Linear Filters, Sampling, & Fourier Analysis

Goal: Mathematical foundations for digital image analysis, espr
sentation and transformation.

Outline;

e Sampling Continuous Signals
e Linear Filters and Convolution
e Fourier Analysis

e Sampling and Aliasing

Suggested Readings: "Introduction to Fourier Analysis” by Fleet
and Jepson (2005), Chapters 1 and 7 of Forsyth and Ponce.
Matlab Tutorials: linSysTutorial.m, samplingTutorial.m, upsam-
ple.m and imageTutorial.m.
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Sampling

Approximate continuous signals with a discrete sequensamiples
from the continuous signal, taken at regularly spacedvatsr

Useful approximations require that the coninuous signaLifisciently
smooth relative to the sampling interval so that one canapmately
reconstruct the continuous signal (we’ll discuss the Fagampling
theorem and interpolation in greater detail later).

continuous
signal

° o discrete
. signal

Notation: We will often express a 1D discrete signaln), for n =
0...N —1, as real-valued vectaf,c R".

Initially we’ll work with 1D signals; think of a column of pels from
an image. We’'ll generalize to 2D after the basics are intcedu
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Introduction to Linear Filters

A filter transforms one signal into another, often to enhacexain
properties (e.g., edges), remove noise, or compute sitatates.

A transformation’’, is linear iff, for inputss;(n), responses;(n) =
T[s;(n)], and scalara andb, T satisfiesuperposition:

Tlasi(n) 4+ bsa(n)] = aT|si(n)] + bT|se(n)] Va,beC

In 1D, a linear filter can be represented by a matrdx,and its re-
sponsea‘ to inputs’is given by matrix multiplication:

r = As

Them!" element off is the inner product of thex'” row of A ands.
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Shift Invariance

Often we want to apply the same operation to every point imeage
(e.g., smoothing). If" is shift-invariant, thetym € 7

r(n)="T|s(n)] iff r(n—m)="T][s(n—m)]

Linear, shift-invariant filters can be expressed as Taephatrices
(i.e., constant along diagonals):

e so each row is equal to the previous row, but shifted rightrog, o
and each column is a shifted version of every other column.

e E.g.: Let’'s smooth a signal by computing a weighted averdge o
each input sample and its two neighbours with weights 0.2, O
and 0.25 (i.e., with a sliding window). The correspondingnxa
has the form:

—_ N

Local filterscompute responses using only small neighborhoods of
pixels from the input, like the smoothing filter. For 1D si¢gg¢his
produces a banded Toeplitz matrix. The width of nonzeraesin a

row is called the filter'support
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Boundary Conditions

With finite length signals we need to handle boundaries olyef

1. Shift-invariance is preserved if we assupeiodic signals and
cyclical shifts For local filters this introduces nonzero entries in

the upper-right and lower-left corners of the matrix. E.g.:

I |
210 .. 1
121

1
210 ..

. 0121
1 .. 012
| |

2. We could instead assume that the input is always zero loay®n
endpoints. In practice, the number of zeros we uspadthe
input depends on the filter’s support width. If the supportis
samples, then we neédd —1 zeros on each end.

The response is then longer than the input\by- 1 samples, so

people often just truncate the response. The transforners th

I |
210 ..
121

1
210 ..

N

. 0121
.. 012

| |
But then this is no longer shift-invariant.

3. Often it is more desirable to assume a constant signainoeye
boundary, i.e., pad the ends by repeating the two end samples
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Impulse Response

One can also characterize a linear, shift-invariant openaith its
impulse response, i.e., the response to an impuise,

e Kronecker delta function (discrete)
1 n=0
OES S
0 otherwise

e Dirac delta function (continuous)
d(z)=0 Vx#0, and /5(x)f(x) dx = f(0)

for sufficiently smoothf (x)

In the discrete case, multiplying by the delta functior(n) simply
extracts the first column from:

h(n) is called thempulse responsg(If we pad the input boundaries
with zeros and truncate the result, then the origin shoulddae the
middle of the vector so we don’t get a truncated impulse reseb

e Applying A to a shifted impulse signab(n — m), gives us the
m!™ column of 4, ie., a shifted version of the impulse response.

e Therefore, from the impulse response we can construct the ma
trix; i.e., it contains all the information needed to defihe filter.
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Convolution

The conventional way to express a linear shift-invariateifimathe-
matically is with the convolution operator. Let the scalgrdenote
the signal value at position i.e.,w, = s(p). Then we writes(n) as

s(n) = Y w,d(n—p)

p=—00

For a linear, shift-invariant operat@rit follows that

Tlstn)] = T | ) wp6<n—p>]
= Z wy, T'[0(n — p)]
= > wyh(n—p)

whereh is the impulse response. Thus the respotiae = T'[s(n)] is
just a weighted sum of shifted impulse responses, that is:

r(n) = Y s(p)h(n—p) (1)
p=—00
Eqgn (1) is called convolution, and is expressed as a binaeyabpr
(often withx): s
sxh = Z s(p)h(n —p).
pP=—00

For continuous signalé,(x) ands(x), convolution is written as

o0
sih = [ s@hle - g
—00
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Properties of Convolution

Commutativity: sxh = hxs
Not all matrix operations commute, but this does.

Associativity: (hy * ho) * hg = hy * (he * h3)
This is true of all matrix multiplication.

Distributivity over Addition:  (hy + hs) * h3 = hy * hy + hy * hs
This is true of all matrix multiplication.

Local Support: Often the support of the filter is limited. H(m) is

only nonzero for-M /2 < m < M/2, then we rewrite Egn (1) as
M/2

sxh = Z s(n+p)h(—p) .

p=—M/2
In words, for each signal positiom, center the reflected impulse
response at positiom, and then take its inner product with the image.
This is a better way to implement the filter than matrix muiktigtion!

Inverse: One way to find the inverse of a convolution operator is to
create the corresponding Toeplitz matrix and invert it. ©aue show
that the inverse of a cyclic Toepliz matrix is also cyclic afakpliz.

In other words, the inverse of a discrete linear shift-irasairoperator,

if it exists, is also linear and shift-invariant. A betteryva find the
inverse uses the Fourier transform.
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2D Image Convolution

In 2D the convolution equation is given by

r(n,m) = Y Y s(p,q)h(n—p,m—q)

p=—00 g=—00

Computational Expense: In general, 2D convolution requires
O(N?M?) multiplications and additions whems* is the number of
image pixels, and/? is the 2D support of the impulse response.

Separability: Ifa2D impulse response can be expresséd asy) =
hi(z) ho(y) for someh;(z) and somées(y), thenh is said to be sepa-
rable. In the discrete case, the impulse response is sdépdrdlzan
be expressed as an outer product:

|| Falml —)
hln,m] = |lnl]

With separability, 2D convolution can be expressed as aackesof
1D convolutions, first along the rows, and then along the roolst
Because convolution is commutative you could convolve gltre
columns and then the rows.

e Each 1D convolution, and hence the separable 2D filtéx 1§ M).
This is important if the filter support is more than 4 or 5 psxel
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2D Image Convolution

Examples:

e Them x m constant matrix (a crude 2d averaging operator) can
be expressed as an outer product of two 1d constant vecBus. (
this is not isotropic.)

e In continuous terms, the Gaussian is the only 2d isotromc{u
tion that can be decomposed into a separable product of two 1d

Gaussians:
1 €_<x2+y2)/20,2 _ 1 €_x2/20,2 1 e—y2/202
2mo? V2ro \V2ro

e Discrete approximations to Gaussians are often given byi-by b
nomial coefficients, (e.g, (1, 4, 6, 4, 1)/16)).
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Example: Smoothing Filters

Al and a blurred version of Al are shown. The impulse respavee
separable, composed of the same horizontal and vertiegd 28 im-
pulse response, that i%,(l, 4,6,4,1).

This shows Al and the difference between Al and the blurrediga

of Al. The image is only non-zero where the blurred versiodiffer-
ent from the original, i.e., where there are significant logtensity
variations. The impulse response for this filtebis, m) — h(n, m)
whereh(n, m) is the separable blurring filter used above.
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Example: Derivative Filters

Derivative filters are common in image processing. Here veecusde
separable approximations to horizontal and vertical déxies. They
composed of a smoothing filter in one direction (izlle(.l, 2,1))and a
first-order central difference (i.€}(—1,0,1)) in the other.

Sum of squared derivative responses (the squared magrmfute
image gradient at each pixel). When clipped, this gives ghmadea
of where edges might be found.
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Example: Down-Sampling and Up-Sampling
Down-samplingor decimation) is the process of collapsing a signal

by removing every’* sample.

Up-samplingrefers to the expansion of a signal by adding new sam-
ples to make it longer. One introducezeros in between every pair
of adjacent samples in the original signal.

Both of these operators are lineatr.

Example: down-sampling a signalby a factor of 2 to creats,.

100000 .
. 001000 . ~
52 = [oo00010 . S

Example: up-sampling a signa by a factor of 2 to creats,.

100000
. 000000 .
51 = 010000 S

Up-sampling is often a precursor to smoothing for signatnnbla-
tion.
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Introduction to Fourier Analysis

Overview

e Fourier transform of an signal is a decomposition of the &lign

into a weighted sum of sinusoids.
e We’'ll concentrate on Fourier transforms for discrete signa

(see detailed notes for continuous transforms).

Discrete Sinusoids

e For now, consider sinusoids that are periodic\dsamples.
I(n) = Asin(wn + ¢)

— A is the amplitude
— ¢ is the phase offset
— w is frequency, with wavelength = 27 /w.

e Two results:
1. Frequency is only unigue between 0 arit.
Proof: because is an integekin((w + 27)n) = sin(wn).
2. Assuming periodic signals of lengifi, then there are only

distinct frequenciesy;, = 27k /N for 0 < k < N.
e Euler's formula:e™" = cos(wn) + i sin(wn) wherei* = —1.
Conversely, one can writeos(wn) = 1 [e™" + e~™"]
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Eigenfunctions of Convolution

Convolution of a sinusoid of frequency,, ¢'“*", and filteri(n) is:

N-1 N—-1
7”(7?,) _ Z eiwk(n—m)h(m) _ eiwkn Z e—iwkmh<m)
m=0 m=0
This response is just a scaled version of the original sidge.,
r(n) = e'“*" H

where the scalarf;, is the inner product oh(n) and a sinusoid
. . .
fr(n) = e~"“k" In vector notation,H; = f; h .

We can collect the complex-valued scalars associated mitissids
at all N frequencies into a vectoH = [Hy, ..., Hy4]', and then:
S -
fo

H=Fh, where F=| : (2)

fnq

F is a unitary matrix (up to a scalar); its inverse is given by

B 1, 1 2+ =
Fl:NFt:N fO;---pr—l

whereF* is the conjugate transpose Bf

*

e To prove this, show thatl /N)FF* = Identity(N). Use the
fact that sinusoidal signals of different frequencigsare orthog-
onal, while the product of a complex sinusoid with its comple
conjugate is simplye™e=“n = ¢ =1,

e one can also show thitis symmetric.
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Discrete Fourier Transform

If we multiple both sides of the forward equation,

N—1
H=Fh , orequivalently H(k) = Y e '“"h(n) (3)
n=0
by F~! we then obtain:
1 1 N—-1 .
h = NF*tH , or equivalently, h(n) = ~ k" H(k) (4)

o~
|

0

So what have we shown?

1. Eqn. (4) expressésas a sum ofV sinusoids. No more thaiy
are required. The weights are called Fourier coefficiemis thaey
are obtained by multiplying the signalwith the matrixF.

2. Eqn. (3) is the discrete Fourier transform (DFT) equation
F is the DFT matrix, and{ (k) is called the DFT ofi(n).

3. Egn. (4) is called the inverse DFT equation.

4. Although we derived the DFT for an impulse respohge), the
derivation can be applied to any discrete sigtial) of length V.

Fast Fourier Transform: Forward and inverse DFT can be com-
puted inO(N log N). (Don’t use matrix multiplication witt")
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DFT Matrices

0 2 4

n ———»

Left: This shows the real part of the DFT matrixs(27nk/16), with
frequenciesv, = 27k/16 for 0 < k < 15 from top to bottom. The
spatial variablen increases from 0 to 15. The first row and column
are filled with ones.

Right: This depicts the imaginary part of the DFT matrixsin(27nk /16),
with the same dependence brandn. In this case, the first row and
column are filled with zeros.
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DFT Example

0 5 10 15 20 25 30

-0.5

A Gaussian signal is shown on top with 32 samples. The first 4
terms of its Fourier decomposition are shown below, witlydien-
cies 2nk/N for 0 < k < 3. The amplitudes of these first 4 Fourier
coefficients are 0.3333, 0.47, 0.166, and 0.029.
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DFT Examples

E.g. 1: DFT of s(n) = A cos(wsn + ¢) for some real-valued ande.

e first note thats(n) = 1 (e/@sn+9) 4 e-ilwante))

1
2
e because frequencies are unique within also note that/y_3 = —ws.

e Finally, rows of DFT matrix are orthogonal, and therefore thatrix-vector product df* with
s(n) will have nonzero values at positiohs= 3 andk = N — 3.

o what will these values be? (Check your answer with linSysiiat m)

E.g. 2: DFT of §(n — ny).
e first note thaf® is symmetric, so rows as well as columndoére sinusoids, i.ee s,

e from this it’s clear that the product & with an impulse at position, is simply the column
corresponding to that position, i.e;; .
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Related Transforms

Discrete-Time Fourier Transform (DTFT): For signals of infinite
length the spectrum becomes continuouswvoa (0, 2x]. The trans-
form and its inverse are given by:

Fourier Series: For (periodic) continuous signals on a finite interval
(0, 1), the transform becomes an infinite Fourier series:

) = [ swear o sw) = Y s

for w, = 27k.

Amplitude and Phase Spectra: Fourier transformg (w) = F[f(z)]

are complex-valued in general. Accordingly, as is commadh som-
plex numbers;, it is often convenient to express them in terms of
magnitude and phase, as ia’®. It is therefore common to factor
Fourier spectra into amplitude and phase spectra, that is,

plw) = [FIf@)]] , ¢lw) = arg(F|f(z)])
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Discrete-Time Fourier Transform (DTFT)

As length of the discrete signal grows the number of Foureffecients grows, since the number

of Fourier coefficients in the DFT is equal to the number of gl in the signal. In the limit the
sampling of frequencies betwe@nand 2w becomes dense, and the Fourier transform becomes a
continuous function of frequency.

For discrete signals of finite length we can implicitly inese the length of the signal by padding
the ends with zeros. In the limit we also obtain the disctebte Fourier transform, continuous over
the same range of unique frequecies, from Q7tpor equivalently from—m to 7.

Here, the DTFT, fof < w < 2, is given by

[w) = > I(n)e ™"

n=—oo

The inverse DTFT, with which we reconstruct the signal, is
1 T )
I(n) = — I(w)e™“"dw
2 Jo

One can show that, when we take a signal and pad it with zero® aofinity to obtain the DTFT,
the DFT of the unpadded signal is simply a sampled versionidi D

Uses:
e For an impulse response, the DTFT tells us how the filter behaxhen applied to any fre-
guency. We can then understand the filter’'s behaviour withads of arbitrary length.

e One way to compute an approximation to the DTFT is to add nmmws to the DFT matrix, at
additional frequencies. Thatis, there is no reason to Hgytad with zeros; rather, we simply
construct a non-square transform matrix.

e One can also find analytic solutions. E.g.,Aét) = 1(1,2,1). Then,

ASQe.

I(w) = > h(n)e™™ = > h(n)e ™" =

n=—00 n=-—1

(e“+14e™) = %(1 + cos(w))
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Fourier Series

For continuous signals there are corresponding Fouriestoams. The main case of interest in
practice concerns the transforms of continuous signalswgéfiength (such as images). Suppose
s(t) is a bounded, complex-valued signal forc [0, 1]. Thens(¢) can be represented as a sum of
basis functions:

oo

S(l’) —almost everywhere Z akbk(l’) (Fourier Series)

k=—o00

In particular, the Fourier basis is given by

be(z) = ™ = cos(2nkx) + isin(2rkx), k € Z.

Like the discrete case, the basis functions in the Fourrgesbave several desirable properties:

e Orthogonality:

(be(2), b)) = / by ()b () dx

1 1
_ / e—z27rk:vez27rlmdx — / esz(k—l)mdx
0 0

= Op,-

e Periodicity:
bi(t) = bp(t + 1).

The signaly "> a,bi(z) is periodically extended far beyond[0, 1].
e Shift Invariance:
bk(l' + C) = )\(C)bk(l'),

with \(c) = e?mhe,

Fourier Transform and Its Inverse (i.e., the Fourier Serie:

o0

S(k) = (b(x), s(x)) = /O bi(@)s(@)de (@) Zqe Y Sk)bi(x)

k=—00
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2D Fourier Transforms

In 2D, for signalsh(n,m) with N columns andV/ rows, the idea is
exactly the same:

X N—-1M-1
hk,l) = Y ) e tam pin m)
n=0 m=0
1 N—-1M-1 A
h(n,m) = — ellwrntwim) by (g 1)
NM k=0 [1=0

Often it is convenient to express frequency in vector notatvith

]Z = (]{7, l)t, n= (n,m)t, Wy = (wk,wl)t and J'n = Wrn + wrm.

2D Fourier Basis Functions: Sinusoidal waveforms of different
wavelengths (scales) and orientations. Sinusoid&Von)M images
with 2D frequencydy; = (wg, w;) = 2m(k/N, [/M) are given by:

el (@) = giwin givim cos(d'T) + i sin('7)

Separability: If h(77) is separable, e.gh(n,m) = f(n) g(m), then,
because complex exponentials are also separable, so it
spectrump(k, 1) = f(k) g(0).
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2D Fourier Basis Functions

Grating for (k,l) = (1,-3) Grating for (k,l) = (7,1)
Real Imag Real
mA

Zero-crossings
of sin(win—+w;m)

N
S ~
S N
. N .
N ~
~ p> ~
N
N . ~
N
~ ~ S
N AN N AN
S ~ S
N ~ N
N N N N
S . N N
. ~ S .
S ~ S N
N ~ \ S >
~ . ' S g
N
N
N ~ AN
N . \
N N
— AN N N
—_ . N ~ ~
s N
~ ~
N
k :
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Properties of the Fourier Transform

Some key properties of the Fourier transforfty)) = F[f(X)].

Symmetries:

Fors(z) € R, the Fourier transformis symmetric, i.8(w) = §*(—w).
For s(x) = s(—x) the transform is real-valued, i.&(w) € R.
Fors(z) = —s(—x) the transform is imaginary, i.e.s(w) € R.

Shift Property:

A~

FlfR=%)] = exp(—id'%) f(&) (5)

The amplitude spectrum is invariant to translation. Thesphepec-
trum is not. In particular, note tha[d(X — X)] = exp(—id'Xy).
Proof: substitution and change of variables.

Differentiation:

n
al’j

. . LW . . 8sin(wx) .
For intuition, remember thdt— = i we'“* and=5 =" = w cos(wz).

Linear Scaling: Scaling the signal domain causes scaling of the
Fourier domain; i.e., givene R, Fls(az)] = 1s(w/a).

Parseval’'s Theorem: Sum of squared Fourier coefficients is a con-
stant multiple of the sum of squared signal values.
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Convolution Theorem

The Fourier transform of the convolution of two signals isi&qgto
the product of their Fourier transforms:

Flf =gl = FIf] Flg] = flw)jw). (7)

Proof in the discrete 1D case:

Flf+g] = Zf*ge = 22 fmgln—mye
— Z f(m) Zg(n —m)e "
_ Z f(m) g(w)e ™™ (shift property)

= g(w) flw).
Remarks:
e This theorem means that one can apply filters efficiently & th
Fourier domain, with multiplication instead of convolutio

e Fourier spectra help characterize how different filtersavehby
expressing both the impulse response and the signal in tivéefFo
domain (e.g, with the DTFT). The filter's amplitude spectrum
tells us how each signal frequency will be attentuated. The fi
ter's phase spectrum tells us how each sinusoidal signabcem
nent will be phase shifted in the response.

e Convolution theorem also helps prove properties. E.g.qrov

1, oh Jdg
835<h*g) 0m*g h*ax
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Common Filters and their Spectra

B

IL‘f' ‘

Top Row: Image of Al and dow-pass(blurred) version of it. The
low-pass kernel was separable, composed of 5-tap 1D impaise
sponseq%(l, 4,6,4,1) in thex andy directions.

Bottom Row: From left to right are the amplitude spectrum of Al,
the amplitude spectrum of the impulse response, and thauprad
the two amplitude spectra, which is the amplitude spectrairin®
blurred version of Al. (Brightness in the left and right ineesgs pro-
portional to log amplitude.)
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ldeal Low-Pass Spectrum

The ideal low-pass filter is one that attenuates to zero edjuencies higher than a certain cut-off
frequency,w,. For low frequencies, below the cut-off frequency, the alggtomponents remain
unchanged. This filter is central to signal reconstructafrbbth discrete and continuous signals).

Let |H(w)| = 1 for |w| < ws, and O otherwise.

A

h(w)

The impulse response can be shown to be given by:

sin(mn/ny)
™m/ns

h(n) =

wheren, = 7 /w;.

Note:

e broad support of impulse response (not localized in space)

e causes ringing in the response to many simple image featuotsas lines and step edges.
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Common Filters and their Spectra (cont)

From left to right is the original Al, digh-passfiltered version of
Al, and the amplitude spectrum of the filter. This impulsepmase
is defined by (n) — h(n, m) whereh[n, m] is the separable blurring
kernel used in the previous figure.

From left to right is the original Al, &and-passfiltered version of
Al, and the amplitude spectrum of the filter. This impulsemesse is
defined by the difference of two low-pass filters.
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Common Filters and their Spectra (cont)

Top Row: Convolution of Al with a horizontal derivative filter, along
with the filter’s Fourier spectrum. The 2D separable filtexamposed
of a vertical smoothing filter (i.e%, (1,2,1)) and a first-order central
difference (i.e.% (—1,0, 1)) horizontally.

Bottom Row: Convolution of Al with a vertical derivative filter, and
the filter's Fourier spectrum. The filter is composed of a fmmial
smoothing filter and a vertical first-order central diffezen
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Quadrature-Pair Filters

Real-valued band-pass filters, like derivative filters,enhaymmetric amplitude spectra. Another
important class of filters is complex-valued with non-zeoufer power only in one half-plane of

the Fourier domain.

The real and imaginary parts of such filtefsc) € C have symmetric amplitude spectra, but they
are out of phase so that one half of the Fourier spectrum isetlad when they are combined as
a complex-valued filter. The real and imaginary parts arerofialled a quadrature pair (or Hilbert

transform pairs).

Re[f(x)]ﬂ\ Im[f(2)] V\
BERVARVARNE Y I

real part imaginary part

One of their useful properties is that one can easily sepénatresponse amplitude from the phase of
the response (effectively separating structure from aog). That is, because the filter is complex-

valued, its response will also be complex valued. Hencedbganse can be written:

r(z) = a(z) @

For filters with somewhat narrow bandwidths (say less th&nottaves), the amplitude is slowly
varying and the phase is typically linear. The derivativplo&se with respect to positiotp/dx is

often called the instantaneous frequency of the signal.
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Discrete Cosine Transform

Another variation is the Discrete Cosine Transform. Herstgad of assuming the signal is periodic
with period N, it is extended by successively reversing thaa from left to right so that it has the
period2/N. This avoids the large step discontinuities at the bordeingsh can dominate the Fourier
transform.

Here the signal is twice as long, but it is flip symmetric amtime middle. As a consequence:

e The anti-symmetric sine terms cannot contribute, and dmydosine terms remain in the
Fourier transform.

e The matrix for the transform is orthogonal and can be evalliatO(N log N) time.

e The advantage of using the DCT is that the artifacts due tdbtirders of the image are
decreased.

e JPEG compression uses the DCT within small image regions.
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Example: Discrete Cosine Transform

The standard Fourier transform provides an amplitude sp@atonsistent with the periodic signal:

Note the significant response for horizontal and verticaliggs, which are artifacts due to the image
borders.

The DCT transform tiles the image in a doubly periodic fashihich helps to reduce the large
steps around the borders.

The DCT requires only one quadrant in this response. (We siidaur for comparison purposes.)
Note the responses for horizontal and vertical gratinge theen significantly reduced.
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Introduction to Sampling and Aliasing
Terminology:

e sampling — creating a discrete signal from a continuousasign
e down-sampling (decimation) — subsampling a discrete $igha
e up-sampling — placing zeros between existing samples

e aliasing — corruption of signal information caused by sampl

s(x) A

- \ AT TN continuous
\\ < N signal

\ 4

>

s(n)

sampled
signal

\4

>

g(n) 1
. down-sampling

, s {20

\4

7>

oYY

NN up-sampling

s —2frm

A 4
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Under-Sampling and Aliasing

Consider sampling the continuous distribution of irrad&falling on
the image plane, or resampling an existing image..

N
-e s

.......

Undersampled
sensors

If we sampled only at the sparse array of “undersampled sg&hso
(denoted byo), we could not approximately reconstruct the signal.
The signal is undersampled.
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Down-Sampling

Let f(n) be a signal of lengtiV.

Assume we wish to reduce the number of samples by facter, of
from N to M = N/ng, whereng is a divisor of V.

Let the new signal be(m).

We first multiply the original signalf(n) with a sampling (comb)
function that is only non-zero every" sample, i.e.:

where
(N/ns

Z 5n—mns

The sampling function zeros out all but the valuesfolve wish to
keep. It can be depicted by

n

ng = 4

n
Finally, the down-sampled signalm) is given by

g(m) = fs(m ns)
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Down-Sampling in the Fourier Domain

One can show that the Fourier transform of the sampling fanct
(i.,e.,the DTFT asV — o) is:

$w) 1”5315 o
W) =— w—m— | .
ns ng

This transform is defined uniquely on an interval of lengthbut we
can choose which interval. Here we center the spectrum atriie:

R

—T 0 T W

Because multiplication in space is convolution in the Feudomain,
the Fourier transform of is given by

ns_l

i) = 8) = f) = - 3 F (w-mT)

m=0
So, down-sampling introduces replicasﬁ(tu) spaced evergm/n
(solid curves depict spectra & the dotted curves depicicayp).

Finally, one can show that by removing the zerosfitw) we are

simply contracting the signal, i.eg(m) = fs(mns), So:

ng—1
) = Flwfn) = f(ﬁ _ m2—”)

N N
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Up-Sampling

Up-Sampling refers to the introduction of zeros betweerethsting
samples of a signaj(n) to form a new signaf (m). Typically this is
followed by some form of smoothing in order that the resgisignal
be a reasonable approximationgi@:) (but at a higher resolution).

The introduction of.; — 1 zeros between every two samples;0f)

can be expressed as

One can then show that the spectruny (i) is given by

f(W) — @(wns)
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Nyquist Sampling Theorem
Theorem: Let f(x) be a band-limited signal such that
flw) =0 for |w| > wy

for somewy. Thenf(x) is uniquely determined by its samplgsn) =
f(mmns) when

: A
— > 2wy or equivalently n, < 70

where)\;, = 27 /wy. In words, the distance between samples must be
smaller than half a wavelength of the highest frequencyearsignal.

f(w) original signal
spectrum

iy 0 T
g(w) down-sampled
spectrum for
. . ; : ! ; ; : , > ns = 4
- 0 w 47T w
f(w) N § 2w up-sampled and
| N low-pass filtered
R A

Here the replicas can be isolated by an ideal low-pass fitierdotted
pass-band), so the original signal can be perfectly reocactsd.

Corollary: Let f(z) be a single-sided band-pass signal with band-

width 2wy. Thenf(z) is uniquely determined if sampled at a rate such

A
thatn, < 3.
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Aliasing

Aliasing occurs when replicas overlap:

g(w)

v 0 x| dr w
Consider a perspective image of an infinite checkerboara Sidp
nal is dominated by high frequencies in the image near thedor
Properly designed cameras blur the signal before sampisiqgg

¢ the point spread function due to diffraction,

e imperfect focus,

e averaging the signal over each CCD element.
These operations attenuate high frequency componentsisit

nal. Without this (physical) preprocessing, the sampledgencan
be severely aliased (corrupted):
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Sampling Continuous Signals
Consider the simple 1D signa(t), for ¢ € [0, 1].

Sample Points:
tj=j/N, forje{0,...,N —1}.

Discrete Sampling:

5 = (s(to),s(ty),...,s(tn_1))" = Dys(t)
b = (bto),b(t1), ..., b(tn-1))" = Dyb(t). (8)
Now, from the Fourier series foi(t), we find
§ = Dys(t)=Dx Y awb(t)= > a,Dyb(t)
= > anb. (9)

n=—oo

Aliasing:
e Noteb, € CV, so at mostV of these vectors can be linearly independent.
e Any maximal linearly independent seﬁ_fn} can serve as a basis.
e Often choose: € (—N/2, N/2] for the basis.

e The other sampled basis functions, $ayfor |m| > | N/2|, must be linear combinations of

the chosen basig, } 1 /_2{( N_1)2)- These vectors,, are said to baliased
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Details of Aliasing

Fourier Analysis of Sampling:

by = Db (t) == (ba(to), bu(tr), - -, bultn—1))"
Note that

balty) = €2 = 2Ani/N _ imn/N);

= ¥ = (z,), forz, =e“n. (10)
Herew, = 27n/N is called therequencyof b, (t). Also,
Zn = zpel™r (sincee®™ = 1)

€i27r(n+kN)/N = ZpikN- (11)

Therefore, for all integers andk, b, = b,y . The Fourier series becomes

[N/2] 00 . |N/2] B
i= > [Z amNI b, = by
n=—|(N-1)/2] Lk=—oc0 n=—[(N-1)/2]
~FT@,s)]
FT(s(t)

|
|
|
|
T
1
|
|
|
|
|
1

A

—2N -N -N2 0 N2 N 2N n

Aliasing destroysinformation about the original continuous signal whenexere are significant
nonzero coefficientsy,, for any frequency larger than tidyquist frequencyy,, = = (i.e. after
sampling we only have accessapnota,,).
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Dimensionality

A guiding principal throughout signal transforms, samgJiand alias-
ing is the underlying dimension of the signal, that is, thenber
of linearly independent degrees of freedom (dof). This sielarify
many issues that might otherwise appear mysterious.

e Real-valued signals witlv samples havé/ dof. We need a basis
of dimensionN to represent them uniquely.

e Why did the DFT of a signal of lengthv use NV sinusoids? Be-
causeN sinusoids are linearly independent, providing a minimal
spanning set for signals of length. We need no more than.

e But wait: Fourier coefficients are complex-valued, and ¢fane
have2N dofs. This matches the dof needed for complex sig-
nals of lengthV but not real-valued signals. For real signals the
Fourier spectra are symmetric, so we keep half of the coeffisi

¢ When we down-sample a signal by a factor of two we are moving
to a basis withV/2 dimensions. The Nyquist theorem says that
the original signal should lie in aiV/2 dimensional space before
you down-sample. Otherwise information is corrupted (8ig-
nal structure in multiple dimensions of the origin&lD space
appear the same in thé/2-D space).

e The Nyquist theorem is not primarily about highest frequesc
and bandwidth. The issue is really one of having a model fer th
signal; that is, how many non-zero frequency componentgare
the signal (i.e., the dofs), and which frequencies are they.
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Further Readings

Texts on Image Processing and Computer Vision
Castleman, K.R Digital Image Processing Prentice Hall, 1995
Gonzalez, R.C. and Wintz, ®jgital Image Processing 2nd ed.Addison-Wesley, 1987
Rosenfeld, A. and Kak, ADigital Picture Processing 2nd ed.Academic Press, 1982
Wolberg, G. Digital Image Warping, IEEE Computer Society Press, 1990

Wandell, B.A.,Foundations of Vision, Sinauer Press, 1995
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