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Question 1. [15 marks]

Part (a) [3 marks] Principal Component Analysis (PCA) is often applied to reduce the dimensionality
of input data to help mitigate problems with overfitting that are common with small datasets. In some
cases, however, this use of PCA can make recognition more difficult than it would have been in the original
feature space. Explain how this can happen with a simple example.

Part (b) [3 marks] State three key factors that make category recognition difficult in computer vision,
and briefly explain the reasons why.
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Question 1. (continued)

Part (c) [3 marks] Explain two key benefits of AdaBoost over Logistic Regression for binary classifi-
cation?

Part (d) [3 marks] In what sense is AdaBoost a greedy algorithm? Why is this necessary?

Part (e) [3 marks]Say you want a feature point detector for detecting long range motion and recoverying
camera and scene geometry. Give three key properties that it should have (i.e., what makes a good feature
detector)?
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Question 2. [16 marks]

Suppose you are asked to stabilize a short image sequence using an optical flow algorithm to compute the
motion. But the motion in the image sequence looks fast and choppy, and a friend tells you it appears to
be temporally aliased. Despite this, you first implement a gradient-based flow estimator.

Part (a) [2 marks] What is the gradient constraint equation? Define all variables introduced.

Part (b) [3 marks] Given two frames of the image sequence I0 and I1, and the gradient constraint
equation, define an objective function for a least-squares, gradient-based estimator for translational motion.

Part (c) [2 marks] Because of the temporal aliasing you find that your LS approach often returns
very poor estimates of translation. In a couple of sentences and/or with a figure, explain what is likely
causing the problem?
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Question 2. (continued)

Part (d) [4 marks] Describe two ways that you might be able to overcome the problem. Use just two
or three sentences for each approach.

Part (e) [1 mark] Assuming you had control over the aperture size and shutter speed of the camera,
but not frame rate, how could you reduce the amount of temporal aliasing?

Part (f) [2 marks] The human eye has relatively little temporal aliasing, but most video cameras do.
Why do we design cameras which produce so much temporal aliasing?

Part (g) [2 marks] For a computer vision system, would you want to use a camera that produced
temporal aliasing? Why or why not?
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Question 3. [15 marks]

It is the season for small pieces of fruit embedded in jelly! Suppose we have an orthographic image sequence
in which the jelly and the fruit pieces fixed within it are deforming in an affine manner. Suppose we can
track K fruit pieces. That is, for each frame t, and each piece of fruit located at ~Xk(t) ∈ <3, we have

~Xk(t) = B(t) ~Xk(0), (1)

for some 3 × 3 invertable matrix B(t). Here, for convenience, we assume
∑

K

k=1
~Xk(0) = ~0. Suppose the

internal calibration matrix for each frame t is known to be

Mt = s(t)

(

1 0 0
0 1 0

)

, (2)

where s(t) is a positive scale factor. (In particular, we can absorb the rotation matrix R(t), which is
normally part of the intrinsic calibration matrix, into the transform matrix B(t).) The projected image
locations are then given by ~xk(t) = Mt

~Xk(t). Finally, suppose we track the image locations ~xk(t) of the
pieces of fruit, for 1 ≤ k ≤ K and for integer frame numbers t, 1 ≤ t ≤ T .

Part (a) [3 marks] Consider the data matrix D formed from this image data in the same way as for
orthographic factorization. Clearly describe how this matrix is constructed from the tracking data. In the
absence of tracking noise, what is the maximal rank of D? Explain in detail.
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Question 3. (continued)

Part (b) [2 marks] Suppose we attempt to use the metric upgrade procedure in the lecture notes,
despite the fact that it was derived for rigid 3D motion, not 3D affine motion as we have here. What
constraints on the camera matrix were used to compute this (rigid) metric upgrade?

Part (c) [2 marks] In class we obtained an equation for a 3 × 3 symmetric matrix Q = AAT

which imposed the constraints on the camera matrix identified in part (b) above. How exactly was this Q
computed in the rigid case? Briefly describe how, and under what conditions, A can be computed from Q
(in the rigid case).
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Question 3. (continued)

Part (d) [6 marks] Suppose we can factor the matrix Q from part (c) in the form Q = AAT for some
real-valued 3 × 3 matrix A. Answer the following four questions:

1. Briefly describe how the matrix A is applied to the factors of D in the rigid case to obtain a metric
upgrade. What is the resulting shape matrix, and what are the reconstructed camera matrices for
each frame t?

2. Now suppose we have computed Q and A in exactly the same way as for the rigid case, but here the
data is taken from the affinely deforming jello described earlier. Given the resulting reconstructed
shape and camera matrices, would you expect large reconstruction errors of the image points ~xk(t)
for noiseless image data? Explain.

3. In what sense is the shape matrix a reconstruction for the initial points { ~Xk(0)}? Explain.

4. How well do the camera matrices fit the model the model M(t)B(t) above? Explain.

More space on next page.
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Question 3. (continued)

Part (e) [2 marks] Given noiseless tracking, briefly summarize how we can distinguish 3D affine
motion (as in the jello case) from 3D rigid motion (e.g., frozen jello).
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Question 4. [12 marks]

Suppose we are running a particle filter and, at the current frame t, we approximate the filtering distribution
p(~xt|~z1:t) by a weighted set of samples {(~xk, wk)}K

k=1
. Here the weights wk > 0 sum to one.

Part (a) [1 mark] Estimate the mean of the filtering distribution using the set of samples {(~xk, wk)}
K

k=1
.

Part (b) [2 marks] Show that the estimate of the mean in part (a), say ~m, minimizes ES [||~x −
~m||2] where || · || denotes Euclidean length (2-norm), and ES [·] denotes expected value over the sampled
distribution represented by {(~xk, wk)}

K

k=1
. That is, ES [||~x − ~m||2] =

∑

K

k=1
wk||~xk − ~m||2.
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Question 4. (continued)

Part (c) [7 marks] For reasons that were made clear in assignment 3, we may wish to identify different
peaks in the filtering distribution p(~xt|~z1:t). Following the approach of part (b) above, consider minimizing
O(~m) defined as:

O(~m) = ES [ρ(||~x − ~m||)] =

K
∑

k=1

wkρ(||~xk − ~m||). (3)

Using the Geman-McLure estimator ρ(e) = e2/(e2 + σ2) derive an iteratively reweighted least squares
algorithm for locally minimizing O(~m)

Part (d) [2 marks] Where else in this course have we discussed a similar update equation using
samples from a discretely represented distribution?
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Question 5. [14 marks]

Here we consider the Lambertian shading model. Throughout this question suppose that the camera has
been calibrated so that when a uniform radiance distribution is imaged, the resulting image is a positive
constant (i.e., we remove any roll-off of the intensities towards the sides and corners of the image).

Suppose we have a surface z(x, y) with continuous first derivatives, such as the one depicted below (which
is not shaded with a Lambertian model to make the shape more apparent), and the camera is located far
above the surface looking down (i.e., the optical axis is in the −z direction, which is a different view than
the one below).

x

y

z

Part (a) [4 marks] Given z(x, y), the direction ~L to a distant light source, and the viewing direction
~V , what is the reflected radiance distribution (per unit cross-sectional area perpendicular to ~V ) that is
scattered from this Lambertian surface from the neighbourhood of the point (x, y, z(x, y))? Define all the
terms you use, along with their physical units.

Part (b) [2 marks] Suppose the surface is known to be a plane and the only unknowns in the equation
in part (a) are the position and orientation of this plane. Discuss exactly which aspects of this plane are
determined by the equation in part (a).
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Question 5. (continued)

Part (c) [2 marks] Now suppose we fold a uniformly painted Lambertian plane to form a non-planar,
continuous, piecewise planar surface. This surface consists of just the two half-planes joined along a single
line. Suppose both sides of this fold are clearly visible in the image. Given the brightness calibration above,
is it possible for such a surface to generate a constant (non-zero) image when lit with a single distant light
source? Describe the constraints on the normals for the two planes that make this possible or impossible.

Part (d) [3 marks] Give a simple concrete example of a smoothly curved (non-planar), uniformly
painted, Lambertian surface which, when lit from a particular direction, generates a constant (non-zero)
image. Explain.
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Question 5. (continued)

Part (e) [3 marks] Describe how the surface depicted in the figure displayed at the beginning of
this question could generate a constant, strictly positive, image when it is lit with a single distant light
source in a particular direction L, and when the surface reflectance is Lambertian with a constant, positive
albedo. (As always, we assume the image brightness has been calibrated as described above.) You can
ignore any inter-reflection. If it is not possible to generate a constant image in this manner, explain. If it
is possible, explain what you think the surface might be and what light source direction you would have
to use.
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Question 6. [14 marks]

In the context of Bayesian filtering let xt and zt denote the state and observation at time t, and let the
state and observation histories be x1:t and z1:t. The recursive filtering equations are then given by

p(xt | z1:t) = c p(zt |xt) p(xt | z1:t−1) (4)

p(xt | z1:t−1) =

∫

xt−1

p(xt |xt−1) p(xt−1 | z1:t−1) dxt−1 (5)

Recall that in a particle filter we maintain a weighted set of samples in order to represent a particular
probability distribution, say p(x), and that these weighted samples can be used to provide an approximation
for

∫

g(x)p(x)dx, i.e., the expected value of some test function g(x) under the distribution p(x).

Part (a) [2 marks] State mathematically and name the two key assumptions that permit one to
express the filtering equation in the recursive fashion given in Equations (4) and (5).

Part (b) [2 marks] Derive a simple expression for c in terms of p(zt |xt) p(xt | z1:t−1).

Part (c) [2 marks] In a particle filter where one draws samples from p(xt | z1:t−1), in theory what
are the exact importance weights required to ensure a properly weighted sample set for p(xt | z1:t)? In one
sentence briefly justify why this is the case. (Hint: You need c.)

Student #: Page 15 of 18 cont’d. . .



CSC487/2503H1 F Final Examination December 2009

Question 6. (continued)

Part (d) [4 marks] In a practical particle filter how are the importance weights typically approximated?
Justify this approximation (e.g., based on your answers to parts (b) and (c)).

Part (e) [2 marks] Under what circumstances might the approximation for c be poor? What are the
potential consequences of this circumstance for a particle filter?
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Question 6. (continued)

Part (f) [2 marks] In your assignment 3, when trying to maintain a multimodal distribution, you
found that, invariably, all particles tend to migrate to a single mode. If we knew c, in absolute terms,
explain why you might be able to determine when significant modes of the filtering distribution are not
well represented.
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For scratch work.

Total Marks = 86
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