Feature Descriptors, Detection and Matching

Goal: Encode distinctive local structure at a collection of image
points for matching between images, despite modest chamgesv-
ing conditions (changes in scale, orientation, contrdst).e

Key Issues:

e Feature point detection

e Feature descriptors

e Potential applications
— Image panoramas (image matching and registration)
— Long range motion (tracking by detection)

— Stereoscopic vision / 3D reconstruction
— Obiject recognition

Readings:
e D. Lowe (2004) Distinctive image features from scale-imsar
keypoints.lJCV, 60(2): 91-110.

e K. Mikolajczyk and C. Schmid (2004) Scale and affine invatrian
interest point detectorsJCV, 60(1): 63-86.

e M. Brown and D. Lowe (2007) Automatic panoramic image stitch

ing using invariant feature$JCV, 74(1):59-73.

Matlab Tutorials: SIFTtutorial/tutorial.m (utvis)
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Panoramic Images Using Local Features

1) Detect local features in each of the input images.
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Local Image Features

ldea: Encode thamage structure in spatial neighbourhoods (i.e.,
“what” the image patch looks like) at a setfehture points chosen at
selected scales/orientations (i.e., “where” to do the dimgy).

a2 )

What's a good feature?

e Locality: Small regions are less sensitive to view-dependent im-
age deformations, and other parts of the object can be cadlud

e Pose invariance:The feature-point detector can select a canoni-
cal position, scale and orientation for subsequent magchin

e Distinctiveness:The feature descriptors should permit a hagh
tection rate (0.7-0.9) and lovfalse positive rate (e.g.1073).

e Repeatability: We should be able to detect the same points de-
spite changes in viewing conditions.

Applications: 3D reconstruction from multiple views, motion track-

ing, object recognition, image retrieval, robot navigafietc.
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Feature Points in Laplacian Scale-Space
Consider extremal points in the magnitude of the differesfo8aus-
sian (DOQG) filtered images (i.e., in the Laplacian Pyramid):

DOG(X,0) = [G(X,0) — G(X,po)] * [(X),
with p > 1is the spacing of adjacent scales (typicallyg 21T or 2%).
l.e., find locationx and scales at which| DOG(X, o)| is maximal.
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Remarks:
, but not extremal points.

e Contrast changes affeddOG (X, o)
e Extremal points are roughly co-variant with scale and tiation,
and independent of orientation (about the feature point).
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Harris Corner Points
For distinctiveness it is useful to ensure that the neighboads of

each feature point have sufficiently rich image texture.

Harris Corner Points: Compute the x 2 orientation tensof'(Z, o)

[.(X,0)
T(X,0) = G(X,20) * I.(X,0) I,(X, :
(%.0) = G(%.20) K[y(ia) ) (L(.0) 1,(%.0) )]
wherel,(X,0) = G.(X, o) = I(X) and similarly forl,.
Locations where both eigenvaluesBf A\; and \,, are large (w.r.t.,
width of Gaussian support), will have high contrast and aewahge
of orientations. Therefore, either threshold or find locakima in

R = M) — k‘()\l + )\2)2 ,

wherek is an empirical constant (typically between 0.04 and 0.06).

Extremal points of the Laplacian pyramidsatando that do not have

sufficicently largeR are therefore culled.
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Empirical Performance

Natural images are warped computationally, using paracnaéfor-
mations so ground truth feature correspondence is known.

Repeatability Rate: Number of matching pairs of points (to within a
specified tolerance), divided by the average number of thxtgaoints

in two views.
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SFT: Extrema with respect to spatial position and scalél®G (X, o))
(Lowe, 2004).

Harris-Laplacian: Extrema with respect to position iR(X, o), with
R(X, o) sufficiently large, and with respect to scale|DOG(X, o)
(Mikolajczyk & Schmid, 2001).

In practice, it is useful to consider extrema [@OG (X, )| with re-

spect tox ando, for which R(X, o) is sufficiently large.
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Canonical Local Orientation

We also want the feature descriptor to be defined with respadbcal
canonical orientation. In this way we will be able to build a descriptor
that is (approximately) invariant to scale, position, anémation.

Two ways to define local orientation:

e Use leading eigenvector @f(X, o), if A\;/\, is sufficicently large.

e Find the highest peak in the orientation histogram of locatlg
ent magnitudes.
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Arrows show direction and scale of detected SIFT features

The critical property of an feature point detector is thatdintifies im-
age positions and scales, o) of thesamepoints on an object, despite
significant changes in the imaging geometry, lighting, anide.
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Feature Descriptors

Given a feature point at locatio, scaleos, and orientatiord, we
describe the image structure in a neighbourhoodkofligned witho,
and proportional ter. To facilitate matching, the descriptor should be
distinctive and insensitive to local image deformations.

SIFT: The scale-invariant feature transform of a neighbourhea i
128-dimensional vector of histograms of image gradient& region,
at the appropriate scale and orientation, is divided intoxd square
grid, each cell of which yields a histogram with 8 orientathmns.
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Image gradients Keypoint descriptor

Remarks:

e Spatial histograms give some insensitivity to deformation

e Other descriptors can be formed, e.g., from higher-ordeis&an
derivative filters, steerable filters, or the phase of basslfitiers.
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Viewpoint Insensitivity

A set of local image features is extracted from a model imd&gpeh
feature encodes a record of its

e Position, that is, the pixel locatioK;
e Scale the particular value aof;

¢ Orientation, the dominant orientation in the local image neigh-
bourhood;

e Local Image Structure in Canonical Coordinates encoded in
terms of gradient histograms (eg. SIFT), and/or other ptogse
The local image structutis encoded relative to the position, scale
and orientation determined by the feature point detector.

Given a test image, local features can be extracted in the saamner.

e The features from the test image can be compared directheto t
features obtained from the model image, despite changessin p
tion, scale and orientation.

e Partial invariance to viewing geometry is a consequencenef e
coding the local image structure relative to position, scahd
orientation at the feature point.

e We reply on the feature point detector to get these quasititie
same in both the model and test images.
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Feature Point Representation and Indexing

The similarity between two SIFT feature vectors is given gy Eu-
clidean distance between them (if the vectors are nornthtzeinit
length, the angle between the vectors can also be used).higtc
between two images involves computing the distance betakpns-
sible pairs of detected features, and selecting as matglaing those
features whose nearest-neighbor is closer than some tidesh

However, SIFT is typically used for matching new images asfaa
large database of known objects, or for aligning large cttbes of
images. In either case, the number of features that havertabzhed
is potentially very large. Computing the distance betweanrepos-
sible pair of features quickly becomes impractical if nopossible.

Therefore, SIFT matching under realistic conditions sebe the use
of special data structures or approximate nearest-nerggorithms.
Typical data structures include k-d trees, a variation @by trees that
recursively divide the data space into smaller hyper-btoxepeed-up
search.
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Panoramic Image Stitching

Stitching together multiple images of a scene into a singtEggraph.

1. Detect SIFT features on all input images.

4. Bundle adjustment to refine global alignment.

5. Warp and pyramid blending to create panorama.
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Panoramic Image Stitching

Final result after pyramid blending
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Aligment Errors and Blending

The aligment process assumes that the camera rotates aroopt-
cal centre during the taking of the input images. This is gahenot
true unless a special tripod head is used.

In practice we can cope with small translations and off-eerttations
with the help of pyramid blending (see the Pyramid Notes).

Linear blending Pyramid bIdig

This also makes the process robust to errors in the estimafithe
alignment parameters for the set of input images.

CSC2503: Feature Descriptors, Detection and Matching Page: 13



SIFT Invariance and Panoramas

Since SIFT features are (approximately) invariant to rotattransla-
tion, and scaling, we can stitch images that were taken witlrent
camera orientations, and even with varying focal lengths.

Final panorama Input images
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Matching the Valbonne Church

With changes in scale and position:
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