness. The result of this is that only shift-maps that are piecewise
constant have high probability: in other words new images which consist of large
chunks of the original image that have been copied verbatim are favored. They
modify the pairwise costs so that they are lower when adjacent labels encode offsets
with similar surrounding regions. This means that where the label does change, it
does so in such a way that there is no visible seam in the output image.

The remainder of the model depends on the application (figure 12.29):

• To move an object, we specify unary costs in the new region that ensure that
we copy the desired object here. The remainder of the shifts are left free to
vary but favor small offsets so that parts of the scene that are far from the
change tend to be unperturbed.

• To replace an area of the image, we specify unary costs so that the remainder
of the image must have a shift of zero (verbatim copying) and the shift in the
missing region must be such that it copies from outside the region.

• To retarget an image to larger width, we set the unary costs so that the left
and right edges of the new image are forced to have shifts that correspond
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Figure 12.29 Applications of shift maps. Shift maps can be used to a) take
and object from the original image b) move it to a new position and c) then
fill in the remaining pixels to produce a new picture. d) They can also be
used to remove an undesirable object e) specified by a mask from an image
by f) filling in the missing area. g-h) Finally they can be used to retarget
an original image to a smaller size, or i-j) to re-target an original image to
a larger size. Results from method of Pritch et al. (2009).

to the left and right of the original image. We also use the unary costs to
specify that vertical shifts must be small.

• To retarget an image to a smaller width (figure 12.28), we additionally specify
that the horizontal offset can only increase (see problem ??). This ensures
that new image does not contain replicated objects and that their horizontal
order remains constant.

In each case the best solution can be found using the alpha-expansion algorithm.
Since the labels do not form a metric here, it is necessary to truncate the relevant
costs. In practice there are many labels and so Pritch et al. (2009) introduce a
coarse-to-fine scheme in which a low resolution version of the image is initially
synthesized and the result of this is used to guide further refinements at higher
resolutions.
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Figure 12.30 Super resolution. a) The observed image, which is broken down
into a regular grid of low resolution patches. b) We infer a regular grid of
labels, each of which corresponds to a high resolution patch, and ‘quilt’ these
together to form the super-resolved image. c) Ground truth. Adapted from
Freeman et al. (2000). c©2000 Springer.

12.8.5 Super-resolution

Image super-resolution can also be framed as inference within a Markov random
field model. Here, the basic unit of currency is an image patch rather than a pixel.
For example, consider dividing the original image into a regular grid of N low
resolution 3× 3 patches {xn}Nn=1. The goal is to infer a set of corresponding labels
{wn}Nn=1 at each position in the grid. Each label can take one of K values, each of
which corresponds to a different possible high resolution 7×7 patch. These patches
are extracted from training images.

The pairwise cost for placing high resolution patches together is determined by
the agreement at the abutting edge. The unary cost for choosing a patch at a given
position depends on the agreement between the proposed high-resolution patch and
the observed low resolution patch. This can be computed by downsampling the
high resolution patch to 3× 3 pixels and then using a normal noise model.

In principle we could perform inference in this model with a graph cut for-
mulation, but there are two problems. First, the resulting cost function is not
submodular. Second, the number of possible high-resolution patches must be very
large and so the alpha-expansion algorithm (which chooses these in turn) would be
extremely inefficient.

Freeman et al. (2000) used loopy belief propagation to perform approximate
inference in a model similar to this. To make this relatively fast, they used only a
subset of J + K possible patches at each position where these were chosen so that
they were the J patches which agreed best with the observed data (and so had the
lowest unary costs). Although the results (figure 12.30) are quite convincing, they
are sadly far from the feats demonstrated in modern TV crime drama.
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Figure 12.31 Texture synthesis. a,b ) Original texture samples. c,d) Synthe-
sized textures using image quilting. Adapted from Efros & Freeman (2001).

12.8.6 Texture synthesis

The applications so far have all been based on performing inference in the undi-
rected Markov random field model. We now consider the directed model. Inference
is difficult in this model due to the presence of ‘three-wise’ terms in the associated
cost function (see section 12.7). However, generation from this model is relatively
easy; since this is a directed model, we can use an ancestral sampling technique
to generate examples. One possible application of this technique is for texture
synthesis.

The goal of texture synthesis is to learn a generative model from a small patch
of texture such that when we draw samples from the model they look like extended
examples of the same texture (figure 12.31). The particular technique that we
describe here is known as image quilting and was originally described by Efros &
Freeman (2001). We will first describe the algorithm as it was initially conceived,
and then relate it to the directed model for grids.

The first step (see figure 12.32) is to extract all possible patches of a given size
from the input texture to form a patch library. The synthesized image will consist
of a regular grid of these library patches such that each overlaps its neighbors by
a few pixels. A new texture is synthesized starting in the top-left of this grid and
proceeding to the bottom-right. At each position, a library patch is chosen such
that it is visually consistent with the patches that have previously been placed
above and to the left.

For the top-left position, we randomly choose a patch from the library. We
then consider placing a second patch to the right of the first patch, such that they
overlap by roughly 1/6 of their width. We search through the library for the J
patches where the squared RGB intensity difference in the overlapping region is
smallest. We choose one of these J patches randomly and place it into the image at
the second position. We continue in this way, synthesizing the top row of patches
in the image. When we reach the second row, we must consider the overlap with
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Figure 12.32 Image quilting. a) Original texture sample. b) Library of all
overlapping patches from the original texture sample. c) The first patch is
chosen randomly from the library. d) The second patch is chosen randomly
from the k library patches that are most similar in the overlapping region.
e) In subsequent rows patches are chosen so that the overlapping region
agrees with the previously placed patches to the left and above. f) This
continues until we reach the bottom-right of the image. g) The patches
are then blended together to give the final results. h) Graphical model for
this technique: when we synthesize images we are ancestral sampling from
a directed image model.

the patches to the left and above in deciding whether a candidate library patch
is suitable: we choose the J patches where the total RGB difference between the
overlapping portions of the candidate patch and the both previously chosen patches
is minimal. This process continues until we reach the bottom-right of the image.

In this way, we synthesize a new example of the texture (figure 12.32a-f). By
forcing the overlapping regions to be similar, we enforce visual consistency between
adjacent patches. By choosing randomly from the J best patches we ensure that
the result is stochastic: if we always chose the most visually consistent patch, we
would replicate the original texture verbatim. At the end of this process, it is
common to blend the resulting patches together to remove remaining artifacts in
the overlapping region (figure 12.32g).

Image quilting can be thought of as ancestral sampling from the directed model
for images (figure 12.32h). The observed data x1...N are the output patches and
the hidden labels w1...N represent the patch index. The labels are conditioned on
their parents with a probability distribution that allots a constant probability if the
overlapping region is one of the J closest and zero otherwise. The only real change
is that the relationship between label and observed data is now deterministic: a
given label always produces exactly the same output patch.
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Figure 12.33 Synthesizing novel faces. a) A sample is drawn from a subspace
model (see chapter 7) that has been trained on facial images. b) Texture
synthesis now proceeds but with two differences from before. First, the
choice of patch must now agree with the sample from the subspace model
as well as the previously placed patches. Second, the library patches are
now different at each position: in this way we ensure that a nose patch
is always chosen in the center etc. c) After completing the synthesis and
blending together the patches. d) A second example of a synthesized face.
e) Graphical model for this technique. When we generate a new image we
are ancestral sampling from a directed image model, where each label w is
conditioned on the hidden variable h of the subspace model. Adapted from
Mohammed et al. (2009). c©2009 ACM.

12.8.7 Synthesizing novel faces

Mohammed et al. (2009) presented a related technique to synthesize more complex
objects such as frontal faces (figure 12.33), based on a large database of weakly
aligned training examples. Faces have a distinct spatial structure, and we must
ensure that our model enforces these constraints. To this end, we build a separate
library of patches for each position in the image. This ensures that the features
have roughly the correct spatial relations: the nose always appears in the center
and the chin at the bottom.

In principle we could now apply a standard image quilting approach by syn-
thesizing patches starting in the top-left and moving to the bottom right. Unfor-
tunately, the resulting faces can drift in appearance (e.g., from male to female) as
we move through the image. To prevent this from happening, we condition the
patch synthesis on a draw from a factor analysis model (section 7.6) which has
been trained with frontal faces. The sample from this model looks like a blurry,
but globally coherent face. Now when we choose potential patches, they must agree
with both the previously placed patches to the left and above, but also be similar to
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the appropriate part of the blurry sample from the subspace model. The generated
images from this model look like highly realistic human faces.

In terms of probability, the labels w1...N in this model are conditioned not only
on their ancestors wpa but also on the hidden variable in the subspace model h.
This connects to every patch label w1...N and gives the resulting image a greater
visual coherence than the Markov connections of the patches alone.

Discussion

Models for grids are ubiquitous in vision: they occur in almost all applications
that attempt to associate a label at each position in the image. Depending on
the application this label may indicate the depth, object type, segmentation mask
or motion at that pixel. Unfortunately, most problems of this type are NP hard
and so we must resort to efficient approximate inference techniques such as the
alpha-expansion algorithm.
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Notes

MRFs and CRFs: Markov random fields were first investigated in computer vision by
Geman & Geman (1984), although much of the early work dealt with continuous variables
rather than the discrete case as discussed in this chapter. A good review can be found
in Li (2010). Conditional random fields were first used in computer vision by Kumar &
Hebert (2003). An overview can be found in Sutton & McCallum (2011).

Applications: Grid-based models and graph cuts are used extensively in vision and
graphics. A partial list of applications includes stereo vision (Kolmogorov & Zabih 2001;
Woodford et al. 2009), optical flow (Kolmogorov & Zabih 2001), texture synthesis (Kwatra
et al. 2003), photo-montage (Agarwala et al. 2004), summarizing photo-collections with
collages (Rother et al. 2005; Rother et al. 2006), bi-layer segmentation (Kolmogorov et al.
2006), interactive segmentation (Rother et al. 2004; Boykov et al. 2001), super-resolution
(Freeman et al. 2000), image re-targeting (Pritch et al. 2009), denoising (Greig et al. 1989),
over-segmentation (Moore et al. 2010; Veksler et al. 2010), image colorization (Levin
et al. 2004), segmantic segmentation (Shotton et al. 2009), multi-view reconstruction
(Kolmogorov & Zabih 2002; Vogiatzis et al. 2007) and matching image points (Isack &
Boykov forthcoming).

Graph cuts: The first application of graph cuts to inference in an MRF is due to Greig
et al. (1989) who investigated binary denoising. However, it was not until the work of
Boykov et al. (2001) that this result was rediscovered and graph cuts became widely
used. Ishikawa (2003) presented the exact solution for multi-label graph cuts with convex
potentials, and this was generalized by Schlesinger & Flach (2006). The presentation
in this chapter is a hybrid of these two methods. Boykov et al. (2001) introduced the
idea of optimizing non-convex multi-label energies via a series of binary problems. They
proposed two algorithms of this kind: the alpha-beta swap in which pairs of labels are
exchanged for one another and the alpha-expansion algorithm. They also proved that
the alpha-expansion solution can be proven to be within a factor of the true solution.
In the same spirit, Lempitsky et al. (2010) and Kumar et al. (2011) have proposed more
complex ‘moves’. Tarlow et al. (2011) elucidates the conection between graph cut methods
and max-product belief propagation. For more detailed overviews of graph-cut methods,
consult Boykov & Veksler (2006), Felzenszwalb & Zabih (2011) and Blake et al. (2011).

Max-flow: Graph cut methods rely on algorithms for computing maximum flow. The
most common of these are the augmenting paths method of Ford & Fulkerson (1962)
and the push-relabel method of Goldberg & Tarjan (1988). Details of these and other
approaches to the same problem can be found in any standard textbook on algorithms such
as Cormen et al. (2001). The most common technique in computer vision is a modified
version of the augmented paths algorithm due to Boykov & Kolmogorov (2004) that has
been demonstrated to have very good performance for vision problems. Kohli & Torr
(2005), Juan & Boykov (2006) and Alahari et al. (2008) have all investigated methods for
improving the efficiency of graph cuts by reusing solutions to similar graph cut problems
(e.g., based on the solution to the previous frames in a time-sequence).

Cost functions and optimization: Kolmogorov & Zabih (2004) provide a summary of
the cost functions that can be optimized using the basic graph-cuts max flow formulation
with binary variables. Kolmogorov & Rother (2007) summarize graph cut approaches
to non-submodular energies. Rother et al. (2007) and Komodakis et al. (2008) present
algorithms that can approximately optimize more general cost functions.

Constraint edges: Recent work has investigated bespoke graph constructions that make
heavy use of constraint edges (edges of infinite strength) to ensure that the solution
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conforms to a certain structure. For example, Delong & Boykov (2009) devised a method
that forced certain labels to surround others and Moore et al. (2010) describes a method
that forces the label field to conform to a lattice. See also Felzenszwalb & Veksler (2010)
for a related scheme based on dynamic programming.

Higher order cliques: All of the methods discussed in this chapter assume pairwise
connections; the cliques include only two discrete variables. However, to model more
complex statistics of the label field, it is necessary to include more than two variables in the
cliques and these are known as higher order models. Roth & Black (2009) demonstrated
good denoising and inpainting results with a continuous MRF model of this kind and
Domke et al. (2008) demonstrated the efficacy of a directed model in which each variable
was conditioned on a number of variables above and to the right in the image. There has
recently been considerable interest in developing algorithms for MAP estimation in models
with discrete variables and higher-order cliques (Ishikawa 2009; Kohli et al. 2009a; Kohli
et al. 2009b; Rother et al. 2009).

Other approaches to MAP estimation: There are many other contemporary ap-
proaches to MAP estimation in MRFs and CRFs. These include loopy belief propagation
(Weiss & Freeman 2001), quadratic pseudo-boolean optimization which is used in non-
submodular cost functions (Kolmogorov & Rother 2007), random walks (Grady 2006)
and linear programming (LP) relaxations (Weiss et al. 2011) and various approaches to
maximize the LP lower bound such as tree reweighted message passing (Wainright et al.
2005; Kolmogorov 2006). An experimental comparison between different energy mini-
mization methods for MRFs can be found in Szeliski et al. (2008).

Texture synthesis: Texture synthesis was originally investigated as a continuous prob-
lem and the focus was on modelling the joint statistics of the RGB values in a small patch
(Heeger & Bergen 1995; Portilla & Simoncelli 2000). Although texture synthesis as a con-
tinuous problem is still an active research area (Heess et al. 2009), these early methods
were displaced by methods that represented the texture in terms of discrete variables (ei-
ther by quantizing the RGB values, indexing patches or using a shift-map representation).
The resulting algorithms (e.g., Efros & Leung 1999; Wei & Levoy 2000; Efros & Freeman
2001; Kwatra et al. 2003) were originally described as heuristic approaches to generating
textures, but can also be interpreted as exact or approximate ways to draw samples from
directed or undirected grid models.

Interactive segmentation: The use of graph cuts for interactive segmentation al-
gorithms was pioneered by Boykov & Jolly (2001). In early works (Boykov & Jolly
2001; Boykov & Funka Lea 2006; Li et al. 2004) the user interacted with the image by
placing marks indicating foreground and background regions. Grab-cut (Rother et al.
2004) allowed the user to draw a box around the object in question. More recent systems
(Liu et al. 2009) are fast enough to allow the user to interactively ‘paint’ the selection
onto the images. Current interest in graph cut based segmentation is mainly focused on
developing novel priors over the shape that improve performance (e.g., Malcolm et al.
2007; Veksler 2008; Chittajallu et al. 2010; Freiman et al. 2010). To this end, Kumar
et al. (2005) introduced a method for imposing high-level knowledge about the articula-
tion of the object, Vicente et al. (2008) developed an algorithm that is suited for cutting
out elongated objects and Lempitsky et al. (2008) used a prior based on a bounding box
around the object.

Stereo vision: Most state of the art stereo vision algorithms rely on MRFs or CRFs and
are solved using either graph cuts (e.g., Kolmogorov & Zabih 2001) or belief propagation
(e.g., Sun et al. 2003). Comparisons of these approaches can be found in Tappen &
Freeman (2003) and Szeliski et al. (2008). An active area of research in dense stereo
vision is the formulation of the compatibility of the two images given a certain disparity
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offset (e.g. Bleyer & Chambon 2010; Hirschmüller & Scharstein 2009) which is rarely
based on single pixels in practice (see Yoon & Kweon 2006; Tombari et al. 2008).

For more information about stereo vision see the reviews by Scharstein & Szeliski (2002)
and Brown et al. (2003) or consult Szeliski (2010) which contains a good modern summary.
Chapter 11 of this book summarizes dynamic programming approaches. Notable stereo
implementations include the region growing approach of Lhuillier & Quan (2002), the
systems of Zitnick & Kanade (2000) and Hirschmüller (2005), both of which are available
online and the extremely efficient GPU based system of Sizintsev & Wildes (2010). For
an up to date quantitative comparison of the latest stereo vision algorithms consult the
Middlebury stereo vision website (http://vision.middlebury.edu/stereo/).

Problems

Problem 12.1 Consider a Markov random field with the structure

Pr(x1, x2, x3, x4) =
1
Z
φ[x1, x2]φ[x2, x3]φ[x3, x4]φ[x4, x1]

but where the variables x1, x2, x3 and x4 are continuous and the potentials are defined as

φ[a, b] = exp
[
−(a− b)2

]
.

This is known as a Gaussian Markov random field. Show that the joint probability is a
normal distribution and find the information matrix (inverse covariance matrix).

Problem 12.2 Compute the MAP solution to the three-pixel graph cut problem in fig-
ure 12.34 by (i) computing the cost of all eight possible solutions explicitly and finding the
one with the minimum cost (ii) running the augmenting paths algorithm on this graph
by hand and interpreting the minimum cut.





 











 

























Figure 12.34 Graph for problem 12.2.

Problem 12.3 Explicitly compute the costs associated with the four possible minimum
cuts of the graph in figure 12.10.

Problem 12.4 Compute the cost for each the four possible cuts of the graph in fig-
ure 12.11c.
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Problem 12.5 Consider the graph construction in figure 12.35a, which contains a number
of constraint edges of infinite cost (capacity). There are 25 possible minimum cuts on this
graph, each of which corresponds to one possible labelling of the two pixels. Write out
the cost for each labelling. Which solutions have finite cost for this graph construction?

 

 





















































Figure 12.35 Alternative multi-label graph constructions. Each of these
these graphs has extra constraint links with infinite weight. These have the
effect of giving an infinite cost to a subset of the possible solutions.

Problem 12.6 Which of the possible minimum cuts of the graph in figure 12.35b have a
finite cost?

Problem 12.7 Confirm that the costs of the cuts in figure 12.14 are as claimed by explicitly
performing the summation over the relevant terms Cij .

Problem 12.8 Show that the Potts model (figure 12.17c) is not submodular by providing
a counter-example to the required criterion:

Pab(β, γ) + Pab(α, δ)− Pab(β, δ)− Pab(α, γ) ≥ 0.

Problem 12.9 An alternative to the alpha-expansion algorithm is the alpha-beta swap.
Here, a multi-label MRF with non-convex potentials is optimized by repeatedly choosing
pairs of labels α,β and performing a binary graph cut that allows them to swap in such
a way that the overall cost function decreases. Devise a graph structure that can be used
to perform this operation. Hint: consider separate cases for neighboring labels α,α, β,β,
β, γ, α, γ and γ, γ where γ.
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