
1Notes on Fourier AnalysisDavid J. Fleet and Allan D. JepsonJanuary 11, 2005Fourier analysis plays a ritial role in applied mathematis. In omputer vision it plays aentral role in the design and analysis of early operators. In the study of biologial visual systemsFourier analysis is entral to understanding of visual stimuli, to measuring input/output propertiesof neurons, and to the development of omputational models.In essene, the Fourier transform of an image is a deomposition of a signal into a weighted sumof sinusoidal signals. That is, the Fourier transform spei�es, for eah frequeny, how muh of asinusoidal signal at that frequeny exists in the signal. In disrete terms, it is simply an orthogonalmatrix transform, i.e., a hange of basis.In vision, many of the image operations we employ are linear and shift-invariant. Sinusoidalsignals, or Fourier basis funtions, are eigen-funtions of this lass of operators whih makes thema onvenient basis set for design and analysis of linear �lters. Fourier representations are alsoonvenient for speifying various �lter design onstraints related to the sale and orientation ofimage information that we wish to enhane or attenuate. Moreover, Fourier theory provides a verynie starting point for the study of other image transforms suh as the disrete osine transform(DCT) that is used in JPEG ompression, or wavelet transforms whih have beome popular inmany ontexts for the analysis and synthesis of signals at multiple sales.In what follows we will �rst introdue the basi onepts of the Fourier transform with disretesignals. We'll ome bak to the �lters and eigenfuntions later.1 Disrete Fourier Transform (DFT)Let I[n℄ be a disrete signal of length N . For onveniene, let I[n℄ be a periodi signal with a periodlength of N , or equivalently, we an onsider I[n℄ to be yli, so that shifts are irular shifts.The entral idea in Fourier analysis is to hange the basis in whih we represent the signal from asequene of shifted delta funtions (impulses) to a set of global sinusoidal signals, i.e., s[n℄ = sin(!n)where ! is the frequeny of the sinusoid. Before introduing Fourier analysis, it is useful to reviewtwo important properties of disrete signals:� First, the frequeny ! is only unique between 0 and 2�. This is easy to see by noting that,beause n is an integer, sin((! + 2�)n) = sin(!n).� Seond, if we only onsider periodi signals of length N , then we need only onsider sinusoidswhih are periodi on the same domain. These have the form sin(!kn) or os(!kn) for!k = 2�k=N with k an integer.� Unique sinusoids exist only for N distint frequenies !k = 2�k=N , say for the integers kbetween 0 and N � 1.Finally, when working with sinusoidal signals, it's often very onvenient to express then usingomplex exponentials. Remember Euler's formula:ei!n = os(!n) + i sin(!n)
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0.5Figure 1: Here is a simple example of a Fourier deomposition. A Gaussian signal is shown on theleft, and the �rst 4 terms of its Fourier deomposition are shown on the right.where i2 = �1. Conservely, with this one an writeos(!n) = 12 hei!n + e�i!ni ; sin(!n) = 12i hei!n � e�i!ni :1.1 Fourier DeompositionThe Fourier transform allows to write an arbitrary disrete signal I[n℄ as a weighted sum of phase-shifted sinusoidal signals. Assuming that our signal I[n℄ is really just N samples from a periodisignal (with periodN), then we should only use periodi sinusoids in the sum that we use to expressit. Therefore, the sum has the formI[n℄ = N�1Xk=0 �k sin(!kn+ �k)= N�1Xk=0 �k sin(�k) os(!kn) + �k os(�k) sin(!kn)= N�1Xk=0 ak os(!kn) + N�1Xk=0 bk sin(!kn) (1)Note that the sinusoidal signal sin(!kn) is all zeros when k = 0, beause when k = 0, then !0 = 0and therefore sin(!0n) = 0 for all n. Therefore, normally one has the seond summation onlyinlude terms for k � 1, but we'll keep all N terms for now.1.2 Fourier TransformSo, now the question is: how do we get these oeÆients ak and bk? Before answering this, let'srewrite equation (1) in a matrix form. Towards this end, imagine that our input signal I[n℄ iswritten as an N -dimensional vetor I = (I[0℄; :::; I(N � 1))T . In addition, let a = (a0; :::; aN�1)Tand b = (b0; :::; bN�1)T be N -vetors for the oeÆients. Similarly, let's write the elementarysinusoidal signals as vetors, i.e. Sk = sin(!kn) and Ck = os(!kn). That is, the jth omponent of



 Fleet and Jepson, 2005 3
1

2

0

n

1 20 kFigure 2: DFT matries for the osine and sine omponents of F for N = 16. (left) the osinematrix C with frequenies !k = 2�k=16 for k from 0 to 15 going from left to right, and n goingfrom 0 to 15 from top to bottom. The �rst row and olumns are all ones. (right) the sine matrix Swith frequenies !k = 2�k=16 for k from 0 to 15 going from left to right. In this ase, the �rst rowand olumn (and the 9th row and olumn) are �lled with zeros. Note the symmetry of C and S,both aross the main diagonal and also aross the 9th anti-diagonal (roughly from the bottom-leftto the top-right).the vetor Ck would be os(2�N kj), for eah j between 0 and N � 1. Finally, ollet these sinusoidalsignals into N �N matries, C = (C0 C1 : : :CN�1) and S = (S0 S1 : : :SN�1). Then, (1) beomesI = N�1Xk=0 akCk + N�1Xk=0 bkSk = Ca+ Sb: (2)We an rewrite this sum as a matrix equation:I = h C S i  ab ! (3)To understand this, remember the way matrix multipliation works: The signal I on the left is aweighted sum of the olumns of the N �2N matrix [C S℄, whih is formed by onatenating C andS. The weights are oeÆients in the vetor on the right.Remember that the (n+ 1; k + 1) element of C is os(2�N kn) where k + 1 spei�es the olumnindex, and n+1 spei�es the row. Similarly the orresponding element of S is sin(2�N kn). Thereforethe olumns of C and S are sinusoidal basis vetors. Moreover, from these expressions it is learthat C and S are symmetri matries (i.e. CT = C and ST = S). Due to this symmetry, therows of C and S are also formed from the same sinusoidal basis vetors, namely Ck and Sk, fork = 0; : : : ; N � 1.Let's rewrite equation (3) as I = F (4)where F = [C S℄ is the matrix above, the olumns of whih are the elementary sinusoidal signals,and the vetor  = (aT ;bT )T ontains the oe�ients ak and bk as in (3). Note that F has 2N



 Fleet and Jepson, 2005 4olumns, eah of whih is of length N , so it is a N�2N matrix. That is, the length of the signal I isonly half of the number of oeÆients  (i.e. N versus 2N). Sine there are more oeÆients thansignal sample values, the representation of I in terms of  is said to be over-omplete. Due tothis over-ompleteness, a basi result of linear algebra ensures us that any solution  of (4) is notunique. This non-uniqueness won't bother us here sine we will pik one solution by onvention.Now, one way to determine suitable oeÆients ak and bk is to �nd a 2N �N matrix G suhthat when we form  = GI it turns out that  satis�es (4). That is, for any I we have  = GI suhthat I = F = FGI: (5)In other words, we need to �nd G suh that FG = Id(N) where Id(N) denotes an identity matrixof size N . Suh a matrix G is alled a pseudo-inverse of F. If we �nd suh a matrix G, thenomputing suitable oeÆients simply amounts to performing the matrix-vetor produt  = GI.Our main result is that we an take G = 1NFT . In partiular, we show below that1N FFT = Id(N): (6)In general, a linear transformation of a signal I of the form  = FT I is said to be self-inverting ifthe signal an be reonstruted simply as I = �F for some onstant �. The key property here issimply that, for a self-inverting transformation, a onstant times the transpose of the transformationmatrix serves as a pseudo-inverse of the transformation. Our main result an therefore be restatedas, the disrete Fourier transformation matrix F T is self-inverting.We reated F in (4) above so that its olumns were the elementary sinusoidal signals Ck andSk. Therefore the rows of FT are also these same sinusoidal signals. Furthermore, to �nd theoeÆients ak and bk one simply multiplies the matrix FT with the disrete signal I, and dividethe result by N . In e�et, this amounts to taking the inner produt of the signal I with eahelementary sinusoidal signal (i.e. eah olumn of F). In pratie, matrix-vetor multipliation isrelatively slow for full 2N �N matries suh as FT . Matrix-vetor multipliation requires O(N2)multipliations and additions, where N is the number of samples in the signal. By omparison, thefast Fourier transform (FFT) algorithm that is widely used requires onlyO(N logN) multipliationsand additions. Note that for images, where the number of pixels an be as large as 106 or higher,the di�erene between O(N2) and O(N logN) is signi�ant.The set of oeÆients, ak; bk, tells us \how muh" of eah frequeny !k exists in our signal, andat what phase. The oeÆients are alled the Fourier transform of I[n℄, and are often written asomplex numbers Î[k℄ = ak � i bk for onveniene. Thus, the Fourier transform an be viewed as afuntion of frequeny, again, speifying how muh, and at what phase, of eah frequeny exists inour signal I[n℄. In the ontinuous ase, the Fourier transform is an expliit funtion of frequeny,written f̂(!), while here, we write it as a funtion of the frequeny index k, beause k is an integerand !k is not.With this notation, the usual way a disrete Fourier transform (DFT) is written is as follows:Î[k℄ = Xn I[n℄ e�i!kn (7)I[n℄ = 1N Xk Î[k℄ ei!kn (8)



 Fleet and Jepson, 2005 5To see the relationship between this formulation and the matrix equation above, remember thatei!kn = os(!kn) + i sin(!kn). The real part of the right hand sides in (7) and (8) thereforeprovide the equations above (exept we have hosen to move the normalization term 1=N to thereonstrution equation, i.e. we use  = FT I and I = (1=N)F).1.3 Proof of the Self-Inverting PropertyThe omplex form of the DFT in (7) and (8) is onvenient for proving that the matrix F is self-inverting. In partiular, let U be the N �N omplex-valued matrixU = C+ iS; (9)where C and S are as above (see Figure 1.2). Then the (n+ 1; k + 1) element of U equals ei 2�N nk.Consider the matrix U�U, where U� denotes the transpose of the omplex onjugate of U.Then from the previous expression for the elements of U, it follows that the (k + 1; j + 1) elementof U�U is N�1Xn=0 e�i 2�N knei 2�N nj = N�1Xn=0 ei 2�N (j�k)n = NÆj;k: (10)In the last term above Æj;k is the Kroneker delta, whih is equal to one when j = k and zerootherwise. This last equality is explained below.For j = k eah of the terms in the sum in the middle term of (10) are e0 = 1, so the sum is Nfor this ase. Otherwise, suppose j 6= k, with 0 � j; k � N � 1. For suh a pair j and k, de�ne theonstant � = 2�N (j � k). Then the seond sum above an be rewritten asN�1Xn=0 ei 2�N (j�k)n = N�1Xn=0 ei�n = z (11)for some omplex number z. But note that �N = 2�(j�k), whih is an integer multiple of 2�, andtherefore ei�N = 1 = e0. Therefore, upon multiplying equation (11) by ei� we �ndzei� = N�1Xn=0 ei�(n+1)= ei�N + N�1Xn=1 ei�n= 1 + N�1Xn=1 ei�n = z:Thus zei� = z, so either z = 0 or ei� = 1. But sine 0 � j; k � N � 1 and j 6= k it follows thatei� 6= 1. Therefore z = 0, whih ompletes the justi�ation of equation (10).We have therefore shown that U�U = NId(N). By the de�nition ofU in (9), and the symmetryof C and S, it follows that U�U = (C � iS)(C + iS) = C2 + S2. Therefore we have shown thatC2 + S2 = N Id(N). Finally, notie that by de�nition F = [C S℄, so FF T = C2 + S2. As aonsequene, FF T = N Id(N), proving that F is self-inverting.



 Fleet and Jepson, 2005 61.4 Disrete Fourier Transform and Unitary MatriesFrom the preeeding analysis, we an write the DFT in a third (and �nal) form. This last versionof the DFT provides us with a simple intuitive model for the transform. By inluding the salefator of 1=p(N) with U, we an de�ne the disrete Fourier transform of a signal I and its inversetransform as Î = 1pNU�I; (12)I = 1pNU Î (13)It follows from the previous setion that 1pNU is a unitary N �N matrix.In this way, one an view the Fourier transform simply as an orthonormal hange of basis.In more familiar terms, it involves only rotations and reetions of the original oordinates. Thesinusoids in (3), or equivalently the omplex exponentials in (13), an be viewed as a ompletespanning set for the N -dimensional vetor spae of omplex-valued signals. The kth oeÆients akand bk an be viewed as the projetion of I onto the vetors Ck and Sk in the spanning set. Withreal-valued inputs, the representation is overomplete sine there are 2N real-valued oeÆients (ie.N omplex-valued oeÆients), but only N real numbers in the signal I. If I were omplex-valuedrather than real-valued, then the transform would be a omplete representation, with just as manyFourier oeÆients as input values. In fat, one an show that for real-valued inputs the Fourierdomain is symmetri, and this aounts for the redundany.When we introdued Fourier analysis above, we restrited ourselves to signals that were periodion N samples. This allowed us to onsider only N frequenies. You may now ask, do we need toonsider more frequenies in order to deompose a signal into a sum of sinusoids? The answer is no.The DFT is (modulo saling) an orthogonal transform, and therefore we an ompletely representand reonstrut any signal I with only N frequenies.1.5 ExamplesLet's say that the input is just a sinusoid of the form I[n℄ = A sin(!3n+�) where A is the amplitude.Using the orthogonality of the sinusoidal signals (i.e., (10)), the inner produt of I[n℄ with eah rowof F T will be zero, exept those rows ontaining C3 and S3. In other words, only the oeÆientsthat orrespond to the frequeny in the signal, i.e., a3 and b3, are non-zero. Moreover, one anshow that the phase � is given by the artan of b3=a3. And the magnitude of the signal, A, is equalto 1Nqa23 + b23.How about the ase where the input is simply a delta funtion? For example let I[n℄ = 0 forall n > 0, and I[0℄ = 1. In this ase, when one takes the produt  = FT I, one an see that theresulting oeÆient vetor  is simply equal to the �rst olumn of FT . This olumn, as shownabove, ontains C0 on top of S0. Furthermore, when the frequeny is zero, os(0) = 1 and sin(0) =0. Therefore, ak = 1 for all k and bk = 0. This is the well-known result that the Fourier transformof a delta funtion at the origin is onstant. If we move the delta funtion to another loation, thenits Fourier transform will be a omplex exponential.



 Fleet and Jepson, 2005 71.6 Fourier DomainRemember that our vetor I is a representation of a signal I[n℄, whih is a funtion of the spatialvariable n. We normally plot I[n℄ as a funtion of spatial position n.Similarly, it is ommon to plot the Fourier transform oe�ients Î[k℄ = ak � i bk as a funtionof frequeny !k. So with frequeny along the x � axis we an plot the magnitude jÎ [k℄j whih isalled the amplitude spetrum, and we an plot the phase angle arg[Î[k℄℄ (i.e., atan2 for you Cprogrammers), whih is alled the phase spetrum. We refer to funtions of frequeny, as funtionsin the frequeny domain, where the independent variable is frequeny.When the magnitude (amplitude) of a partiular Fourier oe�ient jÎ [k℄j is large, we say thatthere is a lot of power at frequeny !k in the signal. The distribution of power, as a funtion of!k, tells us a lot about the properties of the signal.2 Other Fourier Transforms2.1 Disrete-Time Fourier TransformAs the length of the signal, N , inreases toward in�nity, the number of Fourier oeÆients thatwe need to ompute grows similarly. In the limit, although the signal is disrete, our sampling offrequenies between 0 and 2� beomes dense, so that the Fourier transform beomes a ontinuousfuntion of frequeny. Î(!) = 1Xn=�1 I[n℄ e�i!nfor 0 � ! < 2�. The inverse transform, with whih we reonstrut the signal is then given byI[n℄ = 12� Z 2�0 Î(!)ei!nd!This transform is used for a number of di�erent purposes. If one had a disrete signal of �nitelength, one ould in priniple pad it with zeros out to in�nity and take its DTFT. If the signal wasan impulse response, then the DTFT would tell you how the �lter behaves when applied to anyfrequeny of interest. This is often very useful. It is also easy to show that the DFT is simply asampled version of DTFT.Finally, note that one an ompute a good approximation to the DTFT without padding thesignal with zeros. Rather, one simply has to add more rows to the DFT matrix at the frequeniesthat one is interested in.2.1.1 ExamplesHow about some examples with smoothing �lters like h[n℄ = 14 [1; 2; 1℄? Well, for onveniene,assume that we take the DTFT by padding h[n℄ with zeros, and assume that h[n℄ has it's nonzerosamples entered at the origin. Then,ĥ(!) = 1Xn=�1h[n℄ e�i!n= 1Xn=�1h[n℄ e�i!n



 Fleet and Jepson, 2005 8= 14 �ei! + 1 + e�i!�= 12(1 + os(!))2.2 Fourier Transforms of Continuous Periodi SignalsImagine now that we have a signal I(x) that is de�ned at all spatial positions x on the real-line.As above with the disrete ase, we'll also assume that I(x) is periodi with period T ; that is,I(x + T ) = I(x). This may be beause I(x) is atually periodi, or it may be that our signal ofinterest is of �nite length T , and I(x) is a periodi version of it. In either ase, we expet all of therelevant elementary sinusoidal omponents of I(x) to also be periodi with period T . Therefore, wewill express the signal I(x) as a weighted sum of sinusoidal signals with frequenies !k = 2�k=Twhere k is an arbitrary integer, as followsI(x) = 1Xk=�1�kei!kn (14)Beause the signal is not disrete, it an ontain sinusoids of arbitrarily high frequenies. Thereforethe sum is in�nite.The oeÆients in the sum are given by the inner produt between the signal I(x) and basisfuntions. The inner produt is no longer a vetor dot-produt as above. It is now de�ned by anintegral for ontinuous funtions, over an interval of length T within whih the signal is unique:�k = 1T Z T=2�T=2 I(x)e�i!kxdx (15)These oeÆients �k are the Fourier oeÆients. They are often referred to as a Fourier seriesrepresentation of I(x).Note that while the periodi signal I(x) is ontinuous, de�ned everywhere on the real line, theFourier transform is still a disrete signal. It is de�ned only at a disrete set of frequenies !k.2.3 Fourier Transforms of Continuous SignalsAbove we have disussed the Fourier transforms of disrete signals of bounded extent and of on-tinuous signals of bounded extent. The most general ase onerns a suÆiently smooth funtionwith arbitrary extent de�ned on the real-line, for whih we annot assume periodiity. In this ase,for suÆiently smooth signals I(x), the Fourier transform Î(!) isÎ(!) = Z I(x)e�i!xdxI(x) = 12� Z Î(!)ei!x:Now, both the input signal I(x) and the Fourier transform Î(!) are ontinuous funtions de�nedeverywhere on x (spatial position) and ! (frequeny domain).



 Fleet and Jepson, 2005 93 Multi-Dimensional Fourier TransformsThe same basi ideas hold in multple dimensions. In the ontinuous domain, we haveÎ(~!) = Z ::: Z I(x) exp[�i~!Tx℄dxI(x) = 1(2�)n Z ::: Z Î(~!) exp[i~!Tx℄d~!:where x = (x1; :::; xn) is the n-dimensional spatial position, ~! = (!1; :::; !n) denotes the orre-sponding frequeny variables, and ~!Tx denotes the usual dot produt.Note that if I(x) is separable, then the multi-dimensional Fourier transform is the produt ofthe 1d Fourier transforms. For example, if I(x; y) = f(x)g(y), thenÎ(!x; !y) = Z Z I(x; y)e�i(x!x+y!y)dxdy= Z f(x)e�ix!xdx Z g(y)e�iy!ydy= f̂(!) ĝ(!)4 Properties of the Fourier TransformIn what follows we will list several important properties of the Fourier transform that we will useoasionally. For notational onveniene, we will write the Fourier transform of f(x) as f̂(~!) =F [f(~x)℄ where ~x = (x1; :::xn) and ~! = (!1; :::!n). Moreover, note that many of these properties aremost straightforward to de�ne in the ontinuous ase.� Shifting Property: F [f(x� x0)℄ = exp(�i ~!Tx0) f̂(~!) (16)In partiular, note that F [Æ(x � x0)℄ = exp(�i ~!Tx0).You an prove this with substitution and hange of variables.� Modulation Property: F hexp(i ~!T0 x) f(x)i = f̂(~! � ~!0) (17)This is really idential to the shifting property, and an be proven in the same way, but withthe Fourier domain and the spatial domain swithed.� Di�erentiation: F "�nf(x)�xjn # = (i !j)n f̂(~!) (18)This is a little tougher to prove, but give it a try. For intuition, note that � sin(!x)�x = ! os(!x).One an also use this fat, along with the onvolution theorem below to show that the Fouriertransform of the impulse response of a perfet n-th order di�erentiator is simply (i!)n.



 Fleet and Jepson, 2005 10� Parseval's Theorem: 2� <f(x); g(x)> = <f̂(~!); ĝ(~!)> ; (19)where the inner produt < �; �> is de�ned by<f(x); g(x)> = Z 1�1 f(x)� g(x) dx : (20)Aordingly, k f(x) k2 = <f(x); f(x)> . The proof relies on the fat that orthogonal trans-formations (rotations) do not hange the lengths of vetors, and the Fourier transform isbasially an orthogonal (unitary) transform.� Convolution Theorem: F [f � g℄ = F [f ℄ F [g℄ (21)Let's prove the Convolution Theorem in the disrete 1d ase:F [f � g℄ = Xn f � g e�i!n = Xn Xm f [m℄g[n�m℄e�i!n= Xm f [m℄Xn g[n�m℄e�i!n= Xm f [m℄F [g℄e�i!m (shift property)= F [g℄F [f ℄ (22)This theorem is very important in pratie. It means that one an apply �lters very eÆientlyin the Fourier domain where onvolution beomes multipliation. It is very ommon for�ltering to be done in the Fourier domain!This also helps show us what �lters do. Given that we an deompose any signal into a sum ofsinusoids, we an haraterize what a �lter does to any signal by haraterizing what it doesto sinusoidal signals. The amplitude spetrum of the �lter's DFT tells us how eah frequenyin the signal is attentuated by the �lter, and the �lter's phase spetrum tells us how eahsinusoidal omponent of the input will be phase shifted in the response. This is lear fromviewing onvolution as multipliation in the Fourier domain.Also helps prove properties. For example, we an prove that��x (h � g) = �h�x � g = h � �g�x� Symmetries:{ Real-valued signals have even-symmetri Fourier transforms: f̂(!) = f̂�(�!).{ Even-symmetri signals have real-valued Fourier oeÆients.{ Odd-symmetri signals have purely imaginary Fourier oeÆients.Remember that the transform is just an orthogonal matrix, and therefore properties thatrelate one domain (spae or Fourier) to the other will usually have a reiproal property.Anyway, these symmetry properties are not tough to prove and we suggest doing it as anexerise.



 Fleet and Jepson, 2005 11� Reetions: The Fourier transform of I[�n℄ isF [I[�n℄℄ = Î[�!℄5 Another Perspetive on Fourier AnalysisOne of the reasons that sinusoids so important to linear, shift-invariant systems is that, when theinput to suh a �lter is a sinusoid, then the output is also a sinusoid of the same frequeny. Let'sshow that this is true. For now, let's onsider disrete sinusoids, I[n℄, on N samples with frequenies!k = 2�k=N , and let the �lter's impulse response be h[n℄. The onvolution equation is given byR[n℄ = N�1Xm=0 ei !k(n�m)h[m℄= ei !k n N�1Xm=0 e�i !kmh[m℄This shows that the output is equal to the input, multiplied by a omplex-valued number thatis equal to the inner produt of h[n℄ and fk[n℄ = e�i !k n. In vetor form we an write the innerprodut as Hk = ~fTk ~h. Then, we have R[n℄ = I[n℄Hk. (You might also reognise Hk as the kthFourier oeÆient of the DFT of h.)Anyway, if we want to know what the �lter does to all sinusoids of interest, then we need toknow Hk for all 0 � k < N . We an also ollet these values into a vetor: H[k℄ = ~fTk ~h. In vetorform this beomes a matrix equation,~H = F~h ; where F = 2664 ~fT0...~fTN�1 3775 (23)Finally, one an show that F = U� introdued in equation (9) above. Therefore F is a saledunitary matrix; and its inverse is given byF�1 = 1N F�T = 1N h~f�0 ; :::; ~f�N�1iwhere F�T is often alled the onjugate transpose of F. Anyway, if we multiply (23) on both sidesby F�1, we obtain~h = 1N F�T ~H ; or equivalently, h[n℄ = 1N N�1Xk=0 ei !k nH[k℄ (24)We've just rederived the disrete Fourier transform and it's inverse; i.e. F is the DFT matrix,and ~H is the DFT of ~h. Although we started with only periodi sinusoids on N samples, learlywe don't need to onsider any more sine the transform we have is invertible. Equation (24) showsthat any signal h[n℄ with N samples an be expressed as a sum of N omplex-valued sinusoidalsignals.
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Figure 3: Blurring of Al. (top) the original image of Al and a blurred (low-pass) version. Theblurring kernel was simple a separable kernel omposed of the outer produt of the 5-tap 1d impulseresponse 116(1; 4; 6; 4; 1). (bottom) From left to right are the log amplitude spetrum of Al, theamplitude spetrum of the impulse response, and the produt of the two amplitude spetra, whihis the amplitude spetrum of the blurred version of Al. These spetra have been shifted so thatthe frequeny equal to zero appears at the enter of the image.

Figure 4: From left to right is the original Al, a high-pass �ltered version of Al, and the amplitudespetrum of the �lter. This impulse response is de�ned by Æ[n;m℄ � h[n;m℄ where h[n;m℄ is theseparable blurring kernel used in the previous �gure.
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Figure 5: From left to right is the original Al, a band-pass �ltered version of Al, and the amplitudespetrum of the �lter. This impulse response is de�ned by the di�erene of two low-pass �lters.

Figure 6: Derivative �lters are ommon in image proessing and omputer vision. Here are rudeapproximations to a horizontal derivative and a vertial derivative, eah of whih is separable andomposed of an outer produt of a smoothing �lter in one diretion (i.e., 14 (1; 2; 1)) and a �rst-orderentral di�erene (i.e., 12 (�1; 0; 1)) in the other diretion.



 Fleet and Jepson, 2005 146 Design and Analysis of Linear Filters6.1 Fourier DomainThere are several reasons that �lters are often designed and analyzed in the Fourier domain. Ingeneral, they onern the ease with whih one an onstrain the tuning of the �lters to sale andorientation.6.2 Classes of FiltersBroadly speaking there are three main types of �lters, namely, low-pass �lters, band-pass �lters,and high-pass �lters, all de�ned with respet to a frequeny spetrum entered at the origin. Inthe disrete ase, frequenies are de�ned between �� and � in this ase:� Low-pass �lters attentuate all frequenies above a ut-o� frequeny, thereby leaving signi�antpower only at low frequenies. With the loss of high-frequeny energy, the �lter outputs haverelatively poor spatial resolution, and look somewhat blurred. They are used to remove noiseand to remove what might be onsidered irrelevant image detail depending on the task athand.� High-pass �lters attentuate power at all frequenies below a ertain ut-o� frequeny. Oneof the most important types of high-pass �lter is the ideal di�erentiation �lter. As explainedabove, one an infer from the di�erentiation property of Fourier transforms that the idealdi�erentiator is a high-pass �lter.� A band-pass �lter is one that attentuates power at all frequenies below a ertain ut-o� fre-queny, and all frequenies above another ut-o� frequeny. This leaves a band of frequeniesthat the �lter passes. The outputs of band-pass �lters are generally restrited to a givenrange of sales. If the passband region is suÆiently narrow then the output of a band-pass�lter will be expeted to modulate at frequenies lose to those at the enter of the pass-bandrange.Figures 3 - 6 show the appliation of �lters that were disussed in the Linear Systems set ofnotes, along with their Fourier transforms.6.3 Least-Squares Filter Design(Modi�ed from a handout written by D. Heeger, Stanford University.)There are many ways to design disrete, linear �lters (e.g., see Ch. 7 of Oppenheim and Shafer).Here, we derive a weighted least-squares design method. It is a very simple method that works wellmost of the time.We want to design a real-valued �lter h[n℄ with a �nite (hopefully very small) number of taps(nonzero samples) that has a desired Fourier spetrum, H[k℄. For example, assume that h[n℄ willhave 5 taps, in whih ase its frequeny response an be expressed asH[k℄ = 2Xn=�2h[n℄ e�i!kn ; (25)



 Fleet and Jepson, 2005 15for �2 � n � 2, 0 � k � M � 1, and !k = 2�k=M . Here, H[k℄ is the frequeny response of h[n℄assuming that h[n℄ is the impulse response obtained with an impulse sequene of length M . Thisis equivalent to a sampled version of the DTFT with M samples.Let's say that ~H[k℄ is the desired frequeny response. Our goal is to hoose the �lter taps, h[n℄,to minimize: M�1Xk=0 jH[k℄� ~H[k℄j2:In vetor form, we want to minimize jj ~H � ~~Hjj2.Even-Symmetri Filters. First, let's onsider a 5-tap, even symmetri �lter; i.e.,h0 = h[0℄h1 = h[1℄ = h[�1℄h2 = h[2℄ = h[�2℄;where ~h = (h0; h1; h2)T are the three distint �lter taps. There are only three distint taps beausewe are enforing even symmetry. The frequeny response of this �lter is obtained by writing outall the terms in Eq (25):H[k℄ = h[�1℄ exp [i !k℄ + h[1℄ exp [�i !k℄+h[�2℄ exp [i 2!k℄ + h[2℄ exp [�i 2!k℄+h[0℄:Using the fat that 2 os(x) = exp(i x) + exp(�i x),H[k℄ = h0 + 2h1 os[!k℄ + 2h2 os[2!k℄:In vetor form, we an therefore express ~H as~H = C~h ; (26)where the olumns of C are osine basis vetors. The zeroth olumn orresponds to the signalC0[k℄ = 1, the �rst olumn orresponds to C1[k℄ = 2 os[!k℄, and the seond olumn orrespondsto C2[k℄ = 2 os[2!k℄.We an now rewrite the problem above as the minimization ofkC~h� ~~Hk2 : (27)The least-squares (regression) solution is given by the usual formula:~̂h = (CTC)�1CT ~~H; (28)where CT denotes the transpose of C.



 Fleet and Jepson, 2005 16Odd-Symmetri Filters. We an use the same approah to design an odd symmetri �lter. Fora 5-tap odd symmetri �lter the vetor ~h is given byh0 = 0h1 = �h[1℄ = h[�1℄h2 = �h[2℄ = h[�2℄:The derivation is essentially the same exept that you end up with sinusoids instead of osinusoidsin the olumns of C beause the frequeny response of the �lter is now given by:H[k℄ = 2 i h1 sin[!k℄ + 2 i h2 sin[2!k℄:Weighted Least-Squares. Often, we are more about some frequeny omponents than others.For example, we might want to enfore that the �lter have zero d response. Or we might wantto enfore that the frequeny response be very small (or zero) for some other set of frequenyomponents. In these ases, it is helpful to use a weighted least squares method. Use large weightsfor frequeny omponents that you are a lot about and use small (or zero) weights for the otherfrequeny omponents. Using weighted least squares, we want to hoose ~h to minimize:M�1Xk=0 (w[k℄)2(H[k℄� ~H[k℄)2;where w[k℄ are the weights. This an be written in matrix notation as follows:kA~h�~bk2;where b[k℄ = w[k℄ ~H [k℄ is a weighted version of the desired frequeny response. The olumns of Aare weighted versions of the (o)sine basis vetors (olumns of C). In partiular, the jth olumnof A is given by: Aj [k℄ = w[k℄Cj [k℄. The solution (as above) is given by:~̂h = (ATA)�1AT~b:Derivative Filters Many image proessing algorithms depend on omputing derivatives of a dig-ital image: edge detetors (Laplaian zero rossings, gradient magnitude), steerable �lters, motionestimation, depth from stereo, anisotropi di�usion. But derivatives are only de�ned for ontinuousfuntions of ontinuous variables, not for disretely-sampled and quantized signals. Often, peopleuse simple di�erenes between an adjaent pair of pixels to approximate the derivative. But onean do muh better by designing a set of mathed pairs of derivative �lters and lowpass pre�lters.We oneive of the derivative operation (on a disrete signal) as performing three steps:1. Reonstrut (interpolate) a ontinuous funtion from the disrete signal: p(x) � a[n℄. Herea[n℄ is a disrete signal, p(x) is an interpolation �lter (e.g., a sin or some other low pass�lter), and � means onvolution.2. Take the derivative of the interpolated ontinuous signal: ��x(p(x) � a[n℄).3. Sample the ontinuous derivative: S h ��x(p(x) � a[n℄)i, where S is the sampling operation.



 Fleet and Jepson, 2005 17Altogether, these three steps are the same as onvolving with a disrete �lter:S � ��x(p(x) � a[n℄)� = �S � ��xp(x)�� � a[n℄;where d[n℄ = S h ��xp(x)i is a disrete �lter kernel (the sampled derivative of a lowpass pre�lter).One ould use an ideal lowpass (sin) funtion for the pre�lter, or a gentler funtion suh as aGaussian. But for many pratial appliations, we would like a relatively small �lter kernel so weannot use an ideal lowpass �lter (whih would have an in�nite size kernel). On the other hand,the important thing for many appliations is that we end up with a pair of signals, one whih isthe derivative of the other. A non-ideal interpolator will introdue some distortions, making itinappropriate to ompare the original signal with its \derivative." This suggests that we shouldompute two onvolution results: (1) the pre�ltered original omputed by onvolving with thedisrete pre�lter p[n℄, and (2) the derivative of the pre�ltered original omputed by onvolvingwith the disrete derivative �lter d[n℄.Now we wish to design a disrete pre�lter p[n℄ = S[p(x)℄ and a disrete derivative �lter d[n℄ =S[ ��xd(x)℄ so that the latter is the derivative of the former. In the frequeny domain, we want:D[k℄ = i !k P [k℄ ;where P [k℄ is the frequeny response of p[n℄, D[k℄ is the frequeny response of d[n℄, and 0 � k �(M � 1). This equation is based on the derivative property of the Fourier transform given above.Using weighted least-squares, we want to minimize:M�1Xk=0 (w[k℄)2(D[k℄ � i !kP [k℄)2:This an be rewritten as: kA~d�A0~pk2;where ~p is a vetor ontaining the pre�lter kernel, ~d is a vetor ontaining the derivative kernel,A ontains weighted versions of the Fourier basis funtions as above, and A0 is a similar matrixontaining the Fourier basis funtions multiplied by i!k. After onsolidating terms, we want tominimize kM~uk2;where M = (�A0 jA) and ~u =  ~p~d ! :The solution ~̂u is given by the eigenvetor orresponding to the smallest eigenvalue ofMTM. Thenthe �lters are both renormalized (by the same sale fator) so that p[n℄ has unit d response (i.e.,the samples of p[n℄ sum to one).An example of a pair of 5-tap �lters are:p[n℄ = [0:035698; 0:24887; 0:43086; 0:24887; 0:035698℄d[n℄ = [0:10766; 0:28267; 0; � 0:28267; � 0:10766℄The frequeny responses of these two �lters are ompared in Figure 7 .
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Figure 7: Frequeny responses of 2-tap, �nite di�erene (left) and 5-tap (right) derivative/pre�lterpairs. Shown are the magnitude of the Fourier transforms of: a) the derivative kernel (dashed line),and b) the frequeny-domain derivative of the pre�lter (that is, its Fourier magnitude multipliedby ! = 2�(k=M).


