
Multiscale Image Transforms

Goal: Develop filter-based representations to decompose images
into component parts, to extract features/structures of interest, and
to attenuate noise.

Motivation:

• extract image features such as edges and corners
• isolate potentially independent image components

– different locations, scales, orientations

– independent measurement (evidence)

• redundancy reduction and image modeling for

– efficient coding

– image enhancement/restoration

– image analysis/synthesis

• predictable behaviour under deformation

– through time (motion) or between views (stereo)

Examples:

• DFT/DCT (global and blocked)
• Gabor Transform, Gabor wavelets
• Haar Transform
• Laplacian Pyramid
• Steerable Pyramid

Readings: Chapters 7, 8, and Sections 9.1-9.2 of Forsyth and Ponce.
Matlab Tutorials: imageTutorial.m and pyramidTutorial.m.
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Linear Transform Framework

Projection Vectors: Let~I denote a 1D signal, or a vectorized repre-

sentation of an image (so~I ∈ RN), and let the transform be

~a = PT ~I . (1)

Here,

• ~a = [a0, ..., aM−1] ∈ RM are the transform coefficients.

• The columns ofP = [~p0, ~p1, ..., ~pM−1] are the projection

vectors; themth coefficient,am, is the inner product~pm
T~I

• WhenP is complex-valued, we should replacePT by the

conjugate transposeP∗T

Sampling: The transformPT ∈ RM×N is said to becritically sam-

pled when M = N . Otherwise it isover-sampled when M > N , or

under-sampled when M < N .

Basis Vectors: For many transforms of interest there is a correspond-

ing basis matrixB satisfying

~I = B~a . (2)

The columnsB = [~b0, ~b1, ..., ~bM−1] are called basis vectors as they

form a linear basis for~I:

~I =
M−1
∑

m=0

am
~bm
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Linear Transform Framework (cont)

Completeness

• the forward transform (1) is complete, encoding all image struc-

ture, if it is invertible.

• when critically sampled, it is complete ifB = (PT )−1 exists.

• if over-sampled, the transform is complete ifrank(P) = N .

In this caseB is not unique – one choice is the pseudoinverse

B = (PTP)−1 PT

• if under-sampled, thenrank(P) < N and it is not invertible in

general.

Self-Inverting

• the transform is self-inverting if~bm =α~pm for some constantα.

• in the critically-sampled, self-inverting case the transform is or-

thogonal (unitary), up to the constantα (e.g., the DFT).
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Global Transforms

Point-Sampled Representation

• The sampled representation from the CCD array. The projection functions are shifted im-

pulses,δ(n − k, m − l), which are, of course, orthogonal

• Problem:

– Ideal localization in space, but global in Fourier domain.

Therefore, no scale or orientation specificity.

– We also find significant correlations among samples

Fourier Transform (DFT)

• DFT encodes image as a sum ofglobal sinusoids:ei~ωk~n

• localized in Fourier domain

• critically sampled for complex-valued signals

• Problem: not localized in space.

Point-Sampled 
Basis Functions

Fourier Domain
Basis Functions
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Gabor Transform

Joint Localization: Dennis Gabor (1946) showed that the Gaussian minimizes joint uncertainty

(the product of variances) in space and Fourier domain.

The Fourier transform of a Gaussian function is a Gaussian:

g(x) =
1√
2πσ

e−x2/2σ2

, ĝ(ω) = e−ω2σ2/2 .

The product of their variances is 1.

Gabor Transform (aka the Gaussian windowed Fourier Transform):

• One applies a Gaussian window at a point(n0, m0), followed by a DFT (like a blocked

DFT/DCT transform, in which the image is broken into non-overlapping square blocks on

which the DFT/DCT is applied, but with Gaussian window instead of a square window):

F [ g(n − n0, m − m0) I(n, m) ]

• The resulting projection directions (often called Gabor functions), along with their Fourier

spectra are given by

pk(n) = g(n) eiωkn , p̂k(ω) = ĝ(ω − ωk)

Point-Sampled
Projection Functions
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Gabor projection functions aresmooth andcompact in both space and frequency domain. They are

complex-valued, and for smaller bandwidths (e.g., less than an octave) they are approximately a

quadrature pair. The transform coefficients are also complex-valued.

But these projection functions are non-orthognal, and the resulting basis functions are not local, nor

well-behaved.
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Multiscale Image Transforms

Salient image structure occurs at multiple scales, suggesting some

degree of position- and scale-invariant processing.

1) Objects and their parts occur at multiple scales:

2) Cast shadows cause edges to occur at many scales:

3) Objects may project into the image at different scales:
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Self-Similar Multiscale Transforms

Goal: The filter support should grow with scale, and be well matched

to scale-dependent correlation lengths in images. The represenation

should exhibit scale-invariant properties, as objects project to images

at different scales depending on distance from camera.

Scale Self-Similarity: Let the basis functions be dilations and trans-

lations of a “mother” function, so they all have the same shape, dif-

fering in scale and position only.

w

Spectra of Self-Similar Transforms

Self-Similar Transform
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Gabor Wavelet
Basis Functions

Examples:

• Gabor wavelets
• Haar Transform
• Laplacian Pyramid
• Steerable Pyramid
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Haar Transforms

Originally described by A. Haar (1909). Each step creates two channels: one simply averages

adjacent elements (i.e., low-pass channel); and one takes difference between adjacent elements (i.e.,

a high-pass channel). Both are down-sampled by 2.

} } }

Properties:

• critically-sampled and self-inverting (orthogonal)
• local in space (compact) but not continuously differentiable
• broad ringing frequency spectrum due to top-hat spatial window, and therefore massive alias-

ing in each band (like blocked DCT).
• very efficient to compute with pyramid scheme and addition

Analysis / Synthesis Diagram:

Analysis/Synthesis system diagram for
a 2-level cascaded pyramid filter bank
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This is an analysis-synthesis diagram for a general 2-levelcascaded pyramid (where the low-pass

portion is further filtered). It shows the recursive construction of the transform. For the Haar trans-

form, h0 andh1 are low-pass and high-pass filters that compute sums and differences (respectively)

of adjacent pixels. Moreover,Gj(ω) = Hj(−ω), and so the transform can be shown to be self-

inverting. Finally, although there is aliasing in the individual channels of the Haar transform, one

can show that, upon reconstruction, the aliasing in the transform channels cancels, so reconstruction

is exact.
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2D Haar Transforms

Separable 2D filters:
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Recursive design of 2D Haar basis functions:
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Idealized band-splitting in the frequency domain:
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Gaussian Pyramid

Sequence of low-pass, down-sampled images,[~l0, ~l1, ..., ~lN ].

Usually constructed with a separable 1D kernelh = [h1, h2, h3, h4, h5],

and a down-sampling factor of 2 (in each direction):

In matrix notation (for 1D) the mapping from one level to the next has
the form:

~lk+1 = R~lk =







1 0 0 0 0

0 0 1 0 0 · · ·
0 0 0 0 1

...
. . .

















. . .

−h−
−h−

−h−
. . .











~lk

down-sampling convolution

Typical weights for the impulse response from binomial coefficients

h =
1

16
[1, 4, 6, 4, 1]
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Gaussian Pyramid (cont)

Example of original image and four more pyramid levels:

First three levels scaled to be the same size:

Properties of Gaussian pyramid:

• used for multi-scale edge estimation

• efficient for computing coarse-scale images (only separable 5-tap

kernels are used)

• highly redundant (coarse-scale information is duplicatedin fine

scale images)
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Laplacian Pyramid

Over-complete decomposition based on difference-of-lowpass filters;

the image is recursively decomposed into low-pass and highpass bands

(like the Haar Transform).

• Each band of the Laplacian pyramid is the difference betweentwo

adjacent low-pass images of the Gaussian pyramid,[~l0, ~l1, ..., ~lN ].

That is:

~bk = ~lk − E~lk+1

whereE~lk+1 is an up-sampled, smoothed version of~lk+1 (so that

it will have the same dimension as~lk), i.e.,

E~lk+1 =











. . .

−g−
−g−

−g−
. . .





















1 0 0 0

0 0 0 0

0 1 0 0 · · ·
0 0 0 0

...
. . .











~lk+1

convolution up-sampling

Often the filters used to construct the Gaussian and Laplacian

pyramids,g andh, are identical.

TheLaplacian pyramid with L levels is given by[~b0, ~b1, ..., ~bL−1, ~lL].

The representation is overcomplete by a factor of roughly of4
3

for 2D

images (i.e., 1 + 1/4 + 1/16 + ... = 4/3).
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Laplacian Pyramid (cont)

Construction of the Laplacian bands:

-+ -+ -+-+ -+ -+ -+ -+ -+

A Laplacian pyramid with four levels:

The transform coefficients are the pixel values of these images.
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Laplacian Pyramid (cont)

Construction of [~b0, ~b1, ..., ~bL−1, ~lL]:

~l0 = ~I

~lk+1 = R~lk

~bk = ~lk − E~lk+1

Reconstructionof~I is exact for any filter (fork = L−1, . . . , 0):

~lk = ~bk + E~lk+1

~I = ~l0

System Diagram: shows the filters and sampling steps used for
pyramid construction, and then image reconstruction from the trans-
form coefficients. Gaussian pyramid levels are computed using h(n)

(with spectrumH(ω)). Filter g(n) (with spectrumG(ω)) is used with
up-sampling so that adjacent Gaussian levels can be subtracted.

Analysis/synthesis diagram for a 2-layer Laplacian pyramid
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Laplacian Pyramid Filters

In practice:

• often use same filters forh andg (i.e., we apply the same operators for smoothing and inter-

polation in construction and reconstruction)

• use separable lowpass filters (for efficiency)

• desire isotropy forh andg so all orientations handled the same way.

Constraints on 5-tap lowpass filterh:

• even-symmetry means that taps areh =
(

a2

2
, a1

2
, a0,

a1

2
, a2

2

)

.

• assume thatdc signal is preserved, i.e.ĥ(0) = 1 :

ĥ(0) =
2

∑

n=−2

h(n) e−i 0 n = a0 + a1 + a2

• assume that spectrum decays to 0 at fold-over rate, i.e.ĥ(π) = 0 :

ĥ(π) =

2
∑

n=−2

h(n) e−i π n = a0 − a1 + a2

• Soa1 = a0 + a2 = 0.5, and there is one free constraint. For example, choosea0 = 6

16
, thenh

is the binomial 5-tap filter:

h(n) =
1

16
(1, 4, 6, 4, 1)

Historical remark on name of pyramid: The well-known Laplacian filter (isotropic second

derivative) is given by

∇2f(x, y) =
∂2f

∂x2
+

∂2f

∂y2

For Gaussian kernels,g(x; σ) = 1
√

2πσ
e−x2/2σ2

,

d2g(x; σ)

dx2
= c0

d g(x; σ)

dσ
≈ c1 (g(x; σ) − g(x; σ + ∆σ))

That is, if the low-pass filterh used to create the Laplacian pyramid is Gaussian, then the Laplacian

pyramid levels approximate the second derivative of the image at different scalesσ.
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Laplacian Pyramid Projection Vectors:

Laplacian Projection Vectors Fourier Spectra
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Laplacian Pyramid Basis Vectors:

Laplacian Basis Vectors Fourier Spectra
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Uses of Laplacian Pyramid: Coding

Multiscale image representations are natural for image coding and
transmission. The same basic ideas underly JPEG encoding.

Approach: Use quantization levels that become more coarse as one
moves to higher frequency pass bands.

• high frequency coefficients are more coarsely coded (i.e., to fewer
bits) than lower frequency bands.

• vast majority of the coefficients are in high frequency bands.

• this quantization matches human contrast sensitivity (roughly)

Advantages:

• eliminates blocking artifacts of JPEG at low frequencies because
of the overlapping basis functions.

• approach also allows for progressive transmission, since low-pass
representations are reasonable approximations to the image.

• coding and image reconstruction are simple

0.03 0.1 0.31 0.81 1.58

bits per pixel

0.03 0.1 0.31 0.81 1.58

bits per pixel
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Uses of Laplacian Pyramid: Restoration (Coring)

Transform coefficients for the Laplacian transform are often near zero.
Significantly non-zero values are generally sparse.

Histograms of transform coefficients are often well approximated by
a so-called ”generalized Laplacian” density,c e−|x/s|k , where

• k is usually between 0.7 and 1.2

• s controls the variance

• peaked at 0, with heavy tails −100 −80 −60 −40 −20 0 20 40 60 80 100

Coring:

• set all sufficiently small transform coefficients to zero,
• leave others unchanged, and possibly clip at large magnitudes.

old

new

old

new

Original image + additive

noise (SNR = 9dB)

Cored image

(SNR = 13.82dB)

Original image + additive

noise (SNR = 9dB)

Cored image

(SNR = 13.82dB)
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Uses of Laplacian Pyramid: Image Compositing

Goal: Image stiching without visible seams. Register and mask
the images. Then smooth the boundary neighbourhood in a scale-
dependent way to avoid visible boundary aritfacts.

Method:

• assume imagesI1(~n) and I2(~n) are registered (aligned) and let
m1(~n) be a mask that is 1 at pixels where we want the brightness
from I1(~n) and 0 otherwise (i.e., where we want to seeI2(~n)).

• create Gaussian pyramid form1(~n), denoted{l0(~n), l1(~n), ..., lL(~n)}
• create Laplacian pyramids forI1(~n) andI2(~n), denoted by

{b1,0(~n), ..., b1,L−1(~n), l1,L(~n)} and {b2,0(~n), ..., b2,L−1(~n), l2,L(~n)}

• create blended pyramid{b0,0(~n), ..., b0,L−1(~n), l0,L(~n)} where

bj(~n) = b1,j(~n) lj(~n) + b2,j(~n) (1 − lj(~n))

lL(~n) = l1,L(~n) lL(~n) + l2,L(~n) (1 − lL(~n))

• collapse the pyramid{b1, b2, ..., lL} to obtain composite image

2503: Multiscale Image Transforms Page: 20



Uses of Laplacian Pyramid: Enhancement

Goal: Create a high fidelity image from a set of images take with
different focal lengths, shutter speeds, etc.

• Images with different focal lengths will have different image re-
gions in focus.

• Images with different shutter speeds may have different contrast
and luminance levels in different regions.

Approach:

• Given pyramids for two imagesI1(~n) andI2(~n), construct 2 or 3
levels of a Laplacian pyramid:

{b1,0(~n), ..., b1,L−1(~n), l1,L(~n)} and {b2,0(~n), ..., b2,L−1(~n), l2,L(~n)}

• at levelj, define a maskm(~n) that is 1 when|b1,j(~n)| > |b2,j(~n)|
and 0 elsewhere.

• then form the blended pyramid with levelsb0,j[~n] given by

b0,j(~n) = m(~n) b1,j(~n) + (1 − m(~n)) b2,j(~n)

• average the low-pass bands from the two pyramids.

Image 1 Image 2 Composite
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Further Readings

Books on Sections on Image Transforms:

Kenneth R Castleman,Digital Image Processing, Prentice Hall, 1995

Brian A Wandell,Foundations of Vision, Sinauer Press, 1995

Papers on Image Transforms and their Applications:

Peter J Burt and Edward H Adelson, ”A multiresolution splinewith application to image mosaics.”

ACM Trans. on Graphics, V. 2(4), 1983, pp. 217-236.

Peter J Burt and Edward H Adelson, ”The Laplacian pyramid as acompact image code.”IEEE

Trans. on Communications, V. 31(4), 1983 pp. 532-540.

Eero P Simoncelli and Edward H Adelson, ”Subband transforms.” In Subband Image Coding,

(ed.) John Woods. Kluwer Academic Publishers, Norwell, MA 1990.
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