Markov Random Fields

Goal: Introduce basic properties of Markov Random Field (MRF)
models and related energy minimization problems in imagdyars.

Outline:

1. MRFs and Energy Minimization

Quadratic Potentials (Gaussian MRFs)
Non-Convex Problems (Robust Regularization)
Discrete MRFs (Ising and Potts Models)

Gibbs Sampling, ICM, Simulated Annealing
Min-Cut/Max-Flow, Expansion Moves

o 0k W

Additional Readings:

e S. PrinceComputer Vision: Models, Learning and Inferen&ee
Chapter 12, Models for Grids.
http://conputervisionnodel s. bl ogspot. con .
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Energy Minimization and MRFs

Many vision tasks are naturally posed as energy minimingdroblems
on a rectangular grid of pixels, where the energy compriskdaterm
and asmoothnesgerm:

E<u) - Edata(u) + Esmoothness<u) .

The data tern¥,;;,(u) expresses our goal that the optimal modéle
consistent with the measurements. The smoothness efgrgyecss()
is derived from our prior knowledge about plausible solusio

Denoising: Given a noisy imagef(x,y), where some measurements
may be missing, recover the original imafje;, y), which is typi-
cally assumed to be smooth.

Stereo Disparity: Given two images of a scene, find the binocular dis-
parity at each pixeld(z,y). The disparities are expected to be
piecewise smooth since most surfaces are smooth.

Surface Reconstruction: Given a sparse set of depth measurements
and/or normals, recover a smooth surfa¢e, y) consistent with
the measurements.

Segmentation: Assign labels to pixels in an image, e.g., to segment
foreground from background.
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Markov Random Fields

A Markov Random Field (MRF) is a gragh= (V, £).

oV ={1,2,..., N} is the set ohodes each of which is associated
with a random variable (RV);, forj = 1...N.

e The neighbourhood of nodg denotedV;, is the set of nodes to
whichi is adjacent; i.e;; € N; if and only if (i, j) € £.

e The Markov Random field satisfies

p(u; | {uj}jEV\i) = p(ui [ {u;}jen;) - (1)

N is often called the Markov blanket of node

Bayesian filtering (see the tracking notes) used a speeciss df MRFs
for which the graph was a chain. The joint distribution ovex RVs

of a first-order Markov chain can be factored into a productari-

ditional distributions. This permits efficient inferenaerfember the
recursive form of the filtering distribution). Similar pregies hold for
tree-structured MRFs, but not for graphs with cycles.

The key to MRFs is that, through local connections, infororatan
propagate a long way through the graph. Té¢wsnmunications im-
portant if we want to express models in which knowing the gabfi
one node tells us something important about the values efgtlossi-
bly distant, nodes in the graph.
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Markov Random Fields (cont)

The distribution over an MRF (i.e., over RVis= (u4, ..., uy)) that sat-
isfies (1) can be expressed as the product of (positive) pakdéunc-
tions defined on maximal cliques 6f [Hammersley-Clifford Thm]

Such distributions are often expressed in terms oé@aergy function
E, and cligue potential¥ ..

plu) = %exp(—E(u,@)), whereF (u, 0) Z\D Ue, 0:) . (2)

Here,
e C is the set of maximal cliques of the graph (i.e., maximal sub-

graphs ofG that are fully connected),

e Theclique potentiall,., ¢ € C, is a non-negative function defined
on the RVs in clique:., parameterized by..

e 7, thepartition function ensures the distribution sums to 1:

Z = Z Hexp (U, 0.))

ui..uy ceC
The partition function is important for learning as it's anéion of
the parameter® = {0.}.cc. But often it’s not critical for inference.

Inference with MRFs is challenging as useful factorizagiofnthe joint
distribution, like those for chains and trees are not aiséalaFor all but
a few special cases, MAP estimation is NP-hard.
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| mage Denoising

Consider image restoration: Given a noisy imagperhaps with miss-
ing pixels, recover an imagethat is both smooth and close#o

Let each pixel be a node in a gragh= (V, &), with 4-connected
neighourhoods. The maximal cliques are pairs of nodes.

(o /o /D
LA
o o 0o

Accordingly, the energy function is given by

= > D(u) + Y V(uj,uy) (3)

€y (1,5)€€

e Unary (clique) potentiald) stem from the measurement model,
penalizing the discrepancy between the dadéad the solution:.
This models assumes conditional independence of obsangati
The unary potentials are pixel log likelihoods.

e Interaction (clique) potential®” provide a definition of smooth-
ness, penalizing changesurbetween pixels and their neighbours.

Goal: Find the image: that minimizesE(u) (and thereby maximizes
p(u|v) since, up to a constank; is equal to the negative log posterior).
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Quadratic Potentialsin 1D

Let v be the sum of a smooth 1D signabnd [ID Gaussian noise
v =u+t+e, (4)
whereu = (uq, ..., un), v = (v1,...,vy), @ande = (eq, ..., ex).

With Gaussian IID noise, the negative log likelihood pra@sd quadratic
data term If we let thesmoothness terime quadratic as well, then up
to a constant, the log posterior is

N N-1
E(u) = ) (tn=v2)” + A ) (1 — un)* (5)
n=1 n=1

A good solutionu* should be close to, and adjacent nodes on the grid
should have similar values. The constant;> 0, controls the tradeoff
between smoothness and data fit.

To find the optimal.*, we take derivatives o (u) with respect tau,,:
0 E(u)

0 u,
and therefore the necessary condition for the critical fosin

= 2(up — vp) + 2X (—Up—1 + 2uy — Upy1) ,

Up + A(—Up_1 + 2Up — Upy1) = Uy . (6)

Equation (6) does not hold at endpoints= 1 andn = N, as they
have only one neighbor. For endpoints we obtain differentéqns:

U1—|—>\<U1—U2) = U1

Uy + A (UN — UN—l) = UN
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Quadratic Potentialsin 1D (cont)

We therefore havéV linear equations in th&/ unknowns:

fer o 0 0 o0\ fu) [o)

-A 1+2x =X 0 ... 0
0 —A 14+2\ =X ... 0 Us U3
= (7)

(%)

\ 0 0 =\ 1+)\) \UN) K?)N)

Sparse matrix techniques or simple iterative methods caiskd to
solve (7). In perhaps the simplest schedagobiupdate iterations are

given by:
( H%A (vn + Augf)_l + )\uﬁfll) for I<n<N
uf™ = (o + Ay for n=1 (8)
\ 1—1%\ (UN + )‘Ugi?_l) for n=N

Jacobi iteration converges when the matrix is diagonalipinant (i.e.,
on each row, the magnitude of the diagonal entry must ber#nga the
sum of magnitudes of all off-diagonal entries). Other tweamethods
convergence more quickly (e.gsauss-Seidel, Multigrid, )..
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Interpretation as IR Filter

If we neglect boundary conditions, e.g., assuming the signauch
longer than the filter support, then (7) can be approximayecbimvo-
lution:

ux (0+Ag) = v. (9)

whereg = [—1, 2, —1]. Note that in (9) we convolve the noiseless signal
u with the filter to obtain the noisy input,

We can also define the corresponding inverse filtare.,u = h x v.
Here are examples df and its amplitude spectr_é(w), for different
values of\ (remember, largek means more emphasis on smoothness).

A=1 A=10 A =100
1 1 1
H(w) 5 /\ 5 5
0 0 0
-1t 0 T -1t 0 T -1t 0 T
W W W
0.5 .15 .05
A
hlx] .25 .025
.05
0 0 0
-60 -30 0 30 60 -60 -30 0 30 60 -60 -30 0 30 60
X X X

The effective support of the feedforward smoothing filtexan be very
large, even with the same, small support of the feedback atatipn.
For many feedback iterations the supporthois infinite (IIR filters).
(But as\ increases the matrix becomes less diagonally dominant.)
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Detailsof thelIR Interpretation

To explore the IIR interpretation in more detail, and dettlee convolution kerneh, we consider
Fourier analysis of (9). Taking the Fourier transform (D} BT both sides of (9), we obtain

A . . ~

Uw 14+ AX2—e" =€) = V(w), (10)

whereU andV are the Fourier transforms aof and v, respectively. Using the identitycos(w) =
e~ + ™, we can simplify (10) to

U(w) [14 201 = cos(w))] = V(w) . (11)
From (11) we find
Ulw) = Hw)V(w), (12)
where .
1(w) = (13)

14+ 2M(1 = cos(w))
Therefore, by the convolution theorem, we see ttja}l is simply the convolution of the input signal
v[z] with a filter kernelh[z]. Moreover, the Fourier transform of the filter kerneldgw), as given in
(13).

In other words, the matrix equation (7) is approximatelyada a convolution of the measurements
v[x] with an appropriate linear filtér[z]. If we adopt a different smoothness constraint, i.e., a&osfft
high-pass filtegy[z], then from (9), the equivalent feedforward linear filter fr@gjuency response:

iy 1

H(w) = m 5 (14)

whereG(w) is the Fourier transform af{z]. Increasing the value of makes the output smoother, i.e.,
the feedforward filter becomes more lowpass (see the figutikeoprevious page).

Another iterative approach is suggested by (14). For smalligh values of such that\G(w)| < 1,
we can rewrite (14)

2 1 A A 2 ()3
H(w):mzl—)\G(w)+()\G(w)) ANGW)? + ... (15)

Since the desired outplt(w) is given by H (w)V (w), we can rewrite (9) as
ulz] = vlz] = Agla] « v[z] + Agla] « (Aglz] x vlz]) — Agla] * (Ag[z] * (Ag[z] * v[z])) + ... (16)

That is,—\g[z] is used as a recursive linear filter. The resparisécan therefore be computed as the
limit (ast — oo) of the following iteration

uOz] = vla],
uV(z] = vlz] — Ag[z] * uP[z], fort > 0.
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Missing M easurements

The solution is easily extended to missing measuremeatstf.handle
interpolation and smoothing).

Suppose our measurements exist at a subset of positionsteddnh
Then we can write the energy function as

E(u) = Z(un — )%+ A Z(unH — u,)? (17)

neP alln

At locationsn where no measurement exists, the derivativé of.r.t.
u yields the condition

—Up—1 + 2Up — Un+1 = 0. (18)

The solution is still a large matrix equation, as in (7). Raghe
matrix with measurements are unchanged. But those for whie&-
surements are missing, have the fo(m oo—=12 =1 ... O),With
zeros substituted for the correspondingn the right-hand side.

The Jacobi update equation in this case becomes

(19)

n

t t
(H1) _ {H%A (vn + Aufl)—l + )\U;)H) forn € P,

1,.(t) (t) )

5 (Up g + Uy’ otherwise

The equations that govern the endpoints can be expressechimado-
gous manner.
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2D Image Smoothing

For 2D images, the analogous energy we want to minimize besom

E(u) = Z (u[n, m] — v[n, m])?

n,mepP

+ A Z uln+1,m] — u[n, m))* + (uln, m+1] — uln,m])* (20)

alln,m

whereP is a subset of pixels where the measuremeraie available.

Taking derivatives with respect tgn, m] and setting them equal to
zero yields a linear system of equations that has the samedsr(9).
The only difference is that the linear filtgens now 2D: e.g.,

0 —1 0
g = -1 4 -1
0O -1 0

One can again solve far iteratively, where, ignoring the edge pixels
for simplicity, we have

u(t+1)[n’m} _ { ﬁ(v[n, m] + As[n,m]) forn,m € P,

21
1 sWn,m] otherwise , D
wheres|n, m] is the sum of the 4 neighbors of pixel, m|, i.e.,uln —

L,m] +uln+1,m|]+un,m—1] + u[n, m+ 1].

Problem: Linear filters are sensitive to outliers, and will not preser
image edges. They tend to oversmooth images at boundaries.
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Robust Potentials

Quadratic potentials are not robust datliers and hence they over-
smooth edges. These effects will propagate throughoutrtqehg

Instead of quadratic potentials, we could use a robust &rnation p:

N N-1
E(u) = Z p(ty, — vy, 0g) + A Z P(Upi1 — Uy, ), (22)
n=1 n=1

whereo,; and o, are scale parameters. For example, ltoeentzian
error function is given by

1 72\2 2z
o=t (142 (2)), o) -2 (@3
p(z,0) Og( +5 (> ) pla,0) =55 0 (23)
I;erérfunc;tioh | Influence function

Smoothing a noisy step edge:

Noisy step LS smoother Lorentzian smoother

Unfortunately, the problem is no longer convex. Optimiaatis tough.
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Graduated Non-Convexity

Robust formulations produce nonconvex optimization peotd. To help avoid poor local minima, one
can choose a robugtfunction with a scale parameter, and adjust the scale pegrto construct a
convex approximation. This approximation is readily mired. Then successively better approxi-
mations of the true objective function are constructed bwbl adjusting the scale parameter back to
its original value. This process is callgdaduated non-convexity

For example, the plots below depicts Lorentzian error afidence functions for four values of
(i.e., forc = 0.5,1,2,and4). For largero, the error functions become more like a quadratic, and
the influence functions become more linear. l.e., the noreohorentzian error function becomes a
simple (convex) quadratic whenis very large.

6

5L

ne

L L L I I L L L _ L L L L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10 ~10 -8 -6 -4 -2 0 2 4 6 8 10

Lorentzian error functions Lorentzian influence functions

Example of Graduated Non-Convexity: To compute the Loiiantamoothed version of the noisy step
edge on p. 12, we initially set, = 10 and then gradually reduced it ¢ol .

The graduated non-convexity algorithm begins with the earfquadratic) approximation so the initial
estimate contains no outliers. Outliers are graduallyuohiced by lowering the value efand repeat-
ing the minimization. While this approach works well in ptiee, it is not guaranteed to converge to
the global minimum since, as with least squares, the salutidhe initial convex approximation may
be arbitrarily bad.

Measurements beyond some thresheld;an be considered outliers. The point where the influence
of outliers first begins to decrease occurs when the secamngtiee of thep-function is zero. For the
Lorentzian, the second derivative,
" 2(20% — 2?)

p(z) = (202 + 22)2
is zero when: = ++/2 ¢. If the maximum expected (absolute) residuat,ishen choosing = 7//2
will result in a convex optimization problem. A similar tte@ent applies to other robugtfunctions.
Note that this also gives a simple test of whether or not aquéar residual is treated as an outlier. In
the case of the Lorentzian, a residual is an outli¢t|it> v/2 0.
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Robust | mage Smoothing

This smoother uses a quadratic data potential, and a Loaersmooth-
ness potential to encourage an approximately piecewisgaoiresult:

Original image Output of robust smoothing

We can use the Lorentzian error function to detect spatidikeos.

Problem: Computational expense, local minima, and sensitivity & th
initial guess.
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Discrete Optimization

Quantizing the values that are assigned to the RVs in an MR sl
one to formulate inference using discrete optimizationthis end, let
L be the finite set of labels that can be assigned to the MRF nodes

PottsMode: £ = {1, ..., K} with (robust) interaction potential
V(ui, Uj) = 6 HllIl(‘u2 — Uj‘, 1) , (24)
wheres > 0 is the cost of an edge connecting nodes with different

labels. The Potts Model, developed in statistical physias,been used
often for image processing problems.

| nference:

Gibbs SamplingMCMC method for drawing samples from an MRF.
One sweeps through the MRF updating one node at a time. At each
step, a node is updated to be a random draw from its conditiona
distribution (i.e., holding all neighbouring nodes fixed).

Simulated AnnealingDraw samples from(u)'/”, the annealed MRF
posterior, asl’ decreases. A% — 0, only MAP states have sig-
nificant probability mass. Provides global MAP estimatd, du
neallng must take place in infinitesimal steps, and it usds$si
sampling as the inner loop (each time the temperature i<egtju

Iterated Conditional ModesGreedy form of coordinate descent for
approximate MAP estimation. One sweeps through the MRFs$10ode
one at atime. For each node we assign the label that miniraizes

ergy (for which all other nodes are held constant).
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Binary MRFs

In 1989 it was shown that a 2-state version of the Potts médelvn
as the Ising model, could be solved. That is, ghabal MAP estimate
can be found with a polynomial-time algorithm.

|sing model: A binary MRF,u; € {0, 1}, with 4-connected neighbour-
hoods, and interaction clique potentials given by

Viuyug) = Blui—ul, B>0. (25)

SR, l
ot H! J\. b

B=0.7 5—09 B=11 B=15 B=2

Random sampIeS'

Binary Image Denoising: Letu be a binary image, and letbe a noisy
version ofu; i.e., with probabilityd we randomly flip bits inu. With
4-connected neighbourhoods, the energy function is
ZD u;) + Z V(u;, u;) (26)
1% (1,j)e€

Use the Ising model for the interaction potentials (25). Thary po-
tentials are simply the negative log data likelihood, i.e.,

{ —log(1 —0) for u; = v,

D(u;) =
() —log 6 for u; # v;

(27)

Goal: Find the signal that minimizes the energ/(u).
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MAP Estimation via M ax-Flow/M in-Cut

Construct a graph comprising the MRF nodes, a sosireesinkt and
edge weights, such that an-cut (separating from s; see p. 18) spec-
ifies an MRF labeling whose cabstequals the MRF energy.

The min-cut gives a unique, minimum energy labellingif£]?V).

Consider a graph with nodes (pixetsandb, with RVsw, andu,:

o Let D,(uy), Dy(up), andVy,(u,, up) be unary and interaction poten-
tials, such thav/,;(0,0) = V,(1,1) = 0 (e.g., an Ising model).

e Given anst-cut, let all nodes with paths frombe labeled!, and
all nodes with paths tobe labeled.

e Labels are either equal or different; e.@t,, u;) = (0,0) or (0, 1):

S S

l)a(o) ~_ l)b(O) D
VZb(1>O) va 17
< > (s < ”

v25(071) ab 071
Da(l) Db(l) Da(l)
t 4
E(0,0) = Dq(0) + Dy(0) E(0,1) = Da(0) + Dy(1) 4 Vap (0, 1)

Kolmogorov and Zabih showed that graphs can be constructeddre
general interaction potentials satisfying thé-modularitycondition:

Vap(0,1) + Vip(1,0) > Vip(0,0) + Vip(1, 1) (28)
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M ax-Flow/Min-Cut and Graph Construction

The Max-Flow problem is to find the maximum flow from the soureé¢o a sink¢ in a graph with
positive edge weights (capacities). The flow is maximizeénvbn every path from to ¢ there exists
some edge that is at capacity. Aficut is a graph cut comprising all directed edges from a node i
vertex setA to a node in its complementi, such that € A, ¢t € A, andA is connected. The cost of a
cut is simply defined as the sum of edge weights for the edgeswed by the cut.

The Min-Cut problem is to find thest-cut with minimal cost. It is straightforward to show thatth
min-cut is a subset of the edges that reach capacity for tixeflma, and that the min-cut cost is equal
to the max-flow. There are well-known polynomial algorithfmissolving the Max-Flow problem. For
more details, sebt t p: / / en. wi ki pedi a. or g/ wi ki / Max-fl ow_m n-cut _t heorem

General interaction potentials:. The graph construc-
tion on the previous page worked for interaction poter2.(0) + Vas(0,0)
tials with V'(0,0) = V(1,1) = 0. One can construct

graphs that do not require this constraint. The figure to @ Var(1,0) > @
the right shows a simple 2-node MRF where the cost of
every (minimal) plausible cut separatirgandt corre-

Van(0, 1) — Vo (0,0)
—Van(1,1)
sponds to a general interaction potential. This general- D, (1)
izes straightforwardly to MRFs with more than 2 nodes.

Positive capacities: But we need to avoid negative edge
weights on the above graph. To this end we can add a
fixed constant3 to a selection of the edges so that all
plausible (minimal) graph cuts separatingaind¢ have
their costs increased Iy While this changes the costs,D.(0) + Vas(0,0)
it leaves the cuts with the minimum cost, hence the MAP
labeling, unchanged. To ensure all edge weights are pos-
itive, we obtain the following two constraints:

Vap(0,1) — Vo (0,0) — Vip(1,1) + 8 0,
‘/ab(lvo) _6 > 0.

v

These yield the followingub-modularitycondition:

Van(0,1) + Vap(1,0) > Vip(0,0) + Vip(1,1) .
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Binary | mage Denoising (cont)

d) fm - )

4
“
-
4
“'
-
"
a

. J _ J . J

[Prince, 2011, Chapter 12]

A binary MRF with unary and interaction potentials:
—log(1 —0) for u; = v,
D(u;) = og( ) Uj = Uy
—log 6 for u; # v,
V(ui,uj) = B‘UZ'—’LLJ“, 6>O

(a) The original image. (b-h) MAP estimates for increasihgrom
on extreme, where the unary terms dominate, to the othenenthe
interaction potential dominates, yielding a uniform labg!
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Grabcut

No User
Interaction

[Rother, Kolmogorov, and Blake, 2004]

1. User selects a bounding box. Pixels on box are are takee tmabkground,
while those in the interior are taken to be foreground.

2. Gaussian mixture models (GMM) learned for foregroundl@axkground colors

3. Min-cut segmentation. Unary potentials given by GMM nagdog likelihood.
Interaction potentials much like the Ising model.

4. User then interacts, where necessaryphinting foreground (yellow) and/or
background (red) pixels. Then return to step 2.
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Multi-Valued M RFs

The general case for multi-valued MRFs remains NP-Hauwtlyve can
now use binary min-cut to find much better "local” (greedy)ves.
These local moves avoid bad local minima, and can be showone c
within a factor of 2 of the energy minimum.

a-Expansions. For a given labeh € £, let any RV whose current
label is in£\ « either switch tav, or remain the same. Given a labeling
u, and the labely, construct a new graph such that the min-cut labeling
u minimizesE(a).

This can be shown to reduce the global energy with min-cub@g &s
the interaction potential is a metric (satisfying the tgninequality).

Algorithm: Iteratively cycle through all labels, applyirngexpansion
moves until the energy stops decreasing.

Ik

[i"r‘ince,:”2(;1 1, Chapter 12]
(a) The noisy image. (b) Step 1 cleans up the hair. Step 2 dubsg
(the label has no image support). (c-f) Denoising of the §dobusers,
skin, and background.

See [Boykov, Veksler and Zabih, 2001] for the graph consimac
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Denoising with Expansion M oves

Left: Input with additive Gaussian noise, = 10. So the unary po-
tentials are quadratid/(u;) = (u; — v;)>. Middle: Expansion moves
with robust truncated L1 cosY, (u;, u;) = 80 min(3, |u;—u,|) . Right:
V(u;,u;) = 15|u;—u,|. [Boykov et al., 2001]

left: Original image.middle: Noise plus missing dataight: 256 la-
bels, data log likelihood (u;) = (u; — v;)?, Potts interaction potential.
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Stereo Matching With Expansion M oves

| Image Ground truth

Cross-Correlation Simulated Annallin

L = {0,1,...,14}. Data log likelihood was a truncated quadratic,
D(d) = min((I1(z) — L(z — d))?,20). Potts interaction potentials

2K for|I(x;) — I(x;)] <5
Vilds dy) = { ‘ )l

K for|I(z;) — I(x;)] > 5
(seg[Boykov et al., 2001
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Stereo Matching With Expansion M oves (cont)

m Swap move algorithm algorithm a Expansion move algorithm e Simulated annealing
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