
1Notes on Fourier AnalysisDavid J. Fleet and Allan D. JepsonJanuary 11, 2005Fourier analysis plays a 
riti
al role in applied mathemati
s. In 
omputer vision it plays a
entral role in the design and analysis of early operators. In the study of biologi
al visual systemsFourier analysis is 
entral to understanding of visual stimuli, to measuring input/output propertiesof neurons, and to the development of 
omputational models.In essen
e, the Fourier transform of an image is a de
omposition of a signal into a weighted sumof sinusoidal signals. That is, the Fourier transform spe
i�es, for ea
h frequen
y, how mu
h of asinusoidal signal at that frequen
y exists in the signal. In dis
rete terms, it is simply an orthogonalmatrix transform, i.e., a 
hange of basis.In vision, many of the image operations we employ are linear and shift-invariant. Sinusoidalsignals, or Fourier basis fun
tions, are eigen-fun
tions of this 
lass of operators whi
h makes thema 
onvenient basis set for design and analysis of linear �lters. Fourier representations are also
onvenient for spe
ifying various �lter design 
onstraints related to the s
ale and orientation ofimage information that we wish to enhan
e or attenuate. Moreover, Fourier theory provides a veryni
e starting point for the study of other image transforms su
h as the dis
rete 
osine transform(DCT) that is used in JPEG 
ompression, or wavelet transforms whi
h have be
ome popular inmany 
ontexts for the analysis and synthesis of signals at multiple s
ales.In what follows we will �rst introdu
e the basi
 
on
epts of the Fourier transform with dis
retesignals. We'll 
ome ba
k to the �lters and eigenfun
tions later.1 Dis
rete Fourier Transform (DFT)Let I[n℄ be a dis
rete signal of length N . For 
onvenien
e, let I[n℄ be a periodi
 signal with a periodlength of N , or equivalently, we 
an 
onsider I[n℄ to be 
y
li
, so that shifts are 
ir
ular shifts.The 
entral idea in Fourier analysis is to 
hange the basis in whi
h we represent the signal from asequen
e of shifted delta fun
tions (impulses) to a set of global sinusoidal signals, i.e., s[n℄ = sin(!n)where ! is the frequen
y of the sinusoid. Before introdu
ing Fourier analysis, it is useful to reviewtwo important properties of dis
rete signals:� First, the frequen
y ! is only unique between 0 and 2�. This is easy to see by noting that,be
ause n is an integer, sin((! + 2�)n) = sin(!n).� Se
ond, if we only 
onsider periodi
 signals of length N , then we need only 
onsider sinusoidswhi
h are periodi
 on the same domain. These have the form sin(!kn) or 
os(!kn) for!k = 2�k=N with k an integer.� Unique sinusoids exist only for N distin
t frequen
ies !k = 2�k=N , say for the integers kbetween 0 and N � 1.Finally, when working with sinusoidal signals, it's often very 
onvenient to express then using
omplex exponentials. Remember Euler's formula:ei!n = 
os(!n) + i sin(!n)
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0.5Figure 1: Here is a simple example of a Fourier de
omposition. A Gaussian signal is shown on theleft, and the �rst 4 terms of its Fourier de
omposition are shown on the right.where i2 = �1. Conservely, with this one 
an write
os(!n) = 12 hei!n + e�i!ni ; sin(!n) = 12i hei!n � e�i!ni :1.1 Fourier De
ompositionThe Fourier transform allows to write an arbitrary dis
rete signal I[n℄ as a weighted sum of phase-shifted sinusoidal signals. Assuming that our signal I[n℄ is really just N samples from a periodi
signal (with periodN), then we should only use periodi
 sinusoids in the sum that we use to expressit. Therefore, the sum has the formI[n℄ = N�1Xk=0 �k sin(!kn+ �k)= N�1Xk=0 �k sin(�k) 
os(!kn) + �k 
os(�k) sin(!kn)= N�1Xk=0 ak 
os(!kn) + N�1Xk=0 bk sin(!kn) (1)Note that the sinusoidal signal sin(!kn) is all zeros when k = 0, be
ause when k = 0, then !0 = 0and therefore sin(!0n) = 0 for all n. Therefore, normally one has the se
ond summation onlyin
lude terms for k � 1, but we'll keep all N terms for now.1.2 Fourier TransformSo, now the question is: how do we get these 
oeÆ
ients ak and bk? Before answering this, let'srewrite equation (1) in a matrix form. Towards this end, imagine that our input signal I[n℄ iswritten as an N -dimensional ve
tor I = (I[0℄; :::; I(N � 1))T . In addition, let a = (a0; :::; aN�1)Tand b = (b0; :::; bN�1)T be N -ve
tors for the 
oeÆ
ients. Similarly, let's write the elementarysinusoidal signals as ve
tors, i.e. Sk = sin(!kn) and Ck = 
os(!kn). That is, the jth 
omponent of
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1 20 kFigure 2: DFT matri
es for the 
osine and sine 
omponents of F for N = 16. (left) the 
osinematrix C with frequen
ies !k = 2�k=16 for k from 0 to 15 going from left to right, and n goingfrom 0 to 15 from top to bottom. The �rst row and 
olumns are all ones. (right) the sine matrix Swith frequen
ies !k = 2�k=16 for k from 0 to 15 going from left to right. In this 
ase, the �rst rowand 
olumn (and the 9th row and 
olumn) are �lled with zeros. Note the symmetry of C and S,both a
ross the main diagonal and also a
ross the 9th anti-diagonal (roughly from the bottom-leftto the top-right).the ve
tor Ck would be 
os(2�N kj), for ea
h j between 0 and N � 1. Finally, 
olle
t these sinusoidalsignals into N �N matri
es, C = (C0 C1 : : :CN�1) and S = (S0 S1 : : :SN�1). Then, (1) be
omesI = N�1Xk=0 akCk + N�1Xk=0 bkSk = Ca+ Sb: (2)We 
an rewrite this sum as a matrix equation:I = h C S i  ab ! (3)To understand this, remember the way matrix multipli
ation works: The signal I on the left is aweighted sum of the 
olumns of the N �2N matrix [C S℄, whi
h is formed by 
on
atenating C andS. The weights are 
oeÆ
ients in the ve
tor on the right.Remember that the (n+ 1; k + 1) element of C is 
os(2�N kn) where k + 1 spe
i�es the 
olumnindex, and n+1 spe
i�es the row. Similarly the 
orresponding element of S is sin(2�N kn). Thereforethe 
olumns of C and S are sinusoidal basis ve
tors. Moreover, from these expressions it is 
learthat C and S are symmetri
 matri
es (i.e. CT = C and ST = S). Due to this symmetry, therows of C and S are also formed from the same sinusoidal basis ve
tors, namely Ck and Sk, fork = 0; : : : ; N � 1.Let's rewrite equation (3) as I = F
 (4)where F = [C S℄ is the matrix above, the 
olumns of whi
h are the elementary sinusoidal signals,and the ve
tor 
 = (aT ;bT )T 
ontains the 
oe�
ients ak and bk as in (3). Note that F has 2N
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olumns, ea
h of whi
h is of length N , so it is a N�2N matrix. That is, the length of the signal I isonly half of the number of 
oeÆ
ients 
 (i.e. N versus 2N). Sin
e there are more 
oeÆ
ients thansignal sample values, the representation of I in terms of 
 is said to be over-
omplete. Due tothis over-
ompleteness, a basi
 result of linear algebra ensures us that any solution 
 of (4) is notunique. This non-uniqueness won't bother us here sin
e we will pi
k one solution by 
onvention.Now, one way to determine suitable 
oeÆ
ients ak and bk is to �nd a 2N �N matrix G su
hthat when we form 
 = GI it turns out that 
 satis�es (4). That is, for any I we have 
 = GI su
hthat I = F
 = FGI: (5)In other words, we need to �nd G su
h that FG = Id(N) where Id(N) denotes an identity matrixof size N . Su
h a matrix G is 
alled a pseudo-inverse of F. If we �nd su
h a matrix G, then
omputing suitable 
oeÆ
ients simply amounts to performing the matrix-ve
tor produ
t 
 = GI.Our main result is that we 
an take G = 1NFT . In parti
ular, we show below that1N FFT = Id(N): (6)In general, a linear transformation of a signal I of the form 
 = FT I is said to be self-inverting ifthe signal 
an be re
onstru
ted simply as I = �F
 for some 
onstant �. The key property here issimply that, for a self-inverting transformation, a 
onstant times the transpose of the transformationmatrix serves as a pseudo-inverse of the transformation. Our main result 
an therefore be restatedas, the dis
rete Fourier transformation matrix F T is self-inverting.We 
reated F in (4) above so that its 
olumns were the elementary sinusoidal signals Ck andSk. Therefore the rows of FT are also these same sinusoidal signals. Furthermore, to �nd the
oeÆ
ients ak and bk one simply multiplies the matrix FT with the dis
rete signal I, and dividethe result by N . In e�e
t, this amounts to taking the inner produ
t of the signal I with ea
helementary sinusoidal signal (i.e. ea
h 
olumn of F). In pra
ti
e, matrix-ve
tor multipli
ation isrelatively slow for full 2N �N matri
es su
h as FT . Matrix-ve
tor multipli
ation requires O(N2)multipli
ations and additions, where N is the number of samples in the signal. By 
omparison, thefast Fourier transform (FFT) algorithm that is widely used requires onlyO(N logN) multipli
ationsand additions. Note that for images, where the number of pixels 
an be as large as 106 or higher,the di�eren
e between O(N2) and O(N logN) is signi�
ant.The set of 
oeÆ
ients, ak; bk, tells us \how mu
h" of ea
h frequen
y !k exists in our signal, andat what phase. The 
oeÆ
ients are 
alled the Fourier transform of I[n℄, and are often written as
omplex numbers Î[k℄ = ak � i bk for 
onvenien
e. Thus, the Fourier transform 
an be viewed as afun
tion of frequen
y, again, spe
ifying how mu
h, and at what phase, of ea
h frequen
y exists inour signal I[n℄. In the 
ontinuous 
ase, the Fourier transform is an expli
it fun
tion of frequen
y,written f̂(!), while here, we write it as a fun
tion of the frequen
y index k, be
ause k is an integerand !k is not.With this notation, the usual way a dis
rete Fourier transform (DFT) is written is as follows:Î[k℄ = Xn I[n℄ e�i!kn (7)I[n℄ = 1N Xk Î[k℄ ei!kn (8)





 Fleet and Jepson, 2005 5To see the relationship between this formulation and the matrix equation above, remember thatei!kn = 
os(!kn) + i sin(!kn). The real part of the right hand sides in (7) and (8) thereforeprovide the equations above (ex
ept we have 
hosen to move the normalization term 1=N to there
onstru
tion equation, i.e. we use 
 = FT I and I = (1=N)F
).1.3 Proof of the Self-Inverting PropertyThe 
omplex form of the DFT in (7) and (8) is 
onvenient for proving that the matrix F is self-inverting. In parti
ular, let U be the N �N 
omplex-valued matrixU = C+ iS; (9)where C and S are as above (see Figure 1.2). Then the (n+ 1; k + 1) element of U equals ei 2�N nk.Consider the matrix U�U, where U� denotes the transpose of the 
omplex 
onjugate of U.Then from the previous expression for the elements of U, it follows that the (k + 1; j + 1) elementof U�U is N�1Xn=0 e�i 2�N knei 2�N nj = N�1Xn=0 ei 2�N (j�k)n = NÆj;k: (10)In the last term above Æj;k is the Krone
ker delta, whi
h is equal to one when j = k and zerootherwise. This last equality is explained below.For j = k ea
h of the terms in the sum in the middle term of (10) are e0 = 1, so the sum is Nfor this 
ase. Otherwise, suppose j 6= k, with 0 � j; k � N � 1. For su
h a pair j and k, de�ne the
onstant � = 2�N (j � k). Then the se
ond sum above 
an be rewritten asN�1Xn=0 ei 2�N (j�k)n = N�1Xn=0 ei�n = z (11)for some 
omplex number z. But note that �N = 2�(j�k), whi
h is an integer multiple of 2�, andtherefore ei�N = 1 = e0. Therefore, upon multiplying equation (11) by ei� we �ndzei� = N�1Xn=0 ei�(n+1)= ei�N + N�1Xn=1 ei�n= 1 + N�1Xn=1 ei�n = z:Thus zei� = z, so either z = 0 or ei� = 1. But sin
e 0 � j; k � N � 1 and j 6= k it follows thatei� 6= 1. Therefore z = 0, whi
h 
ompletes the justi�
ation of equation (10).We have therefore shown that U�U = NId(N). By the de�nition ofU in (9), and the symmetryof C and S, it follows that U�U = (C � iS)(C + iS) = C2 + S2. Therefore we have shown thatC2 + S2 = N Id(N). Finally, noti
e that by de�nition F = [C S℄, so FF T = C2 + S2. As a
onsequen
e, FF T = N Id(N), proving that F is self-inverting.
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rete Fourier Transform and Unitary Matri
esFrom the pre
eeding analysis, we 
an write the DFT in a third (and �nal) form. This last versionof the DFT provides us with a simple intuitive model for the transform. By in
luding the s
alefa
tor of 1=p(N) with U, we 
an de�ne the dis
rete Fourier transform of a signal I and its inversetransform as Î = 1pNU�I; (12)I = 1pNU Î (13)It follows from the previous se
tion that 1pNU is a unitary N �N matrix.In this way, one 
an view the Fourier transform simply as an orthonormal 
hange of basis.In more familiar terms, it involves only rotations and re
e
tions of the original 
oordinates. Thesinusoids in (3), or equivalently the 
omplex exponentials in (13), 
an be viewed as a 
ompletespanning set for the N -dimensional ve
tor spa
e of 
omplex-valued signals. The kth 
oeÆ
ients akand bk 
an be viewed as the proje
tion of I onto the ve
tors Ck and Sk in the spanning set. Withreal-valued inputs, the representation is over
omplete sin
e there are 2N real-valued 
oeÆ
ients (ie.N 
omplex-valued 
oeÆ
ients), but only N real numbers in the signal I. If I were 
omplex-valuedrather than real-valued, then the transform would be a 
omplete representation, with just as manyFourier 
oeÆ
ients as input values. In fa
t, one 
an show that for real-valued inputs the Fourierdomain is symmetri
, and this a

ounts for the redundan
y.When we introdu
ed Fourier analysis above, we restri
ted ourselves to signals that were periodi
on N samples. This allowed us to 
onsider only N frequen
ies. You may now ask, do we need to
onsider more frequen
ies in order to de
ompose a signal into a sum of sinusoids? The answer is no.The DFT is (modulo s
aling) an orthogonal transform, and therefore we 
an 
ompletely representand re
onstru
t any signal I with only N frequen
ies.1.5 ExamplesLet's say that the input is just a sinusoid of the form I[n℄ = A sin(!3n+�) where A is the amplitude.Using the orthogonality of the sinusoidal signals (i.e., (10)), the inner produ
t of I[n℄ with ea
h rowof F T will be zero, ex
ept those rows 
ontaining C3 and S3. In other words, only the 
oeÆ
ientsthat 
orrespond to the frequen
y in the signal, i.e., a3 and b3, are non-zero. Moreover, one 
anshow that the phase � is given by the ar
tan of b3=a3. And the magnitude of the signal, A, is equalto 1Nqa23 + b23.How about the 
ase where the input is simply a delta fun
tion? For example let I[n℄ = 0 forall n > 0, and I[0℄ = 1. In this 
ase, when one takes the produ
t 
 = FT I, one 
an see that theresulting 
oeÆ
ient ve
tor 
 is simply equal to the �rst 
olumn of FT . This 
olumn, as shownabove, 
ontains C0 on top of S0. Furthermore, when the frequen
y is zero, 
os(0) = 1 and sin(0) =0. Therefore, ak = 1 for all k and bk = 0. This is the well-known result that the Fourier transformof a delta fun
tion at the origin is 
onstant. If we move the delta fun
tion to another lo
ation, thenits Fourier transform will be a 
omplex exponential.





 Fleet and Jepson, 2005 71.6 Fourier DomainRemember that our ve
tor I is a representation of a signal I[n℄, whi
h is a fun
tion of the spatialvariable n. We normally plot I[n℄ as a fun
tion of spatial position n.Similarly, it is 
ommon to plot the Fourier transform 
oe�
ients Î[k℄ = ak � i bk as a fun
tionof frequen
y !k. So with frequen
y along the x � axis we 
an plot the magnitude jÎ [k℄j whi
h is
alled the amplitude spe
trum, and we 
an plot the phase angle arg[Î[k℄℄ (i.e., atan2 for you Cprogrammers), whi
h is 
alled the phase spe
trum. We refer to fun
tions of frequen
y, as fun
tionsin the frequen
y domain, where the independent variable is frequen
y.When the magnitude (amplitude) of a parti
ular Fourier 
oe�
ient jÎ [k℄j is large, we say thatthere is a lot of power at frequen
y !k in the signal. The distribution of power, as a fun
tion of!k, tells us a lot about the properties of the signal.2 Other Fourier Transforms2.1 Dis
rete-Time Fourier TransformAs the length of the signal, N , in
reases toward in�nity, the number of Fourier 
oeÆ
ients thatwe need to 
ompute grows similarly. In the limit, although the signal is dis
rete, our sampling offrequen
ies between 0 and 2� be
omes dense, so that the Fourier transform be
omes a 
ontinuousfun
tion of frequen
y. Î(!) = 1Xn=�1 I[n℄ e�i!nfor 0 � ! < 2�. The inverse transform, with whi
h we re
onstru
t the signal is then given byI[n℄ = 12� Z 2�0 Î(!)ei!nd!This transform is used for a number of di�erent purposes. If one had a dis
rete signal of �nitelength, one 
ould in prin
iple pad it with zeros out to in�nity and take its DTFT. If the signal wasan impulse response, then the DTFT would tell you how the �lter behaves when applied to anyfrequen
y of interest. This is often very useful. It is also easy to show that the DFT is simply asampled version of DTFT.Finally, note that one 
an 
ompute a good approximation to the DTFT without padding thesignal with zeros. Rather, one simply has to add more rows to the DFT matrix at the frequen
iesthat one is interested in.2.1.1 ExamplesHow about some examples with smoothing �lters like h[n℄ = 14 [1; 2; 1℄? Well, for 
onvenien
e,assume that we take the DTFT by padding h[n℄ with zeros, and assume that h[n℄ has it's nonzerosamples 
entered at the origin. Then,ĥ(!) = 1Xn=�1h[n℄ e�i!n= 1Xn=�1h[n℄ e�i!n





 Fleet and Jepson, 2005 8= 14 �ei! + 1 + e�i!�= 12(1 + 
os(!))2.2 Fourier Transforms of Continuous Periodi
 SignalsImagine now that we have a signal I(x) that is de�ned at all spatial positions x on the real-line.As above with the dis
rete 
ase, we'll also assume that I(x) is periodi
 with period T ; that is,I(x + T ) = I(x). This may be be
ause I(x) is a
tually periodi
, or it may be that our signal ofinterest is of �nite length T , and I(x) is a periodi
 version of it. In either 
ase, we expe
t all of therelevant elementary sinusoidal 
omponents of I(x) to also be periodi
 with period T . Therefore, wewill express the signal I(x) as a weighted sum of sinusoidal signals with frequen
ies !k = 2�k=Twhere k is an arbitrary integer, as followsI(x) = 1Xk=�1�kei!kn (14)Be
ause the signal is not dis
rete, it 
an 
ontain sinusoids of arbitrarily high frequen
ies. Thereforethe sum is in�nite.The 
oeÆ
ients in the sum are given by the inner produ
t between the signal I(x) and basisfun
tions. The inner produ
t is no longer a ve
tor dot-produ
t as above. It is now de�ned by anintegral for 
ontinuous fun
tions, over an interval of length T within whi
h the signal is unique:�k = 1T Z T=2�T=2 I(x)e�i!kxdx (15)These 
oeÆ
ients �k are the Fourier 
oeÆ
ients. They are often referred to as a Fourier seriesrepresentation of I(x).Note that while the periodi
 signal I(x) is 
ontinuous, de�ned everywhere on the real line, theFourier transform is still a dis
rete signal. It is de�ned only at a dis
rete set of frequen
ies !k.2.3 Fourier Transforms of Continuous SignalsAbove we have dis
ussed the Fourier transforms of dis
rete signals of bounded extent and of 
on-tinuous signals of bounded extent. The most general 
ase 
on
erns a suÆ
iently smooth fun
tionwith arbitrary extent de�ned on the real-line, for whi
h we 
annot assume periodi
ity. In this 
ase,for suÆ
iently smooth signals I(x), the Fourier transform Î(!) isÎ(!) = Z I(x)e�i!xdxI(x) = 12� Z Î(!)ei!x:Now, both the input signal I(x) and the Fourier transform Î(!) are 
ontinuous fun
tions de�nedeverywhere on x (spatial position) and ! (frequen
y domain).





 Fleet and Jepson, 2005 93 Multi-Dimensional Fourier TransformsThe same basi
 ideas hold in multple dimensions. In the 
ontinuous domain, we haveÎ(~!) = Z ::: Z I(x) exp[�i~!Tx℄dxI(x) = 1(2�)n Z ::: Z Î(~!) exp[i~!Tx℄d~!:where x = (x1; :::; xn) is the n-dimensional spatial position, ~! = (!1; :::; !n) denotes the 
orre-sponding frequen
y variables, and ~!Tx denotes the usual dot produ
t.Note that if I(x) is separable, then the multi-dimensional Fourier transform is the produ
t ofthe 1d Fourier transforms. For example, if I(x; y) = f(x)g(y), thenÎ(!x; !y) = Z Z I(x; y)e�i(x!x+y!y)dxdy= Z f(x)e�ix!xdx Z g(y)e�iy!ydy= f̂(!) ĝ(!)4 Properties of the Fourier TransformIn what follows we will list several important properties of the Fourier transform that we will useo

asionally. For notational 
onvenien
e, we will write the Fourier transform of f(x) as f̂(~!) =F [f(~x)℄ where ~x = (x1; :::xn) and ~! = (!1; :::!n). Moreover, note that many of these properties aremost straightforward to de�ne in the 
ontinuous 
ase.� Shifting Property: F [f(x� x0)℄ = exp(�i ~!Tx0) f̂(~!) (16)In parti
ular, note that F [Æ(x � x0)℄ = exp(�i ~!Tx0).You 
an prove this with substitution and 
hange of variables.� Modulation Property: F hexp(i ~!T0 x) f(x)i = f̂(~! � ~!0) (17)This is really identi
al to the shifting property, and 
an be proven in the same way, but withthe Fourier domain and the spatial domain swit
hed.� Di�erentiation: F "�nf(x)�xjn # = (i !j)n f̂(~!) (18)This is a little tougher to prove, but give it a try. For intuition, note that � sin(!x)�x = ! 
os(!x).One 
an also use this fa
t, along with the 
onvolution theorem below to show that the Fouriertransform of the impulse response of a perfe
t n-th order di�erentiator is simply (i!)n.





 Fleet and Jepson, 2005 10� Parseval's Theorem: 2� <f(x); g(x)> = <f̂(~!); ĝ(~!)> ; (19)where the inner produ
t < �; �> is de�ned by<f(x); g(x)> = Z 1�1 f(x)� g(x) dx : (20)A

ordingly, k f(x) k2 = <f(x); f(x)> . The proof relies on the fa
t that orthogonal trans-formations (rotations) do not 
hange the lengths of ve
tors, and the Fourier transform isbasi
ally an orthogonal (unitary) transform.� Convolution Theorem: F [f � g℄ = F [f ℄ F [g℄ (21)Let's prove the Convolution Theorem in the dis
rete 1d 
ase:F [f � g℄ = Xn f � g e�i!n = Xn Xm f [m℄g[n�m℄e�i!n= Xm f [m℄Xn g[n�m℄e�i!n= Xm f [m℄F [g℄e�i!m (shift property)= F [g℄F [f ℄ (22)This theorem is very important in pra
ti
e. It means that one 
an apply �lters very eÆ
ientlyin the Fourier domain where 
onvolution be
omes multipli
ation. It is very 
ommon for�ltering to be done in the Fourier domain!This also helps show us what �lters do. Given that we 
an de
ompose any signal into a sum ofsinusoids, we 
an 
hara
terize what a �lter does to any signal by 
hara
terizing what it doesto sinusoidal signals. The amplitude spe
trum of the �lter's DFT tells us how ea
h frequen
yin the signal is attentuated by the �lter, and the �lter's phase spe
trum tells us how ea
hsinusoidal 
omponent of the input will be phase shifted in the response. This is 
lear fromviewing 
onvolution as multipli
ation in the Fourier domain.Also helps prove properties. For example, we 
an prove that��x (h � g) = �h�x � g = h � �g�x� Symmetries:{ Real-valued signals have even-symmetri
 Fourier transforms: f̂(!) = f̂�(�!).{ Even-symmetri
 signals have real-valued Fourier 
oeÆ
ients.{ Odd-symmetri
 signals have purely imaginary Fourier 
oeÆ
ients.Remember that the transform is just an orthogonal matrix, and therefore properties thatrelate one domain (spa
e or Fourier) to the other will usually have a re
ipro
al property.Anyway, these symmetry properties are not tough to prove and we suggest doing it as anexer
ise.
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e
tions: The Fourier transform of I[�n℄ isF [I[�n℄℄ = Î[�!℄5 Another Perspe
tive on Fourier AnalysisOne of the reasons that sinusoids so important to linear, shift-invariant systems is that, when theinput to su
h a �lter is a sinusoid, then the output is also a sinusoid of the same frequen
y. Let'sshow that this is true. For now, let's 
onsider dis
rete sinusoids, I[n℄, on N samples with frequen
ies!k = 2�k=N , and let the �lter's impulse response be h[n℄. The 
onvolution equation is given byR[n℄ = N�1Xm=0 ei !k(n�m)h[m℄= ei !k n N�1Xm=0 e�i !kmh[m℄This shows that the output is equal to the input, multiplied by a 
omplex-valued number thatis equal to the inner produ
t of h[n℄ and fk[n℄ = e�i !k n. In ve
tor form we 
an write the innerprodu
t as Hk = ~fTk ~h. Then, we have R[n℄ = I[n℄Hk. (You might also re
ognise Hk as the kthFourier 
oeÆ
ient of the DFT of h.)Anyway, if we want to know what the �lter does to all sinusoids of interest, then we need toknow Hk for all 0 � k < N . We 
an also 
olle
t these values into a ve
tor: H[k℄ = ~fTk ~h. In ve
torform this be
omes a matrix equation,~H = F~h ; where F = 2664 ~fT0...~fTN�1 3775 (23)Finally, one 
an show that F = U� introdu
ed in equation (9) above. Therefore F is a s
aledunitary matrix; and its inverse is given byF�1 = 1N F�T = 1N h~f�0 ; :::; ~f�N�1iwhere F�T is often 
alled the 
onjugate transpose of F. Anyway, if we multiply (23) on both sidesby F�1, we obtain~h = 1N F�T ~H ; or equivalently, h[n℄ = 1N N�1Xk=0 ei !k nH[k℄ (24)We've just rederived the dis
rete Fourier transform and it's inverse; i.e. F is the DFT matrix,and ~H is the DFT of ~h. Although we started with only periodi
 sinusoids on N samples, 
learlywe don't need to 
onsider any more sin
e the transform we have is invertible. Equation (24) showsthat any signal h[n℄ with N samples 
an be expressed as a sum of N 
omplex-valued sinusoidalsignals.
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Figure 3: Blurring of Al. (top) the original image of Al and a blurred (low-pass) version. Theblurring kernel was simple a separable kernel 
omposed of the outer produ
t of the 5-tap 1d impulseresponse 116(1; 4; 6; 4; 1). (bottom) From left to right are the log amplitude spe
trum of Al, theamplitude spe
trum of the impulse response, and the produ
t of the two amplitude spe
tra, whi
his the amplitude spe
trum of the blurred version of Al. These spe
tra have been shifted so thatthe frequen
y equal to zero appears at the 
enter of the image.

Figure 4: From left to right is the original Al, a high-pass �ltered version of Al, and the amplitudespe
trum of the �lter. This impulse response is de�ned by Æ[n;m℄ � h[n;m℄ where h[n;m℄ is theseparable blurring kernel used in the previous �gure.
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Figure 5: From left to right is the original Al, a band-pass �ltered version of Al, and the amplitudespe
trum of the �lter. This impulse response is de�ned by the di�eren
e of two low-pass �lters.

Figure 6: Derivative �lters are 
ommon in image pro
essing and 
omputer vision. Here are 
rudeapproximations to a horizontal derivative and a verti
al derivative, ea
h of whi
h is separable and
omposed of an outer produ
t of a smoothing �lter in one dire
tion (i.e., 14 (1; 2; 1)) and a �rst-order
entral di�eren
e (i.e., 12 (�1; 0; 1)) in the other dire
tion.





 Fleet and Jepson, 2005 146 Design and Analysis of Linear Filters6.1 Fourier DomainThere are several reasons that �lters are often designed and analyzed in the Fourier domain. Ingeneral, they 
on
ern the ease with whi
h one 
an 
onstrain the tuning of the �lters to s
ale andorientation.6.2 Classes of FiltersBroadly speaking there are three main types of �lters, namely, low-pass �lters, band-pass �lters,and high-pass �lters, all de�ned with respe
t to a frequen
y spe
trum 
entered at the origin. Inthe dis
rete 
ase, frequen
ies are de�ned between �� and � in this 
ase:� Low-pass �lters attentuate all frequen
ies above a 
ut-o� frequen
y, thereby leaving signi�
antpower only at low frequen
ies. With the loss of high-frequen
y energy, the �lter outputs haverelatively poor spatial resolution, and look somewhat blurred. They are used to remove noiseand to remove what might be 
onsidered irrelevant image detail depending on the task athand.� High-pass �lters attentuate power at all frequen
ies below a 
ertain 
ut-o� frequen
y. Oneof the most important types of high-pass �lter is the ideal di�erentiation �lter. As explainedabove, one 
an infer from the di�erentiation property of Fourier transforms that the idealdi�erentiator is a high-pass �lter.� A band-pass �lter is one that attentuates power at all frequen
ies below a 
ertain 
ut-o� fre-quen
y, and all frequen
ies above another 
ut-o� frequen
y. This leaves a band of frequen
iesthat the �lter passes. The outputs of band-pass �lters are generally restri
ted to a givenrange of s
ales. If the passband region is suÆ
iently narrow then the output of a band-pass�lter will be expe
ted to modulate at frequen
ies 
lose to those at the 
enter of the pass-bandrange.Figures 3 - 6 show the appli
ation of �lters that were dis
ussed in the Linear Systems set ofnotes, along with their Fourier transforms.6.3 Least-Squares Filter Design(Modi�ed from a handout written by D. Heeger, Stanford University.)There are many ways to design dis
rete, linear �lters (e.g., see Ch. 7 of Oppenheim and S
hafer).Here, we derive a weighted least-squares design method. It is a very simple method that works wellmost of the time.We want to design a real-valued �lter h[n℄ with a �nite (hopefully very small) number of taps(nonzero samples) that has a desired Fourier spe
trum, H[k℄. For example, assume that h[n℄ willhave 5 taps, in whi
h 
ase its frequen
y response 
an be expressed asH[k℄ = 2Xn=�2h[n℄ e�i!kn ; (25)





 Fleet and Jepson, 2005 15for �2 � n � 2, 0 � k � M � 1, and !k = 2�k=M . Here, H[k℄ is the frequen
y response of h[n℄assuming that h[n℄ is the impulse response obtained with an impulse sequen
e of length M . Thisis equivalent to a sampled version of the DTFT with M samples.Let's say that ~H[k℄ is the desired frequen
y response. Our goal is to 
hoose the �lter taps, h[n℄,to minimize: M�1Xk=0 jH[k℄� ~H[k℄j2:In ve
tor form, we want to minimize jj ~H � ~~Hjj2.Even-Symmetri
 Filters. First, let's 
onsider a 5-tap, even symmetri
 �lter; i.e.,h0 = h[0℄h1 = h[1℄ = h[�1℄h2 = h[2℄ = h[�2℄;where ~h = (h0; h1; h2)T are the three distin
t �lter taps. There are only three distin
t taps be
ausewe are enfor
ing even symmetry. The frequen
y response of this �lter is obtained by writing outall the terms in Eq (25):H[k℄ = h[�1℄ exp [i !k℄ + h[1℄ exp [�i !k℄+h[�2℄ exp [i 2!k℄ + h[2℄ exp [�i 2!k℄+h[0℄:Using the fa
t that 2 
os(x) = exp(i x) + exp(�i x),H[k℄ = h0 + 2h1 
os[!k℄ + 2h2 
os[2!k℄:In ve
tor form, we 
an therefore express ~H as~H = C~h ; (26)where the 
olumns of C are 
osine basis ve
tors. The zeroth 
olumn 
orresponds to the signalC0[k℄ = 1, the �rst 
olumn 
orresponds to C1[k℄ = 2 
os[!k℄, and the se
ond 
olumn 
orrespondsto C2[k℄ = 2 
os[2!k℄.We 
an now rewrite the problem above as the minimization ofkC~h� ~~Hk2 : (27)The least-squares (regression) solution is given by the usual formula:~̂h = (CTC)�1CT ~~H; (28)where CT denotes the transpose of C.





 Fleet and Jepson, 2005 16Odd-Symmetri
 Filters. We 
an use the same approa
h to design an odd symmetri
 �lter. Fora 5-tap odd symmetri
 �lter the ve
tor ~h is given byh0 = 0h1 = �h[1℄ = h[�1℄h2 = �h[2℄ = h[�2℄:The derivation is essentially the same ex
ept that you end up with sinusoids instead of 
osinusoidsin the 
olumns of C be
ause the frequen
y response of the �lter is now given by:H[k℄ = 2 i h1 sin[!k℄ + 2 i h2 sin[2!k℄:Weighted Least-Squares. Often, we 
are more about some frequen
y 
omponents than others.For example, we might want to enfor
e that the �lter have zero d
 response. Or we might wantto enfor
e that the frequen
y response be very small (or zero) for some other set of frequen
y
omponents. In these 
ases, it is helpful to use a weighted least squares method. Use large weightsfor frequen
y 
omponents that you 
are a lot about and use small (or zero) weights for the otherfrequen
y 
omponents. Using weighted least squares, we want to 
hoose ~h to minimize:M�1Xk=0 (w[k℄)2(H[k℄� ~H[k℄)2;where w[k℄ are the weights. This 
an be written in matrix notation as follows:kA~h�~bk2;where b[k℄ = w[k℄ ~H [k℄ is a weighted version of the desired frequen
y response. The 
olumns of Aare weighted versions of the (
o)sine basis ve
tors (
olumns of C). In parti
ular, the jth 
olumnof A is given by: Aj [k℄ = w[k℄Cj [k℄. The solution (as above) is given by:~̂h = (ATA)�1AT~b:Derivative Filters Many image pro
essing algorithms depend on 
omputing derivatives of a dig-ital image: edge dete
tors (Lapla
ian zero 
rossings, gradient magnitude), steerable �lters, motionestimation, depth from stereo, anisotropi
 di�usion. But derivatives are only de�ned for 
ontinuousfun
tions of 
ontinuous variables, not for dis
retely-sampled and quantized signals. Often, peopleuse simple di�eren
es between an adja
ent pair of pixels to approximate the derivative. But one
an do mu
h better by designing a set of mat
hed pairs of derivative �lters and lowpass pre�lters.We 
on
eive of the derivative operation (on a dis
rete signal) as performing three steps:1. Re
onstru
t (interpolate) a 
ontinuous fun
tion from the dis
rete signal: p(x) � a[n℄. Herea[n℄ is a dis
rete signal, p(x) is an interpolation �lter (e.g., a sin
 or some other low pass�lter), and � means 
onvolution.2. Take the derivative of the interpolated 
ontinuous signal: ��x(p(x) � a[n℄).3. Sample the 
ontinuous derivative: S h ��x(p(x) � a[n℄)i, where S is the sampling operation.





 Fleet and Jepson, 2005 17Altogether, these three steps are the same as 
onvolving with a dis
rete �lter:S � ��x(p(x) � a[n℄)� = �S � ��xp(x)�� � a[n℄;where d[n℄ = S h ��xp(x)i is a dis
rete �lter kernel (the sampled derivative of a lowpass pre�lter).One 
ould use an ideal lowpass (sin
) fun
tion for the pre�lter, or a gentler fun
tion su
h as aGaussian. But for many pra
ti
al appli
ations, we would like a relatively small �lter kernel so we
annot use an ideal lowpass �lter (whi
h would have an in�nite size kernel). On the other hand,the important thing for many appli
ations is that we end up with a pair of signals, one whi
h isthe derivative of the other. A non-ideal interpolator will introdu
e some distortions, making itinappropriate to 
ompare the original signal with its \derivative." This suggests that we should
ompute two 
onvolution results: (1) the pre�ltered original 
omputed by 
onvolving with thedis
rete pre�lter p[n℄, and (2) the derivative of the pre�ltered original 
omputed by 
onvolvingwith the dis
rete derivative �lter d[n℄.Now we wish to design a dis
rete pre�lter p[n℄ = S[p(x)℄ and a dis
rete derivative �lter d[n℄ =S[ ��xd(x)℄ so that the latter is the derivative of the former. In the frequen
y domain, we want:D[k℄ = i !k P [k℄ ;where P [k℄ is the frequen
y response of p[n℄, D[k℄ is the frequen
y response of d[n℄, and 0 � k �(M � 1). This equation is based on the derivative property of the Fourier transform given above.Using weighted least-squares, we want to minimize:M�1Xk=0 (w[k℄)2(D[k℄ � i !kP [k℄)2:This 
an be rewritten as: kA~d�A0~pk2;where ~p is a ve
tor 
ontaining the pre�lter kernel, ~d is a ve
tor 
ontaining the derivative kernel,A 
ontains weighted versions of the Fourier basis fun
tions as above, and A0 is a similar matrix
ontaining the Fourier basis fun
tions multiplied by i!k. After 
onsolidating terms, we want tominimize kM~uk2;where M = (�A0 jA) and ~u =  ~p~d ! :The solution ~̂u is given by the eigenve
tor 
orresponding to the smallest eigenvalue ofMTM. Thenthe �lters are both renormalized (by the same s
ale fa
tor) so that p[n℄ has unit d
 response (i.e.,the samples of p[n℄ sum to one).An example of a pair of 5-tap �lters are:p[n℄ = [0:035698; 0:24887; 0:43086; 0:24887; 0:035698℄d[n℄ = [0:10766; 0:28267; 0; � 0:28267; � 0:10766℄The frequen
y responses of these two �lters are 
ompared in Figure 7 .
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Figure 7: Frequen
y responses of 2-tap, �nite di�eren
e (left) and 5-tap (right) derivative/pre�lterpairs. Shown are the magnitude of the Fourier transforms of: a) the derivative kernel (dashed line),and b) the frequen
y-domain derivative of the pre�lter (that is, its Fourier magnitude multipliedby ! = 2�(k=M).


