Mixture Models and EM

Goal: Introduction to probabilistic mixture models and the expé&on-
maximization (EM) algorithm.

M otivation:

e simultaneous fitting of multiple model instances
e unsupervised clustering of data
e coping with missing data

e segmentation? (... stay tuned)

Readings. Chapter 16 in the Forsyth and Ponce.

Matlab Tutorials. modelSelectionTut.n{optional)
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Mode Fitting: Density Estimation

Let’s say we want to model the distribution of grey levéls= d(X;)
at pixels,{X; } & |, within some image region of interest.

Non-parametric model: Compute a histogram.

Parametric model: Fit an analytic density function to the data.
For example, if we assume the samples were drawn from a Gaussi
distribution, then we could fit a Gaussian density to the bgtaom-

puting the sample mean and variance:
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Right plot shows a histogram of 150 IID samples drawn from the
Gaussian density on the left (dashed). Overlaid is the estidiGaus-

sian model (solid).
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Model Fitting: Multiple Data M odes

When the data come from an image region with more than one dom-
inant color, perhaps near an occlusion boundary, then #esgus-
sian will not fit the data well:
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Missing Data: If the assignment of measurements to the two modes
wereknown, then we could easily solve for the means and variances
using sample statistics, as before, but only incorpordtioge data
assigned to their respective models.

Soft Assignments. But we don’t know the assignments of pixels to
the two Gaussians. So instead, let’s infer them:

Using Bayes’ rule, the probability thaf. is owned (i.e., generated)
by modelM,, is

p(dk)

pM, | dy) =
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Ownership (example)

Above we drew samples from two Gaussians in equal prop&;tem

1
p(/\/ll):p(/\/lz)=§ , and  p(di|M,) = G(di; pin,07)

where G(d; i, 0?) is a Gaussian pdf with meagm and variancer?
evaluated atl. And remembem(d;) =", p(di | M,,) p(M,,).

So, theownerships, ¢,(d;) = p(M,, | di.), then reduce to

G(dka Ml?o.%)
G(dy; p,0%) + G(dg; po, 03)

q(di) = and g¢x(dy) = 1—qi(dy)

—
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Then, the Gaussian parameters are given by weighted satafde s

1 1
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Mixture M odd

Assume

e N processes{ M, }Y |, each of which generates some data (or
measurements).

e Each samplel from processM,, is IID with densityp,(d | a,),
wherea,, denotes parameters for process,.

e The proportion of the entire data set produced solely\ay is
denotedn,, = p(M,,) (it's called amixing probability).

Generative Process. First, randomly select one of th€ processes
according to the mixing probabilitesn = (m4,...,my). Then,
givenn, generate a sample from the observation density | a,,).

Mixture Model Likelihood: The probability of observing a datum
d from the collection of/V processes is given by their linear mixture:

d‘M Zmnpnd‘an

Themixture model, M, comprisesn, and the parameter&s, }?_,

Mixture Model Inference: Given K [ID measurements (the data),
{di}_,, our goal is to estimate the mixture model parameters.

Remarks. One may also wish to estimaté and the parametric form
of each component, but that's outside the scope of thess.note
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Expectation-M aximization (EM) Algorithm

EM is an iterative algorithm for parameter estimation, esgb/ use-
ful when one formulates the estimation problem in termshsérved
andmissing data.
e Observed data are th€ intensities. Missing data are the assign-
ments of observations to model componentsd;.) € {0, 1}.

Each EM iteration comprises an E-step and an M-step:

E-Step: Compute the expected values of the missing data given the
current model parameter estimate. For mixture models one ca
show this gives the ownership probabilityzEH d;.)] = ¢.(dy).

M-Step: Compute ML model parameters given observed data and
the expected value of the missing data. For mixture modeds th
yields a weighted regression problem for each model comygone

a 0
Z Qn<dk:) 1ngn<dk: ‘ 571) = 0.
k=1

oa,
and the mixing probabilities arer, = + 31| q.(dy).

Remarks:

e Each EM iteration can be shown to increase the likelihoodhef t
observed data given the model parameters.

e EM converges to local maxima (not necessarily global maxima
e An initial guess is required (e.g., random ownerships).
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Derivation of EM for Mixture Models

The mixture model likelihood function is given by:

=

p({d}i M) = [[p(d| M) = HZ My P (i, | &)

whereM = (m, {a,})_,). The log likelihood is then given by

LM) = logp ({di}ioy [ M) = > log (Z mnpn(dk\an)>

Our goal is to find extrema of the log likelihood function sedijto the constraint that the mixing
probabilities sum to 1. The constraint tha} m, = 1 can be included with a Lagrange multiplier.
Accordingly, the following conditions can be shown to holdlee extrema of the objective function:

and
an (de) 5 logpn(dklan) =0.

The first condition is easily derived from the derivative bétlog likliehood with respect te,,,
along with the Lagrange multiplier.

The second condition is more involved as we show here, bagmmith form of the derivative of
the log likelihood with respect to the motion parameterstien® component:

0a, kZ:; 27]:[:1 My pn(dk ‘ a ) 0a, <Z_; >
K
My, 0

k=1 En 1 mnpn(dk ‘ an) aan

K
mn n d an 8 5
- Z N £ ( k| )—» oa logpn(dk ‘ an)
k=1 Zn:l my pn(dk | an) an

The last step is an algebraic manipulation that uses thetat' %22 — Tz)ag(a") .
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Derivation of EM for Mixture Models (cont)

Notice that this equation can be greatly simplified becaasé &rm in the sum is really the product
of the ownership probability, (dx) and the derivative of the component log likelihood. Therefo

oL
0a,,

0 .

[M] =

k=1

This is just a weighted log likelihood. In the case of a Gaussiomponent likelihoody, (dx | &,,),
this is the derivative of a weighted least-squares errousThetting)L /04, = 0 in the Gaussian
case yields a weighted least-squares estimatg, for
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Examples

Examplel: Two distant modes. (We don't necessarily need EM here
sincehard assignments would be simple to determine, and reasonably

efficient statistically.)
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Example 2. Two nearby modes. (Here, the soft ownerships are
essential to the estimation of the mode locations and veemiy
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More Examples

Example 3: Nearby modes with uniformly distributed outliers. The
model is a mixture of two Gaussians and a uniform outlier pssc
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Example 4. Four modes and uniform noise present a challenge to
EM. With only 1000 samples the model fit is reasonably good.

Probability
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Mixture M odelsfor Layered Optical Flow

Layered motion is a natural domain for mixture models andiakk
algorithm. Here, we believe there may be multiple motiorespnt,
but we don’t know the motions, nor which pixels belong togetne.,
move coherently).

e Two key sources of multiple motions, even within small image
neighbourhoods, are occlusion and transparency.

e Mixture models are also useful when the motion model doesn’t
provide a good approximation to the 2D motion within the oegi

Example: The camera in the Pepsi sequence moves left-to-right.
The depth discontinuities at the boundaries of the can m®dwtion
discontinuities. For the pixels in the box in the left images right

plot shows some of the motion constraint lines (in velocgce).
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Mixture Modelsfor Optical Flow

Formulation: Assume an image region contains two motions.
e Let the pixels in the region bgx, 1 |

e Let's use parameterized motion modélsgx; &;) for j = 1,2,
wherea; are the motion model parameters. (Ea&is 2D for a
translational model, and 6D for an affine motion model.)

e One gradient measurement per pixgl= (f.(Xx), f,(Xk), fi(Xk)).

e Like gradient-based flow estimation, ®tf(X;) - @ + f,(X;) be
mean-zero Gaussian with varianeg that is,

pa(€ | %y, &) = G(VF(R)) - T+ f(%); 0, 07)
e Let the fraction of measurements (pixels) owned by eachef th
two motions be denoteak; andims.

e Let my denote the fraction of outlying measurements (i.e., con-
straints not consistent with either of the motions), andiassa
uniform density for the outlier likelihood, denotegl

e With three componentsy, + m; + mo = 1.
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Mixture Modelsfor Optical Flow

Mixture Model: The observation density for measureménis

9
p(Cr | m, &, a2) = mopy + Z M, Pr(Ck | X, &) -

n=1

wherem = (my, my, ms).

Given K 11D measurement$c, } &, the joint likelihood is the prod-
uct of individual component likelinoods:

K

L(m, &, &) = [ p(€|m, &, &) .
k=1

EM Algorithm:

e E Sep:  Infer the ownership probabilityy,(cy), that constraint
¢, is owned by thex!" mixture component. For the motion com-
ponents of the mixturen(=1, 2), givenm, a; anda,, we have:

mopo + map1(Ck | Xk, &1) + mopa(Cr | Xy, &)

qn(Cr) =
And of course the ownership probabilities sum to one so:
q(Cr) = 1—q(ck) — q(cy)
e M Sep: Compute the maximum likelihood estimates of the mix-

ing probabilitiesm and the flow field parameters, andas,.
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ML Parameter Estimation

Mixing Probabilities: Given the ownership probabilities, the mix-
ing probabilities are the fractions of the total ownershiplgability
assigned to the respective components:

1 K
Ez Qn(gk) = my
k=1

Flow Estimation: Given the ownership probabilities, we can es-
timate the motion parameters for each component sepanaitiya
form of weighted, least-squares area-based regression.

E.g., for 2D translation, where thig = u,, this amounts to the min-

imization of the weighted least-squares error
K

E(d,) = Y :(€) (i, &)
k=1

K
N 2
= > 4@ |[VIRet) -+ &)
k=1
where V f=(fu f,)" (cf.iteratively reweighted LS for robust esti-

mation).

Conver gence Behaviour:
(of two motion estimates
in velcocity space)
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Representation for the Occlusion Example

Model: translational flow, with 2 layers and an outlier process.

Region at an occlusion boundary. Pixel Ownership:

for Layer #2

Layer #1 Outliers
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Additional Test Patches

Test Patches:

e A ;-j;
% l;}, \ \‘\\ N

/// ‘\\'\‘:\\ N
A /l//ll///l KA x‘y . \\ \ \.:\
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Further Readings

Papers on mixture models and EM:

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelibebfrom incomplete data via the
em algorithm.Journal of the Royal Statistical Society Series B, pp. 1-38, 1977.

R. Neal, and G. Hinton. A view of the EM algorithm that justifimcreemental, sparse and other
variants. InLearning in Graphical Models, M. Jordan (ed.).

Papers on mixture models for layered motion:

S. Ayer and H. Sawhney. Compact Representations of Videosugh Dominant and Multiple
Motion Estimation,|EEE Trans. on Pattern Analysis and Machine Intelligence, 18(8):777—
784, 1996.

A.D. Jepson and M. J. Black. Mixture models for optical flowrgautation. Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 760—761, New York, June 1993.

Y. Weiss and E.H. Adelson. A unified mixture framework for matsegmentation: Incorporating
spatial coherence and estimating the number of mod&EE Proc. Computer Vision and
Pattern Recognition, San Francisco, pp. 321-326, 1996.
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