
Markov Random Fields

Goal: Introduce basic properties of Markov Random Field (MRF)

models and related energy minimization problems in image analysis.

Outline:

1. MRFs and Energy Minimization

2. Quadratic Potentials (Gaussian MRFs)

3. Non-Convex Problems (Robust Regularization)

4. Discrete MRFs (Ising and Potts Models)

5. Gibbs Sampling, ICM, Simulated Annealing

6. Min-Cut/Max-Flow, Expansion Moves

Additional Readings:

• S. Prince,Computer Vision: Models, Learning and Inference. See

Chapter 12, Models for Grids.

http://computervisionmodels.blogspot.com/.
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Energy Minimization and MRFs

Many vision tasks are naturally posed as energy minimization problems

on a rectangular grid of pixels, where the energy comprises adata term

and asmoothnessterm:

E(u) = Edata(u) + Esmoothness(u) .

The data termEdata(u) expresses our goal that the optimal modelu be

consistent with the measurements. The smoothness energyEsmoothness(u)

is derived from our prior knowledge about plausible solutions.

Denoising: Given a noisy imagêI(x, y), where some measurements

may be missing, recover the original imageI(x, y), which is typi-

cally assumed to be smooth.

Stereo Disparity: Given two images of a scene, find the binocular dis-

parity at each pixel,d(x, y). The disparities are expected to be

piecewise smooth since most surfaces are smooth.

Surface Reconstruction: Given a sparse set of depth measurements

and/or normals, recover a smooth surfacez(x, y) consistent with

the measurements.

Segmentation: Assign labels to pixels in an image, e.g., to segment

foreground from background.

2503: Markov Random Fields Page: 2



Markov Random Fields

A Markov Random Field (MRF) is a graphG = (V , E).

• V = {1, 2, ..., N} is the set ofnodes, each of which is associated

with a random variable (RV),uj, for j = 1...N .

• The neighbourhood of nodei, denotedNi, is the set of nodes to

which i is adjacent; i.e.,j ∈ Ni if and only if (i, j) ∈ E .

• The Markov Random field satisfies

p(ui | {uj}j∈V\i) = p(ui | {uj}j∈Ni
) . (1)

Ni is often called the Markov blanket of nodei.

Bayesian filtering (see the tracking notes) used a special class of MRFs

for which the graph was a chain. The joint distribution over the RVs

of a first-order Markov chain can be factored into a product ofcon-

ditional distributions. This permits efficient inference (remember the

recursive form of the filtering distribution). Similar properties hold for

tree-structured MRFs, but not for graphs with cycles.

The key to MRFs is that, through local connections, information can

propagate a long way through the graph. Thiscommunicationis im-

portant if we want to express models in which knowing the value of

one node tells us something important about the values of other, possi-

bly distant, nodes in the graph.
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Markov Random Fields (cont)

The distribution over an MRF (i.e., over RVsu = (u1, ..., uN)) that sat-

isfies (1) can be expressed as the product of (positive) potential func-

tions defined on maximal cliques ofG [Hammersley-Clifford Thm].

Such distributions are often expressed in terms of anenergy function

E, and clique potentialsΨc:

p(u) =
1

Z
exp(−E(u, θ)) , whereE(u, θ) =

∑

c∈C
Ψc(ūc, θc) . (2)

Here,

• C is the set of maximal cliques of the graph (i.e., maximal sub-

graphs ofG that are fully connected),

• Theclique potentialΨc, c ∈ C, is a non-negative function defined

on the RVs in cliquēuc, parameterized byθc.

• Z, thepartition function, ensures the distribution sums to 1:

Z =
∑

u1...uN

∏

c∈C
exp(−Ψc(ūc, θc))

The partition function is important for learning as it’s a function of

the parametersθ = {θc}c∈C. But often it’s not critical for inference.

Inference with MRFs is challenging as useful factorizations of the joint

distribution, like those for chains and trees are not available. For all but

a few special cases, MAP estimation is NP-hard.
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Image Denoising

Consider image restoration: Given a noisy imagev, perhaps with miss-

ing pixels, recover an imageu that is both smooth and close tov.

Let each pixel be a node in a graphG = (V , E), with 4-connected

neighourhoods. The maximal cliques are pairs of nodes.

vj

uj

Accordingly, the energy function is given by

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E
V (ui, uj) (3)

• Unary (clique) potentialsD stem from the measurement model,

penalizing the discrepancy between the datav and the solutionu.

This models assumes conditional independence of observations.

The unary potentials are pixel log likelihoods.

• Interaction (clique) potentialsV provide a definition of smooth-

ness, penalizing changes inu between pixels and their neighbours.

Goal: Find the imageu that minimizesE(u) (and thereby maximizes

p(u|v) since, up to a constant,E is equal to the negative log posterior).
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Quadratic Potentials in 1D

Let v be the sum of a smooth 1D signalu and IID Gaussian noisee:

v = u + e , (4)

whereu = (u1, ..., uN), v = (v1, ..., vN), and e = (e1, ..., eN).

With Gaussian IID noise, the negative log likelihood provides a quadratic

data term. If we let thesmoothness termbe quadratic as well, then up

to a constant, the log posterior is

E(u) =
N
∑

n=1

(un − vn)
2 + λ

N−1
∑

n=1

(un+1 − un)
2 . (5)

A good solutionu∗ should be close tov, and adjacent nodes on the grid

should have similar values. The constant,λ > 0, controls the tradeoff

between smoothness and data fit.

To find the optimalu∗, we take derivatives ofE(u) with respect toun:

∂ E(u)

∂ un
= 2 (un − vn) + 2λ (−un−1 + 2un − un+1) ,

and therefore the necessary condition for the critical point is

un + λ (−un−1 + 2un − un+1) = vn . (6)

Equation (6) does not hold at endpoints,n = 1 andn = N , as they

have only one neighbor. For endpoints we obtain different equations:

u1 + λ (u1 − u2) = v1

uN + λ (uN − uN−1) = vN
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Quadratic Potentials in 1D (cont)

We therefore haveN linear equations in theN unknowns:
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(7)

Sparse matrix techniques or simple iterative methods can beused to

solve (7). In perhaps the simplest scheme,Jacobiupdate iterations are

given by:

u(t+1)n =















1
1+2λ (vn + λu

(t)
n−1 + λu

(t)
n+1) for 1<n<N

1
1+λ

(v1 + λu
(t)
2 ) for n = 1

1
1+λ

(vN + λu
(t)
N−1) for n = N

(8)

Jacobi iteration converges when the matrix is diagonally dominant (i.e.,

on each row, the magnitude of the diagonal entry must be larger than the

sum of magnitudes of all off-diagonal entries). Other iterative methods

convergence more quickly (e.g.,Gauss-Seidel, Multigrid, ...)
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Interpretation as IIR Filter

If we neglect boundary conditions, e.g., assuming the signal is much

longer than the filter support, then (7) can be approximated by convo-

lution:

u ∗ (δ + λg) = v . (9)

whereg = [−1, 2,−1]. Note that in (9) we convolve the noiseless signal

u with the filter to obtain the noisy input,v.

We can also define the corresponding inverse filterh; i.e.,u = h ∗ v.

Here are examples ofh and its amplitude spectrâH(ω), for different

values ofλ (remember, largerλ means more emphasis on smoothness).

−π 0 π
0

.5

1

−60 −30 0 30 60
0

.25

0.5

−π 0 π
0

.5

1

−π 0 π
0

.5

1

H(ω)

ω ω ω

λ = 1 λ = 10 λ = 100

h[x]

0

.05

.1

.15

−60 −30 0 30 60

.025

0

.05

−60 −30 0 30 60
x x x

The effective support of the feedforward smoothing filterh can be very

large, even with the same, small support of the feedback computation.

For many feedback iterations the support ofh is infinite (IIR filters).

(But asλ increases the matrix becomes less diagonally dominant.)
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Details of the IIR Interpretation

To explore the IIR interpretation in more detail, and derivethe convolution kernelh, we consider

Fourier analysis of (9). Taking the Fourier transform (DTFT) of both sides of (9), we obtain

Û(ω) [1 + λ(2− e−iω − eiω)] = V̂ (ω) , (10)

whereÛ and V̂ are the Fourier transforms ofu andv, respectively. Using the identity2 cos(ω) =

e−iω + eiω, we can simplify (10) to

Û(ω) [1 + 2λ(1− cos(ω))] = V̂ (ω) . (11)

From (11) we find

Û(ω) = Ĥ(ω) V̂ (ω) , (12)

where

Ĥ(ω) =
1

1 + 2λ(1− cos(ω))
. (13)

Therefore, by the convolution theorem, we see thatu[x] is simply the convolution of the input signal

v[x] with a filter kernelh[x]. Moreover, the Fourier transform of the filter kernel isĤ(ω), as given in

(13).

In other words, the matrix equation (7) is approximately equal to a convolution of the measurements

v[x] with an appropriate linear filterh[x]. If we adopt a different smoothness constraint, i.e., a different

high-pass filterg[x], then from (9), the equivalent feedforward linear filter hasfrequency response:

Ĥ(ω) =
1

1 + λ Ĝ(ω)
, (14)

whereĜ(ω) is the Fourier transform ofg[x]. Increasing the value ofλ makes the output smoother, i.e.,

the feedforward filter becomes more lowpass (see the figure onthe previous page).

Another iterative approach is suggested by (14). For small enough values ofλ such that|λĜ(ω)| < 1,

we can rewrite (14)

Ĥ(ω) =
1

1 + λ Ĝ(ω)
= 1− λĜ(ω) + (λ Ĝ(ω))2 − (λ Ĝ(ω))3 + . . . (15)

Since the desired output̂U(ω) is given byĤ(ω)V̂ (ω), we can rewrite (9) as

u[x] = v[x]− λg[x] ∗ v[x] + λg[x] ∗ (λg[x] ∗ v[x])− λg[x] ∗ (λg[x] ∗ (λg[x] ∗ v[x])) + . . . (16)

That is,−λg[x] is used as a recursive linear filter. The responseu[x] can therefore be computed as the

limit (as t → ∞) of the following iteration

u(0)[x] = v[x],

u(t+1)[x] = v[x]− λg[x] ∗ u(t)[x], for t ≥ 0.
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Missing Measurements

The solution is easily extended to missing measurements (i.e., to handle

interpolation and smoothing).

Suppose our measurements exist at a subset of positions, denotedP .

Then we can write the energy function as

E(u) =
∑

n∈P
(un − vn)

2 + λ
∑

alln

(un+1 − un)
2 , (17)

At locationsn where no measurement exists, the derivative ofE w.r.t.

u yields the condition

−un−1 + 2 un − un+1 = 0 . (18)

The solution is still a large matrix equation, as in (7). Rowsof the

matrix with measurements are unchanged. But those for whichmea-

surements are missing, have the form
(

0 . . . −1 2 −1 . . . 0
)

, with

zeros substituted for the correspondingvn on the right-hand side.

The Jacobi update equation in this case becomes

u(t+1)n =

{

1
1+2λ

(vn + λu
(t)
n−1 + λu

(t)
n+1) forn ∈ P ,

1
2 (u

(t)
n−1 + u

(t)
n+1) otherwise

(19)

The equations that govern the endpoints can be expressed in an analo-

gous manner.
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2D Image Smoothing

For 2D images, the analogous energy we want to minimize becomes

E(u) =
∑

n,m∈P
(u[n,m]− v[n,m])2

+ λ
∑

alln,m

(u[n+1,m]− u[n,m])2 + (u[n,m+1]− u[n,m])2 (20)

whereP is a subset of pixels where the measurementsv are available.

Taking derivatives with respect tou[n,m] and setting them equal to

zero yields a linear system of equations that has the same form as (9).

The only difference is that the linear filterg is now 2D: e.g.,

g =









0 −1 0

−1 4 −1

0 −1 0









.

One can again solve foru iteratively, where, ignoring the edge pixels

for simplicity, we have

u(t+1)[n,m] =

{

1
1+4λ

(v[n,m] + λ s(t)[n,m]) forn,m ∈ P ,
1
4 s

(t)[n,m] otherwise ,
(21)

wheres[n,m] is the sum of the 4 neighbors of pixel[n,m], i.e.,u[n −
1,m] + u[n + 1,m] + u[n,m− 1] + u[n,m + 1].

Problem: Linear filters are sensitive to outliers, and will not preserve

image edges. They tend to oversmooth images at boundaries.
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Robust Potentials

Quadratic potentials are not robust tooutliers and hence they over-

smooth edges. These effects will propagate throughout the graph.

Instead of quadratic potentials, we could use a robust errorfunctionρ:

E(u) =
N
∑

n=1

ρ(un − vn, σd) + λ
N−1
∑

n=1

ρ(un+1 − un, σs) , (22)

whereσd andσs are scale parameters. For example, theLorentzian

error function is given by

ρ(z, σ) = log

(

1 +
1

2

(z

σ

)2
)

, ρ′(z, σ) =
2z

2σ2 + z2
. (23)
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Unfortunately, the problem is no longer convex. Optimization is tough.
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Graduated Non-Convexity

Robust formulations produce nonconvex optimization problems. To help avoid poor local minima, one

can choose a robustρ-function with a scale parameter, and adjust the scale parameter to construct a

convex approximation. This approximation is readily minimized. Then successively better approxi-

mations of the true objective function are constructed by slowly adjusting the scale parameter back to

its original value. This process is calledgraduated non-convexity.

For example, the plots below depicts Lorentzian error and influence functions for four values ofσ

(i.e., for σ = 0.5, 1, 2, and4). For largerσ, the error functions become more like a quadratic, and

the influence functions become more linear. I.e., the nonconvex Lorentzian error function becomes a

simple (convex) quadratic whenσ is very large.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

Lorentzian error functions Lorentzian influence functions

Example of Graduated Non-Convexity: To compute the Lorentzian-smoothed version of the noisy step

edge on p. 12, we initially setσs = 10 and then gradually reduced it to0.1.

The graduated non-convexity algorithm begins with the convex (quadratic) approximation so the initial

estimate contains no outliers. Outliers are gradually introduced by lowering the value ofσ and repeat-

ing the minimization. While this approach works well in practice, it is not guaranteed to converge to

the global minimum since, as with least squares, the solution to the initial convex approximation may

be arbitrarily bad.

Measurements beyond some threshold,τ , can be considered outliers. The point where the influence

of outliers first begins to decrease occurs when the second derivative of theρ-function is zero. For the

Lorentzian, the second derivative,

ρ′′(z) =
2(2σ2 − z2)

(2σ2 + z2)2
,

is zero whenz = ±
√
2σ. If the maximum expected (absolute) residual isτ , then choosingσ = τ/

√
2

will result in a convex optimization problem. A similar treatment applies to other robustρ-functions.

Note that this also gives a simple test of whether or not a particular residual is treated as an outlier. In

the case of the Lorentzian, a residual is an outlier if|z| ≥
√
2 σ.
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Robust Image Smoothing

This smoother uses a quadratic data potential, and a Lorentzian smooth-

ness potential to encourage an approximately piecewise constant result:

Original image Output of robust smoothing

We can use the Lorentzian error function to detect spatial outliers.

Edges

Problem: Computational expense, local minima, and sensitivity to the

initial guess.
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Discrete Optimization

Quantizing the values that are assigned to the RVs in an MRF allows

one to formulate inference using discrete optimization. Tothis end, let

L be the finite set of labels that can be assigned to the MRF nodes.

Potts Model: L = {1, ..., K} with (robust) interaction potential

V (ui, uj) = β min(|ui − uj|, 1) , (24)

whereβ > 0 is the cost of an edge connecting nodes with different

labels. The Potts Model, developed in statistical physics,has been used

often for image processing problems.

Inference:

Gibbs Sampling:MCMC method for drawing samples from an MRF.

One sweeps through the MRF updating one node at a time. At each

step, a node is updated to be a random draw from its conditional

distribution (i.e., holding all neighbouring nodes fixed).

Simulated Annealing:Draw samples fromp(u)1/T , the annealed MRF

posterior, asT decreases. AsT → 0, only MAP states have sig-

nificant probability mass. Provides global MAP estimate, but an-

neallng must take place in infinitesimal steps, and it uses Gibbs

sampling as the inner loop (each time the temperature is reduced).

Iterated Conditional Modes:Greedy form of coordinate descent for

approximate MAP estimation. One sweeps through the MRF nodes

one at a time. For each node we assign the label that minimizesen-

ergy (for which all other nodes are held constant).
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Binary MRFs

In 1989 it was shown that a 2-state version of the Potts model,known

as the Ising model, could be solved. That is, theglobal MAP estimate

can be found with a polynomial-time algorithm.

Ising model: A binary MRF,ui ∈ {0, 1}, with 4-connected neighbour-

hoods, and interaction clique potentials given by

V (ui, uj) = β |ui − uj| , β > 0 . (25)

Random samples:

β = 0 β = 0.7 β = 0.9 β = 1.1 β = 1.5 β = 2

Binary Image Denoising: Letu be a binary image, and letv be a noisy

version ofu; i.e., with probabilityθ we randomly flip bits inu. With

4-connected neighbourhoods, the energy function is

E(u) =
∑

i∈V
D(ui) +

∑

(i,j)∈E
V (ui, uj) (26)

Use the Ising model for the interaction potentials (25). Theunary po-

tentials are simply the negative log data likelihood, i.e.,

D(uj) =

{

− log(1− θ) for uj = vj

− log θ for uj 6= vj
(27)

Goal: Find the signalu that minimizes the energyE(u).
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MAP Estimation via Max-Flow/Min-Cut

Construct a graph comprising the MRF nodes, a sources, a sinkt and

edge weights, such that anst-cut (separatingt from s; see p. 18) spec-

ifies an MRF labeling whose cutcostequals the MRF energy.

The min-cut gives a unique, minimum energy labelling inO(|E|2V).

Consider a graph with nodes (pixels)a andb, with RVsua andub:

• LetDa(ua), Db(ub), andVab(ua, ub) be unary and interaction poten-

tials, such thatVab(0, 0) = Vab(1, 1) = 0 (e.g., an Ising model).

• Given anst-cut, let all nodes with paths froms be labeled1, and

all nodes with paths tot be labeled0.

• Labels are either equal or different; e.g.,(ua, ub) = (0, 0) or (0, 1):

t

s

Vab(1, 0)

Vab(0, 1)
ubua

t

s

Vab(1, 0)

Vab(0, 1)
ubua

Da(0) Db(0)

Db(1)Da(1)

Da(0) Db(0)

Db(1)Da(1)

E(0, 1) = Da(0) +Db(1) + Vab(0, 1)E(0, 0) = Da(0) +Db(0)

Kolmogorov and Zabih showed that graphs can be constructed for more

general interaction potentials satisfying thesub-modularitycondition:

Vab(0, 1) + Vab(1, 0) ≥ Vab(0, 0) + Vab(1, 1) . (28)
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Max-Flow/Min-Cut and Graph Construction

The Max-Flow problem is to find the maximum flow from the sources to a sinkt in a graph with

positive edge weights (capacities). The flow is maximized when on every path froms to t there exists

some edge that is at capacity. Anst-cut is a graph cut comprising all directed edges from a node in a

vertex setA to a node in its complement,̄A, such thats ∈ A, t ∈ Ā, andA is connected. The cost of a

cut is simply defined as the sum of edge weights for the edges removed by the cut.

The Min-Cut problem is to find thest-cut with minimal cost. It is straightforward to show that the

min-cut is a subset of the edges that reach capacity for the max-flow, and that the min-cut cost is equal

to the max-flow. There are well-known polynomial algorithmsfor solving the Max-Flow problem. For

more details, seehttp://en.wikipedia.org/wiki/Max-flow_min-cut_theorem.

General interaction potentials: The graph construc-

tion on the previous page worked for interaction poten-

tials with V (0, 0) = V (1, 1) = 0. One can construct

graphs that do not require this constraint. The figure to

the right shows a simple 2-node MRF where the cost of

every (minimal) plausible cut separatings and t corre-

sponds to a general interaction potential. This general-

izes straightforwardly to MRFs with more than 2 nodes.
t

s

Vab(1, 0)

Vab(0, 1)− Vab(0, 0)

−Vab(1, 1)

ubua

Da(1)

Da(0) + Vab(0, 0)

Db(1) + Vab(1, 1)

Db(0)

Positive capacities: But we need to avoid negative edge

weights on the above graph. To this end we can add a

fixed constantβ to a selection of the edges so that all

plausible (minimal) graph cuts separatings and t have

their costs increased byβ. While this changes the costs,

it leaves the cuts with the minimum cost, hence the MAP

labeling, unchanged. To ensure all edge weights are pos-

itive, we obtain the following two constraints:

Vab(0, 1)− Vab(0, 0)− Vab(1, 1) + β ≥ 0 ,

Vab(1, 0)− β ≥ 0 .

These yield the followingsub-modularitycondition:

Vab(0, 1) + Vab(1, 0) ≥ Vab(0, 0) + Vab(1, 1) .

t

s

ubua

Vab(0, 1)− Vab(0, 0)

−Vab(1, 1) + β

Vab(1, 0)− β

Db(0) + β

Da(1) + β

Da(0) + Vab(0, 0)

Db(1) + Vab(1, 1)
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Binary Image Denoising (cont)

!" #" $"

%" &" '" ("

)"

[Prince, 2011, Chapter 12]

A binary MRF with unary and interaction potentials:

D(uj) =

{

− log(1− θ) for uj = vj

− log θ for uj 6= vj

V (ui, uj) = β |ui − uj| , β > 0 .

(a) The original image. (b-h) MAP estimates for increasingβ, from

on extreme, where the unary terms dominate, to the other, where the

interaction potential dominates, yielding a uniform labeling.
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Grabcut

[Rother, Kolmogorov, and Blake, 2004]

1. User selects a bounding box. Pixels on box are are taken to be background,

while those in the interior are taken to be foreground.

2. Gaussian mixture models (GMM) learned for foreground andbackground colors

3. Min-cut segmentation. Unary potentials given by GMM negative log likelihood.

Interaction potentials much like the Ising model.

4. User then interacts, where necessary, bypainting foreground (yellow) and/or

background (red) pixels. Then return to step 2.
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Multi-Valued MRFs

The general case for multi-valued MRFs remains NP-hard,but we can

now use binary min-cut to find much better ”local” (greedy) moves.

These local moves avoid bad local minima, and can be shown to come

within a factor of 2 of the energy minimum.

α-Expansions: For a given labelα ∈ L, let any RV whose current

label is inL\α either switch toα, or remain the same. Given a labeling

u, and the labelα, construct a new graph such that the min-cut labeling

û minimizesE(û).

This can be shown to reduce the global energy with min-cut as long as

the interaction potential is a metric (satisfying the triangle inequality).

Algorithm: Iteratively cycle through all labels, applyingα-expansion

moves until the energy stops decreasing.

!" #" $" %" &"'"

[Prince, 2011, Chapter 12]

(a) The noisy image. (b) Step 1 cleans up the hair. Step 2 does nothing

(the label has no image support). (c-f) Denoising of the boots, trousers,

skin, and background.

See [Boykov, Veksler and Zabih, 2001] for the graph construction.
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Denoising with Expansion Moves

Left: Input with additive Gaussian noise,σ = 10. So the unary po-

tentials are quadratic,U(ui) = (ui − vi)
2. Middle: Expansion moves

with robust truncated L1 cost,V (ui, uj) = 80min(3, |ui−uj|) . Right:

V (ui, uj) = 15 |ui−uj|. [Boykov et al., 2001]

left: Original image.middle: Noise plus missing data.right: 256 la-

bels, data log likelihoodD(ui) = (ui − vi)
2, Potts interaction potential.
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Stereo Matching With Expansion Moves

Image Ground truth

Swaps Alpha Expansion

Cross-Correlation Simulated Annealling

L = {0, 1, ..., 14}. Data log likelihood was a truncated quadratic,

D(d) = min((I1(x)− I2(x− d))2, 20). Potts interaction potentials

Vij(di, dj) =

{

2K for |I(xi)− I(xj)| ≤ 5

K for |I(xi)− I(xj)| > 5

(see[Boykov et al., 2001])
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