
Linear Filters, Sampling, & Fourier Analysis

Goal: Mathematical foundations for digital image analysis, repre-

sentation and transformation.

Outline:

• Sampling Continuous Signals

• Linear Filters and Convolution

• Fourier Analysis

• Sampling and Aliasing

Suggested Readings: ”Introduction to Fourier Analysis” by Fleet

and Jepson (2005), Chapters 1 and 7 of Forsyth and Ponce.

Matlab Tutorials: linSysTutorial.m, samplingTutorial.m, upsam-

ple.m and imageTutorial.m.
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Sampling

Approximate continuous signals with a discrete sequence ofsamples

from the continuous signal, taken at regularly spaced intervals.

Useful approximations require that the coninuous signal besufficiently

smooth relative to the sampling interval so that one can approximately

reconstruct the continuous signal (we’ll discuss the Fourier sampling

theorem and interpolation in greater detail later).
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Notation: We will often express a 1D discrete signal,s(n), for n =

0...N−1, as real-valued vector,~s ∈ RN .

Initially we’ll work with 1D signals; think of a column of pixels from

an image. We’ll generalize to 2D after the basics are introduced.
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Introduction to Linear Filters

A filter transforms one signal into another, often to enhancecertain

properties (e.g., edges), remove noise, or compute signal statistics.

A transformationT , is linear iff, for inputssi(n), responsesri(n) =

T [si(n)], and scalarsa andb, T satisfiessuperposition:

T [as1(n) + bs2(n)] = a T [s1(n)] + b T [s2(n)] ∀a, b ∈ C

In 1D, a linear filter can be represented by a matrix,A, and its re-

sponse~r to input~s is given by matrix multiplication:

~r = A~s

Themth element of~r is the inner product of themth row of A and~s.
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Shift Invariance

Often we want to apply the same operation to every point in an image

(e.g., smoothing). IfT is shift-invariant, then∀m ∈ I

r(n) = T [s(n)] iff r(n−m) = T [s(n−m)]

Linear, shift-invariant filters can be expressed as Toeplitz matrices

(i.e., constant along diagonals):

• so each row is equal to the previous row, but shifted right by one,

and each column is a shifted version of every other column.

• E.g.: Let’s smooth a signal by computing a weighted average of

each input sample and its two neighbours with weights 0.25, 0.5,

and 0.25 (i.e., with a sliding window). The corresponding matrix

has the form:

A =
1

4



















. . . 0 1 2 1 0 . . .

. . . 0 1 2 1 0 . . .

. . . 0 1 2 1 0 . . .



















Local filterscompute responses using only small neighborhoods of

pixels from the input, like the smoothing filter. For 1D signals this

produces a banded Toeplitz matrix. The width of nonzero entries in a

row is called the filter’ssupport.
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Boundary Conditions

With finite length signals we need to handle boundaries carefully.

1. Shift-invariance is preserved if we assumeperiodic signals and

cyclical shifts. For local filters this introduces nonzero entries in

the upper-right and lower-left corners of the matrix. E.g.:
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2. We could instead assume that the input is always zero beyond its

endpoints. In practice, the number of zeros we use topad the

input depends on the filter’s support width. If the support isM

samples, then we needM−1 zeros on each end.

The response is then longer than the input byM−1 samples, so

people often just truncate the response. The transform is then:
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But then this is no longer shift-invariant.

3. Often it is more desirable to assume a constant signal beyond the

boundary, i.e., pad the ends by repeating the two end samples.
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Impulse Response

One can also characterize a linear, shift-invariant operator with its

impulse response, i.e., the response to an impulse,δ:

• Kronecker delta function (discrete)

δ(n) =

{

1 n = 0

0 otherwise

• Dirac delta function (continuous)

δ(x) = 0 ∀x 6= 0, and
∫

δ(x)f(x) dx = f(0)

for sufficiently smoothf(x)

In the discrete case, multiplyingA by the delta functionδ(n) simply

extracts the first column fromA:

~h = A ~e1 , ~e1 = [1, 0, . . . , 0]t

h(n) is called theimpulse response. (If we pad the input boundaries

with zeros and truncate the result, then the origin should benear the

middle of the vector so we don’t get a truncated impulse response!)

• Applying A to a shifted impulse signal,δ(n − m), gives us the

mth column ofA, ie., a shifted version of the impulse response.

• Therefore, from the impulse response we can construct the ma-

trix; i.e., it contains all the information needed to define the filter.
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Convolution

The conventional way to express a linear shift-invariant filter mathe-

matically is with the convolution operator. Let the scalarwp denote

the signal value at positionp, i.e.,wp = s(p). Then we writes(n) as

s(n) =
∞
∑

p=−∞
wp δ(n− p)

For a linear, shift-invariant operatorT it follows that

T [s(n)] = T

[ ∞
∑

p=−∞
wp δ(n− p)

]

=
∞
∑

p=−∞
wp T [δ(n− p)]

=

∞
∑

p=−∞
wp h(n− p)

whereh is the impulse response. Thus the responser(n) = T [s(n)] is

just a weighted sum of shifted impulse responses, that is:

r(n) =

∞
∑

p=−∞
s(p)h(n− p) (1)

Eqn (1) is called convolution, and is expressed as a binary operator

(often with∗):
s ∗ h ≡

∞
∑

p=−∞
s(p)h(n− p) .

For continuous signals,h(x) ands(x), convolution is written as

s ∗ h =

∫ ∞

−∞
s(ξ)h(x− ξ) dξ
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Properties of Convolution

Commutativity: s ∗ h = h ∗ s
Not all matrix operations commute, but this does.

Associativity: (h1 ∗ h2) ∗ h3 = h1 ∗ (h2 ∗ h3)

This is true of all matrix multiplication.

Distributivity over Addition: (h1 + h2) ∗ h3 = h1 ∗ h3 + h2 ∗ h3

This is true of all matrix multiplication.

Local Support: Often the support of the filter is limited. Ifh(m) is

only nonzero for−M/2 ≤ m ≤ M/2, then we rewrite Eqn (1) as

s ∗ h =

M/2
∑

p=−M/2

s(n + p)h(−p) .

In words, for each signal position,n, center the reflected impulse

response at positionn, and then take its inner product with the image.

This is a better way to implement the filter than matrix multiplication!

Inverse: One way to find the inverse of a convolution operator is to

create the corresponding Toeplitz matrix and invert it. Onecan show

that the inverse of a cyclic Toepliz matrix is also cyclic andToepliz.

In other words, the inverse of a discrete linear shift-invariant operator,

if it exists, is also linear and shift-invariant. A better way to find the

inverse uses the Fourier transform.
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2D Image Convolution

In 2D the convolution equation is given by

r(n,m) =

∞
∑

p=−∞

∞
∑

q=−∞
s(p, q)h(n− p,m− q)

Computational Expense: In general, 2D convolution requires

O(N2M 2) multiplications and additions whereN2 is the number of

image pixels, andM 2 is the 2D support of the impulse response.

Separability: If a 2D impulse response can be expressed ash(x, y) =

h1(x)h2(y) for someh1(x) and someh2(y), thenh is said to be sepa-

rable. In the discrete case, the impulse response is separable if it can

be expressed as an outer product:

][ h[n,m] ( (h [n]1

( (h [m]2

=

With separability, 2D convolution can be expressed as a cascade of

1D convolutions, first along the rows, and then along the columns.

Because convolution is commutative you could convolve along the

columns and then the rows.

• Each 1D convolution, and hence the separable 2D filter, isO(N2M).

This is important if the filter support is more than 4 or 5 pixels.
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2D Image Convolution

Examples:

• Them ×m constant matrix (a crude 2d averaging operator) can

be expressed as an outer product of two 1d constant vectors. (But

this is not isotropic.)

• In continuous terms, the Gaussian is the only 2d isotropic func-

tion that can be decomposed into a separable product of two 1d

Gaussians:

1

2πσ2
e−(x2+y2)/2σ2 =

1√
2πσ

e−x2/2σ2 1√
2πσ

e−y2/2σ2

• Discrete approximations to Gaussians are often given by by bi-

nomial coefficients, (e.g, (1, 4, 6, 4, 1)/16)).
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Example: Smoothing Filters

Al and a blurred version of Al are shown. The impulse responsewas
separable, composed of the same horizontal and vertical 5-tap 1D im-
pulse response, that is,1

16
(1, 4, 6, 4, 1).

This shows Al and the difference between Al and the blurred version
of Al. The image is only non-zero where the blurred version isdiffer-
ent from the original, i.e., where there are significant local intensity
variations. The impulse response for this filter isδ(n,m) − h(n,m)

whereh(n,m) is the separable blurring filter used above.
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Example: Derivative Filters

Derivative filters are common in image processing. Here we use crude
separable approximations to horizontal and vertical derivatives. They
composed of a smoothing filter in one direction (i.e.,1

4
(1, 2, 1)) and a

first-order central difference (i.e.,1
2
(−1, 0, 1)) in the other.

Sum of squared derivative responses (the squared magnitudeof the
image gradient at each pixel). When clipped, this gives a rough idea
of where edges might be found.
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Example: Down-Sampling and Up-Sampling

Down-sampling(or decimation) is the process of collapsing a signal

by removing everynth sample.

Up-samplingrefers to the expansion of a signal by adding new sam-

ples to make it longer. One introducesn zeros in between every pair

of adjacent samples in the original signal.

Both of these operators are linear.

Example: down-sampling a signal~s by a factor of 2 to create~s2.

~s2 =







1 0 0 0 0 0 . . . 0

0 0 1 0 0 0 . . . 0

0 0 0 0 1 0 . . . 0

...







~s

Example: up-sampling a signal~s by a factor of 2 to create~s1.

~s1 =







1 0 0 0 0 0 . . . 0

0 0 0 0 0 0 . . . 0

0 1 0 0 0 0 . . . 0

...







~s

Up-sampling is often a precursor to smoothing for signal interpola-

tion.

2503: Linear Filters, Sampling, & Fourier Analysis Page: 13



Introduction to Fourier Analysis

Overview

• Fourier transform of an signal is a decomposition of the signal

into a weighted sum of sinusoids.

• We’ll concentrate on Fourier transforms for discrete signals

(see detailed notes for continuous transforms).

Discrete Sinusoids

• For now, consider sinusoids that are periodic onN samples.

I(n) = A sin(ωn + φ)

– A is the amplitude
– φ is the phase offset
– ω is frequency, with wavelengthλ = 2π/ω.

• Two results:

1. Frequencyω is only unique between 0 and2π.

Proof: becausen is an integersin((ω + 2π)n) = sin(ωn).

2. Assuming periodic signals of lengthN , then there are onlyN

distinct frequencies:ωk ≡ 2πk/N for 0 ≤ k < N .

• Euler’s formula:eiωn = cos(ωn) + i sin(ωn) wherei2 = −1.

Conversely, one can writecos(ωn) = 1
2

[

eiωn + e−iωn
]
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Eigenfunctions of Convolution

Convolution of a sinusoid of frequencyωk, ei ωkn, and filterh(n) is:

r(n) =
N−1
∑

m=0

ei ωk(n−m)h(m) = ei ωk n
N−1
∑

m=0

e−i ωk mh(m)

This response is just a scaled version of the original sinusoid, i.e.,

r(n) = ei ωk n Hk

where the scalar,Hk, is the inner product ofh(n) and a sinusoid

fk(n) = e−i ωk n. In vector notation,Hk = ~fk
t~h .

We can collect the complex-valued scalars associated with sinusoids

at allN frequencies into a vector,~H = [H0, ..., HN−1]t, and then:

~H = F ~h , where F =









~f 0
t

...
~fN−1

t









(2)

F is a unitary matrix (up to a scalar); its inverse is given by

F
−1 =

1

N
F

∗t =
1

N

[

~f 0
∗
, ..., ~fN−1

∗]

whereF∗t is the conjugate transpose ofF.

• To prove this, show that(1/N)FF∗t = Identity(N). Use the

fact that sinusoidal signals of different frequenciesωk are orthog-

onal, while the product of a complex sinusoid with its complex

conjugate is simplyeiωne−iωn = ei0 = 1.

• one can also show thatF is symmetric.
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Discrete Fourier Transform

If we multiple both sides of the forward equation,

~H = F ~h , or equivalently, H(k) =

N−1
∑

n=0

e−i ωk nh(n) (3)

byF−1 we then obtain:

~h =
1

N
F

∗t ~H , or equivalently, h(n) =
1

N

N−1
∑

k=0

ei ωk nH(k) (4)

So what have we shown?

1. Eqn. (4) expressesh as a sum ofN sinusoids. No more thanN

are required. The weights are called Fourier coefficients, and they

are obtained by multiplying the signal~h with the matrixF.

2. Eqn. (3) is the discrete Fourier transform (DFT) equation.

F is the DFT matrix, andH(k) is called the DFT ofh(n).

3. Eqn. (4) is called the inverse DFT equation.

4. Although we derived the DFT for an impulse responseh(n), the

derivation can be applied to any discrete signals(n) of lengthN .

Fast Fourier Transform: Forward and inverse DFT can be com-

puted inO(N logN). (Don’t use matrix multiplication withF)
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DFT Matrices

k

0

2

4

n

0 2 4

Left: This shows the real part of the DFT matrix,cos(2πnk/16), with
frequenciesωk = 2πk/16 for 0 ≤ k ≤ 15 from top to bottom. The
spatial variablen increases from 0 to 15. The first row and column
are filled with ones.

Right: This depicts the imaginary part of the DFT matrix,− sin(2πnk/16),
with the same dependence onk andn. In this case, the first row and
column are filled with zeros.
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DFT Example

0 5 10 15 20 25 30

0

1

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

0 5 10 15 20 25 30
−0.5

0

0.5

A Gaussian signal is shown on top with 32 samples. The first 4
terms of its Fourier decomposition are shown below, with frequen-
cies 2πk/N for 0 ≤ k ≤ 3. The amplitudes of these first 4 Fourier
coefficients are 0.3333, 0.47, 0.166, and 0.029.
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DFT Examples

E.g. 1: DFT of s(n) = A cos(ω3n+ φ) for some real-valuedA andφ.

• first note thats(n) = 1
2

(

ei(ω3 n+φ) + e−i(ω3 n+φ)
)

• because frequencies are unique within2π, also note thatωN−3 = −ω3.

• Finally, rows of DFT matrix are orthogonal, and therefore the matrix-vector product ofF with

s(n) will have nonzero values at positionsk = 3 andk = N − 3.

• what will these values be? (Check your answer with linSysTutorial.m)

E.g. 2: DFT of δ(n− n0).

• first note thatF is symmetric, so rows as well as columns ofF are sinusoids, i.e.,e−iωkn.

• from this it’s clear that the product ofF with an impulse at positionn0 is simply the column

corresponding to that position, i.e.,e−iωkn0 .
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Related Transforms

Discrete-Time Fourier Transform (DTFT): For signals of infinite

length the spectrum becomes continuous onω ∈ (0, 2π]. The trans-

form and its inverse are given by:

ŝ(ω) =
∞
∑

n=−∞
s(n) e−iωn , s(n) =

1

2π

∫ 2π

0

ŝ(ω) eiωndω

Fourier Series: For (periodic) continuous signals on a finite interval

(0, 1), the transform becomes an infinite Fourier series:

ŝ(k) =

∫ 1

0

s(x) e−iωkxdx , s(x) =

∞
∑

k=−∞
ŝ(k) eiωkx

for ωk = 2πk.

Amplitude and Phase Spectra: Fourier transformŝf (ω) = F [f(x)]

are complex-valued in general. Accordingly, as is common with com-

plex numbersz, it is often convenient to express them in terms of

magnitude and phase, as inρeiφ. It is therefore common to factor

Fourier spectra into amplitude and phase spectra, that is,

ρ(ω) = | F [f(x)] | , φ(ω) = arg(F [f(x)])
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Discrete-Time Fourier Transform (DTFT)

As length of the discrete signal grows the number of Fourier coefficients grows, since the number

of Fourier coefficients in the DFT is equal to the number of samples in the signal. In the limit the

sampling of frequencies between0 and2π becomes dense, and the Fourier transform becomes a

continuous function of frequency.

For discrete signals of finite length we can implicitly increase the length of the signal by padding

the ends with zeros. In the limit we also obtain the discrete-time Fourier transform, continuous over

the same range of unique frequecies, from 0 to2π, or equivalently from−π to π.

Here, the DTFT, for0 ≤ ω < 2π, is given by

Î(ω) =
∞
∑

n=−∞

I(n) e−iωn

The inverse DTFT, with which we reconstruct the signal, is

I(n) =
1

2π

∫ 2π

0

Î(ω)eiωndω

One can show that, when we take a signal and pad it with zeros out to infinity to obtain the DTFT,

the DFT of the unpadded signal is simply a sampled version of DTFT.

Uses:

• For an impulse response, the DTFT tells us how the filter behaves when applied to any fre-

quency. We can then understand the filter’s behaviour with signals of arbitrary length.

• One way to compute an approximation to the DTFT is to add more rows to the DFT matrix, at

additional frequencies. That is, there is no reason to acutally pad with zeros; rather, we simply

construct a non-square transform matrix.

• One can also find analytic solutions. E.g., leth(n) = 1
4
(1, 2, 1). Then,

Î(ω) =

∞
∑

n=−∞

h(n) e−iωn =

1
∑

n=−1

h(n) e−iωn =
1

4

(

eiω + 1 + e−iω
)

=
1

2
(1 + cos(ω))
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Fourier Series

For continuous signals there are corresponding Fourier transforms. The main case of interest in

practice concerns the transforms of continuous signals of finite length (such as images). Suppose

s(t) is a bounded, complex-valued signal forx ∈ [0, 1]. Thens(t) can be represented as a sum of

basis functions:

s(x) =almost everywhere

∞
∑

k=−∞

akbk(x). (Fourier Series)

In particular, the Fourier basis is given by

bk(x) ≡ ei2πkx = cos(2πkx) + i sin(2πkx), k ∈ Z.

Like the discrete case, the basis functions in the Fourier series have several desirable properties:

• Orthogonality:

〈bk(x), bl(x)〉 ≡
∫ 1

0

b∗k(x)bl(x)dx

=

∫ 1

0

e−i2πkxei2πlxdx =

∫ 1

0

ei2π(k−l)xdx

= δk,l .

• Periodicity:

bk(t) = bk(t+ 1).

The signal
∑∞

k=−∞ akbk(x) is periodically extended forx beyond[0, 1].

• Shift Invariance:

bk(x+ c) = λ(c)bk(x),

with λ(c) = ei2πkc.

Fourier Transform and Its Inverse (i.e., the Fourier Series):

S(k) = 〈bk(x), s(x)〉 ≡
∫ 1

0

b∗k(x)s(x)dx , s(x) =a.e.

∞
∑

k=−∞

S(k) bk(x)
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2D Fourier Transforms

In 2D, for signalsh(n,m) with N columns andM rows, the idea is

exactly the same:

ĥ(k, l) =
N−1
∑

n=0

M−1
∑

m=0

e−i(ωk n+ωlm) h(n,m)

h(n,m) =
1

NM

N−1
∑

k=0

M−1
∑

l=0

ei(ωk n+ωlm) ĥ(k, l)

Often it is convenient to express frequency in vector notation with
~k = (k, l)t, ~n = (n,m)t, ~ωkl = (ωk, ωl)

t and ~ωt~n = ωk n + ωlm.

2D Fourier Basis Functions: Sinusoidal waveforms of different

wavelengths (scales) and orientations. Sinusoids onN×M images

with 2D frequency~ωkl = (ωk, ωl) = 2π(k/N, l/M) are given by:

ei (~ω
t~n) = ei ωkn ei ωlm = cos(~ωt~n) + i sin(~ωt~n)

Separability: If h(~n) is separable, e.g.,h(n,m) = f(n) g(m), then,

because complex exponentials are also separable, so is the Fourier

spectrum,̂h(k, l) = f̂(k) ĝ(l).
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2D Fourier Basis Functions

ImagReal

Grating for (k,l) = (1,-3)

Real

Grating for (k,l) = (7,1)

Blocks image and its amplitude spectrum
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Properties of the Fourier Transform

Some key properties of the Fourier transform,f̂(~ω) = F [f(~x)].

Symmetries:

Fors(x) ∈ R, the Fourier transform is symmetric, i.e.,ŝ(ω) = ŝ∗(−ω).

Fors(x) = s(−x) the transform is real-valued, i.e.,ŝ(ω) ∈ R.

Fors(x) = −s(−x) the transform is imaginary, i.e.,i ŝ(ω) ∈ R.

Shift Property:

F [f(~x− ~x0)] = exp(−i ~ωt~x0) f̂(~ω) (5)

The amplitude spectrum is invariant to translation. The phase spec-

trum is not. In particular, note thatF [δ(~x− ~x0)] = exp(−i ~ωt~x0).

Proof: substitution and change of variables.

Differentiation:

F
[

∂nf(~x)

∂xj
n

]

= (i ωj)
n f̂(~ω) (6)

For intuition, remember that∂e
i ωx

∂x
= i ωei ωx and∂ sin(ωx)

∂x
= ω cos(ωx).

Linear Scaling: Scaling the signal domain causes scaling of the

Fourier domain; i.e., givena∈R , F [s(ax)] = 1
aŝ(ω/a).

Parseval’s Theorem: Sum of squared Fourier coefficients is a con-

stant multiple of the sum of squared signal values.
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Convolution Theorem

The Fourier transform of the convolution of two signals is equal to

the product of their Fourier transforms:

F [f ∗ g] = F [f ] F [g] ≡ f̂(ω) ĝ(ω) . (7)

Proof in the discrete 1D case:

F [f ∗ g] =
∑

n

f ∗ g e−iωn =
∑

n

∑

m

f(m) g(n−m) e−iωn

=
∑

m

f(m)
∑

n

g(n−m)e−iωn

=
∑

m

f(m) ĝ(ω) e−iωm (shift property)

= ĝ(ω) f̂ (ω) .

Remarks:

• This theorem means that one can apply filters efficiently in the

Fourier domain, with multiplication instead of convolution.

• Fourier spectra help characterize how different filters behave, by

expressing both the impulse response and the signal in the Fourier

domain (e.g, with the DTFT). The filter’s amplitude spectrum

tells us how each signal frequency will be attentuated. The fil-

ter’s phase spectrum tells us how each sinusoidal signal compo-

nent will be phase shifted in the response.

• Convolution theorem also helps prove properties. E.g. prove:
∂

∂x
(h ∗ g) =

∂h

∂x
∗ g = h ∗ ∂g

∂x
2503: Linear Filters, Sampling, & Fourier Analysis Page: 26



Common Filters and their Spectra

Top Row: Image of Al and alow-pass(blurred) version of it. The
low-pass kernel was separable, composed of 5-tap 1D impulsere-
sponses1

16
(1, 4, 6, 4, 1) in thex andy directions.

Bottom Row: From left to right are the amplitude spectrum of Al,
the amplitude spectrum of the impulse response, and the product of
the two amplitude spectra, which is the amplitude spectrum of the
blurred version of Al. (Brightness in the left and right images is pro-
portional to log amplitude.)
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Ideal Low-Pass Spectrum

The ideal low-pass filter is one that attenuates to zero all frequencies higher than a certain cut-off

frequency,ωs. For low frequencies, below the cut-off frequency, the signal components remain

unchanged. This filter is central to signal reconstruction (of both discrete and continuous signals).

Let |H(ω)| = 1 for |ω| < ωs, and 0 otherwise.

-π
ω

h(ω)ˆ

πωs

n

h[n]

ns

ns =  π / ωs

The impulse response can be shown to be given by:

h(n) =
sin(πn/ns)

πn/ns

wherens = π/ωs.

Note:

• broad support of impulse response (not localized in space)

• causes ringing in the response to many simple image featuressuch as lines and step edges.
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Common Filters and their Spectra (cont)

From left to right is the original Al, ahigh-passfiltered version of
Al, and the amplitude spectrum of the filter. This impulse response
is defined byδ(n) − h(n,m) whereh[n,m] is the separable blurring
kernel used in the previous figure.

From left to right is the original Al, aband-passfiltered version of
Al, and the amplitude spectrum of the filter. This impulse response is
defined by the difference of two low-pass filters.
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Common Filters and their Spectra (cont)

Top Row: Convolution of Al with a horizontal derivative filter, along
with the filter’s Fourier spectrum. The 2D separable filter iscomposed
of a vertical smoothing filter (i.e.,1

4
(1, 2, 1)) and a first-order central

difference (i.e.,1
2
(−1, 0, 1)) horizontally.

Bottom Row: Convolution of Al with a vertical derivative filter, and
the filter’s Fourier spectrum. The filter is composed of a horizontal
smoothing filter and a vertical first-order central difference.
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Quadrature-Pair Filters

Real-valued band-pass filters, like derivative filters, have symmetric amplitude spectra. Another

important class of filters is complex-valued with non-zero Fourier power only in one half-plane of

the Fourier domain.

The real and imaginary parts of such filtersf(x) ∈ C have symmetric amplitude spectra, but they

are out of phase so that one half of the Fourier spectrum is cancelled when they are combined as

a complex-valued filter. The real and imaginary parts are often called a quadrature pair (or Hilbert

transform pairs).

real part imaginary part

One of their useful properties is that one can easily separate the response amplitude from the phase of

the response (effectively separating structure from amplitude). That is, because the filter is complex-

valued, its response will also be complex valued. Hence the response can be written:

r(x) = a(x) eiφ(x)

For filters with somewhat narrow bandwidths (say less than 1.5 octaves), the amplitude is slowly

varying and the phase is typically linear. The derivative ofphase with respect to position,dφ/dx is

often called the instantaneous frequency of the signal.
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Discrete Cosine Transform

Another variation is the Discrete Cosine Transform. Here, instead of assuming the signal is periodic

with period N, it is extended by successively reversing the signal from left to right so that it has the

period2N . This avoids the large step discontinuities at the borders,which can dominate the Fourier

transform.

0 1t 0 1

y

t

yy = s(t) y = s(t+c)

Here the signal is twice as long, but it is flip symmetric around the middle. As a consequence:

• The anti-symmetric sine terms cannot contribute, and only the cosine terms remain in the

Fourier transform.

• The matrix for the transform is orthogonal and can be evaluated inO(N logN) time.

• The advantage of using the DCT is that the artifacts due to theborders of the image are

decreased.

• JPEG compression uses the DCT within small image regions.
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Example: Discrete Cosine Transform

The standard Fourier transform provides an amplitude spectrum consistent with the periodic signal:

Note the significant response for horizontal and vertical gratings, which are artifacts due to the image

borders.

The DCT transform tiles the image in a doubly periodic fashion which helps to reduce the large

steps around the borders.

The DCT requires only one quadrant in this response. (We showall four for comparison purposes.)

Note the responses for horizontal and vertical gratings have been significantly reduced.
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Introduction to Sampling and Aliasing

Terminology:

• sampling – creating a discrete signal from a continuous signal

• down-sampling (decimation) – subsampling a discrete signal

• up-sampling – placing zeros between existing samples

• aliasing – corruption of signal information caused by sampling
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Under-Sampling and Aliasing

Consider sampling the continuous distribution of irradiance falling on

the image plane, or resampling an existing image..

Undersampled
sensors

If we sampled only at the sparse array of “undersampled sensors”

(denoted by◦), we could not approximately reconstruct the signal.

The signal is undersampled.
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Down-Sampling

Let f(n) be a signal of lengthN .

Assume we wish to reduce the number of samples by factor ofns

fromN to M = N/ns, wherens is a divisor ofN .

Let the new signal beg(m).

We first multiply the original signalf(n) with a sampling (comb)

function that is only non-zero everynth
s sample, i.e.:

fs(n) = S(n) f(n)

where

S(n) =

(N/ns)−1
∑

m=0

δ(n−mns)

The sampling function zeros out all but the values off we wish to

keep. It can be depicted by

Finally, the down-sampled signalg(m) is given by

g(m) = fs(mns)

2503: Linear Filters, Sampling, & Fourier Analysis Page: 36



Down-Sampling in the Fourier Domain

One can show that the Fourier transform of the sampling function

(i.e., the DTFT asN → ∞) is:

Ŝ(ω) =
1

ns

ns−1
∑

m=0

δ

(

ω −m
2π

ns

)

.

This transform is defined uniquely on an interval of length2π, but we

can choose which interval. Here we center the spectrum at theorigin:

Because multiplication in space is convolution in the Fourier domain,

the Fourier transform offs is given by

f̂s(ω) = Ŝ(ω) ∗ f̂ (ω) =
1

ns

ns−1
∑

m=0

f̂

(

ω −m
2π

ns

)

So, down-sampling introduces replicas off̂ (ω) spaced every2π/ns

(solid curves depict spectra & the dotted curves depict replicas):

Finally, one can show that by removing the zeros infs(n) we are

simply contracting the signal, i.e.,g(m) = fs(mns), so:

ĝ(ω) = f̂s(ω/ns) =
1

ns

ns−1
∑

m=0

f̂

(

ω

ns
−m

2π

ns

)
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Up-Sampling

Up-Sampling refers to the introduction of zeros between theexisting

samples of a signalg(n) to form a new signalf(m). Typically this is

followed by some form of smoothing in order that the resulting signal

be a reasonable approximation tog(n) (but at a higher resolution).

The introduction ofns − 1 zeros between every two samples ofg(n)

can be expressed as

f(n) =
M−1
∑

m=0

g(m) δ(n−mns)

One can then show that the spectrum off(n) is given by

f̂ (ω) = ĝ(ω ns)

2503: Linear Filters, Sampling, & Fourier Analysis Page: 38



Nyquist Sampling Theorem

Theorem: Let f(x) be a band-limited signal such that

f̂ (ω) = 0 for |ω| > ω0

for someω0. Thenf(x) is uniquely determined by its samplesg(m) =

f(mns) when

2π

ns
> 2ω0 or equivalently ns <

λ0

2

whereλ0 = 2π/ω0. In words, the distance between samples must be

smaller than half a wavelength of the highest frequency in the signal.

original signal

spectrum

down-sampled

spectrum for

up-sampled and

low-pass filtered

original signal

spectrum

original signal

spectrum

down-sampled

spectrum for

down-sampled

spectrum for

down-sampled

spectrum for

up-sampled and

low-pass filtered

up-sampled and

low-pass filtered

Here the replicas can be isolated by an ideal low-pass filter (the dotted

pass-band), so the original signal can be perfectly reconstructed.

Corollary: Let f(x) be a single-sided band-pass signal with band-

width 2ω0. Thenf(x) is uniquely determined if sampled at a rate such

thatns <
λ0
2 .
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Aliasing

Aliasing occurs when replicas overlap:

Consider a perspective image of an infinite checkerboard. The sig-
nal is dominated by high frequencies in the image near the horizon.
Properly designed cameras blur the signal before sampling,using

• the point spread function due to diffraction,

• imperfect focus,

• averaging the signal over each CCD element.

These operations attenuate high frequency components in the sig-
nal. Without this (physical) preprocessing, the sampled image can
be severely aliased (corrupted):
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Sampling Continuous Signals

Consider the simple 1D signals(t), for t ∈ [0, 1].

Sample Points:

tj = j/N, for j ∈ {0, . . . , N − 1}.

Discrete Sampling:

~s ≡ (s(t0), s(t1), . . . , s(tN−1))
T = DNs(t)

~bn ≡ (b(t0), b(t1), . . . , b(tN−1))
T = DNb(t). (8)

Now, from the Fourier series fors(t), we find

~s = DNs(t) = DN

∞
∑

n=−∞

anbn(t) =

∞
∑

n=−∞

anDNbn(t)

=

∞
∑

n=−∞

an~bn. (9)

Aliasing:

• Note~bn ∈ CN , so at mostN of these vectors can be linearly independent.

• Any maximal linearly independent set{~bn} can serve as a basis.

• Often choosen ∈ (−N/2, N/2] for the basis.

• The other sampled basis functions, say~bm for |m| > ⌊N/2⌋, must be linear combinations of

the chosen basis{~bn}⌊N/2⌋
n=−⌊(N−1)/2⌋. These vectors~bm are said to bealiased.
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Details of Aliasing

Fourier Analysis of Sampling:

~bn = DNbn(t) == (bn(t0), bn(t1), . . . , bn(tN−1))
T .

Note that

bn(tj) = ei2πntj = ei2πnj/N = ei(2πn/N)j

= eiωnj = (zn)
j , for zn = eiωn. (10)

Hereωn = 2πn/N is called thefrequencyof bn(t). Also,

zn = zne
i2πk, (sinceei2π = 1)

= ei2π(n+kN)/N = zn+kN . (11)

Therefore, for all integersn andk,~bn = ~bn+kN . The Fourier series becomes

~s =

⌊N/2⌋
∑

n=−⌊(N−1)/2⌋

[

∞
∑

k=−∞

an+kN

]

~bn =

⌊N/2⌋
∑

n=−⌊(N−1)/2⌋

ân~bn.

|FT(D s(t))|
N

0 N−2N 2N n

|FT(s(t))|
|FT(D  s(t))|

2N

N/2−N/2−N

Aliasing destroysinformation about the original continuous signal wheneverthere are significant

nonzero coefficients,an, for any frequency larger than theNyquist frequencyωN/2 = π (i.e. after

sampling we only have access toân notan).
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Dimensionality

A guiding principal throughout signal transforms, sampling, and alias-
ing is the underlying dimension of the signal, that is, the number
of linearly independent degrees of freedom (dof). This helps clarify
many issues that might otherwise appear mysterious.

• Real-valued signals withN samples haveN dof. We need a basis
of dimensionN to represent them uniquely.

• Why did the DFT of a signal of lengthN useN sinusoids? Be-
causeN sinusoids are linearly independent, providing a minimal
spanning set for signals of lengthN . We need no more thanN .

• But wait: Fourier coefficients are complex-valued, and therefore
have2N dofs. This matches the dof needed for complex sig-
nals of lengthN but not real-valued signals. For real signals the
Fourier spectra are symmetric, so we keep half of the coefficients.

• When we down-sample a signal by a factor of two we are moving
to a basis withN/2 dimensions. The Nyquist theorem says that
the original signal should lie in anN/2 dimensional space before
you down-sample. Otherwise information is corrupted (i.e.sig-
nal structure in multiple dimensions of the originalN -D space
appear the same in theN/2-D space).

• The Nyquist theorem is not primarily about highest frequencies
and bandwidth. The issue is really one of having a model for the
signal; that is, how many non-zero frequency components arein
the signal (i.e., the dofs), and which frequencies are they.
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Further Readings

Texts on Image Processing and Computer Vision

Castleman, K.R.,Digital Image Processing, Prentice Hall, 1995

Gonzalez, R.C. and Wintz, P.,Digital Image Processing 2nd ed., Addison-Wesley, 1987

Rosenfeld, A. and Kak, A.,Digital Picture Processing 2nd ed., Academic Press, 1982

Wolberg, G.,Digital Image Warping , IEEE Computer Society Press, 1990

Wandell, B.A.,Foundations of Vision, Sinauer Press, 1995
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