Epipolar Geometry

Goal: Explore basic geometry of multiple images to support therinf
ence of 3D scene structure from two or more images of the scene

Consider two perspective images of a scene as taken fromes siair
of cameras (or equivalently, assume the scene is rigid aadechwith
a single camera from two different locations).

e Given ascene poin’f’p which is imaged in the “left” camera at”,
where could the image of the same point be in the right camera?

e The relationship between suchrresponding image points turns
out to be both simple and useful; i.e., the correspondingtgai
the "right” camerap' %, is constrained to lie on a line.

Demos. 3dRecon/grappleFmatrix.m (utvis)

Readings. See Sections 10.1 and 15.6 of Forsyth and Ponce.
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Epipolar Line

Per spective Cameras: Let d - andd ¥ be the 3D nodal points of the
left and right cameras. The projection of scene poi‘ﬁtonto the left
image,p”, is the intersection of the image plane with the line through

X7 andd”. )
Xp

Left Image Right Image

Epipolar
Line e(p'™)

\

Left NP Right NP

Epipolar Line: The scene poinffp that projects tgr'’ lies on a ray
from dL throughZ, but the position ofX”? on the ray is unknown.
Importantly, the image of the ray can be shown to be a lineemitht

image, called thepipolar line, e(7*).

Epipolar Plane: Consider the 3D plane defined by and the nodal
points,d - andd

e Thisepipolar plane also contains the 3D scene poikit.

¢ |t must also contain the image & in the right camera, i.eg ~.

e The image of the ray frond * throughi' is the line formed by the
intersection of the right image plane and the epipolar plane
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Epipolar Constraint

Epipolar Constraint: Let 7" be the left image point for the 3D scene
pointX'p. Then, the corresponding point in the right imagé, lies on
the epipolar lines(5' ).

Left Image Right Image

Left NP Right Epipole Right NP

The epipolar linex(p'?) depends on the position of the leftimage point.
A different point,;’*, generally produces a different epipolar ling; *).

Epipole: All epipolar lines in the right image pass through a single
point (possibly at infinity), called theght epipole. It is the intersection

of the line containing the nodal points- andd %, with the right image
plane. The line through the two nodal points must be in aleiolar
planes, and hence its image must be on all the epipolar lines.
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Constraints on Correspondence

Clearly we can swap the labels “left” and “right” in the abamalysis,
it does not matter which image we start with.

The previous analysis showed there is a mapping betweetspoione
image and epipolar lines in the other. This mapping is coatparially
useful as it provides strong constraints on correspondogte in two
images of the same scene.

e E.g., for each point in one image, we could limit the searchafo
corresponding point in the second image to just the epidwiar
(instead of searching the whole second image). Searchirsyitin
corresponding points is central to stereo depth estimation

e Alternatively, given a set of hypothesized correspondsnee can
use the epipolar constraints to identify (some) outliers.

For such applications we need to be able to estimate the pégesrine
mapping from points to epipolar lines. We next consider, tinist with
two calibrated cameras, and then in the uncalibrated case.
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Epipolar Plane

Considera 3D poinﬁw, in world coordinates, its image in the left and
right image planes7X andj?, and nodal points]/Z andd .

X

Left Image Right Image

The 3D plane defined by, d - andd ?, has normal direction

(A —dfy < (pF - df, (1)

where 'x’ denotes the vector cross-product.

The left image poinp,> must also lie in the plane. So the vector from
7L to dX must be perpendicular to the normal; i.e.,

(k= 0" |(dE = df) x il = )| = 0. 2)

w w w

The epipolar plane equation is important as it provides raimds on
the left and right image locations to which a 3D scene poinjguts.
We formulate this next.
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| mage For mation

Let left and right camera-centered coordinate frames hagae at the
respective nodal points, andaxes aligned with the optical axes.

A 3D point,ffw is transformed into the left coordinate frame using the
external parameters of the left camera (see the image fanmabtes):

X,
’ —»A4£;< 1:) , 3)

with MZ the3 x4 matrix M: = [RE — RLdL]; here,RL is a3 x 3
rotation matrix, andZ;f is the left nodal point in world coordinates.

ol

The left image oﬂ?CL IS given by perspective projection,
R
ﬁc — X—LXC — pﬁc ) (4)
3,¢
) fL

where, ! is the nodal distance.

Finally, given (3) above, the camera and world coordinat@® qoints
on the left image plane are related by

=L
=it (%) < gt d, ©
And similarly, for image points in the right camera,

p.t = R'(p, —dy). (6)

2503: Epipolar Geometry Page: 6



The Essential M atrix

The epipolar plane, on which the left and right projectiohs(g must

lie, is given by
(k= i) |(df = dffy x (5 = d)] = 0. (7)
e Based on (5) and (6), we know that: — - = (RLT5L, and
pli—dl = (RR)p,
e We can replace the cross-product by the equivalent magctev

product,
0 =TIz 1
Txp = [T]p, where[T|y, = | T3 0 -T,
=15 T 0

7], is rank 2, with two identical, non-zero singular values.

It therefore follows that the epipolar constraintin (7) tere-expressed

as
EHTERE =0, (8)

whereFE is the3 x 3 essential matrix (or E-matrix):

E = R'[d} —d/]. (R")". 9)
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Properties of the Essential Matrix

1. Clearly, any nonzero scalar multiple of the E-matrix pr@dadan
equivalent epipolar constraint (8).

2. From (9) it follows that the E-matrix has rank with two equal
non-zero singular values and one singular valug at

3. Given a pointz* in the left image, the epipolar constraint (8) states

Cc

that the corresponding poip}" in the right image must be on a line.
l.e., witha = ETpl, it follows that

aplt = alp{fc + agpgc +asflt =0
The normal to the line isay, as).
4. The right epipolez” lies on all epipolar lines. That is, for all left
image pointspX, the right epipole must satisfy
() Eel = 0. (10)
It follows thate”* must be a null vector foE. Further, using

phHTEER = a(ph) T RHAE — dF) (R R (AL — dF)

w

we find that the epipole can be written as

C 1 w

dr L
el = aME || = aRf(dE—dl).

For a pointp* in the right image, analogous expressions provide the

epipolar line in the left image, and the left epipole.
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| nternal Calibration

We wish to rewrite the epipolar constraint (8) in terms of lng@neous
pixel coordinates© = (z%, y*, 1)T, where(z, y*) are the coordinates
of an image point in terms of pixels.

The internal calibration matri®/% provides the transformation from
camera coordinates to homogeneous pixel coordinatesl{samage
formation notes),

Tt = M, p) . (11)

For example, a camera with rectangular pixels of dize, by 1/s,,
with nodal distancef, and piercing pointo,, o,) (i.e., the intersection
of the optical axis with the image plane provided in pixel icboates)
has the internal calibration matrix

sy 0 o0./f
M;, = 0 s, oy/f : (12)
0 0 1/f

We can use (11) to rewrite the epipolar constraint in termpixél
coordinates.
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The Fundamental M atrix

Using (11) we can rewrite the epipolar constraint (8)Homogeneous
pixel coordinates in the left and right images; i.e.,

@HTFzft = 0. (13)
Here thefundamental matrix (or F-matrix) is given by
F o= (M) E(M;)™, (14)
where the notatiod/ " denotes the transpose of the inversé hf

Like the E-matrix, the F-matrix has rark but the two nonzero singu-
lar values need not be equal. The over-all scale of the Fixndes
not effect the epipolar constraint (13). So there renvadegrees of
freedom inF'.

The right (left) null vector off’ gives the homogeneous pixel coordi-
nates for the right (left, resp.) epipole.

More explicitly, for example, the epipolar constraint (s3ates that,
given a pointz ” in the left image, the corresponding point in the
right image must be on the epipolar line

a' rt = ala:R+a2yR+a3 = 0,

whered = FTz L,
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Estimating the Fundamental Matrix

Given corresponding image pointsz/, #/%)}_, we wish to estimate
the F-matrix.

Gold Standard Approach: Suppose the noise in the point positions
zl', for u = L, R is additive, independent and normally distributed
with mean zero and covarian&s :

gl = ml'+ 71, (15)
wherem /" is the true position and;’ is the noise. Note: there is no
noise in the third component af' in homogeneous coordinates.

Then the (maximum likelihood) problem is to firid € ®**° andni/,
fork = 1,...,K andu = L, R, such that the following objective
function is minimized:

0= > Z i@ — ) (16)
pwe{L,R} k=1

where(2})" denotes the pseudo-inverse. We minimize this objective
function O subject to the epipolar constraints:

(M) ' Fm =0, k=1,...,K, (17)
rank(F) = 2 (18)

Thus,O is a quadratic objective function for th@)’s, with nonlinear
constraints (17) and (18).
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Alternative Estimation Approaches

We would like to avoid a nonlinear optimization problem, la¢ trisk
of a noiser estimate of thé-matrix than that provided by the gold
standard objective. One simplification is to ignore the e@ist” when
estimating the epipolar ling1). That is, let's say the corresponding
right point7” should be close te(z%) instead ofe(1mif).

This epipolar linez(7%) can be written as
(it )zt =0, (19)

where

I 1
e —————FTak (20)
c (12 0)F" 272

The normalization in (20) ensur@ss theunit normal to e(z,"). Then,

d(ff,e(f]f)) = (ﬁTvc) va (21)

is the perpendicular distance betweghand the epipolar line(z,").

Right e(Zy)
image o @ e(@)

)}
Right é

Epipole D —

We could minimize the sum of squared epipolar distan€&s, e(z /"))
for k=1... K. However, due to the normalization factor in (20), the

objective function is not quadratic in the unknown
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Algebraic Error

Instead, consider the reweighted epipolar distance abgeftinction
K
O(F) = Y w(@)d* (@], e(z)))
- 2
= > (@ FE (22)

Here the weightso(Z/) are chosen to provide a quadratic objective
functionO(F). Thatis,
w(@) = || (L 0) FT &7 )5 (23)

This objective function corresponds to thlgebraic error in the noise-
less epipolar constraint (13).

Equation (22) is a suitable ML estimator when errors in tlggehitaic
constraints (13) are mean zero with constant varianceel¥/émniances
differ significantly, we will get poor estimates far.

Indeed, without any rescaling (which we discuss next), dipigroach
provides excessively noisy estimatesrof
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Renormalized 8-Point Algorithm

Hartley (PAMI, 1997) introduced the following algorithm.i@&n cor-
responding point§(z/, #1)} | with K > 8,

1. Recenter and rescale the image points usiftg . = L, R, such
that

st 0 b
Mt = [0 s by |, (24)
0 0 1
with
1 K
= M'E = (0,0,1)", (25)
k=1
1 K
=S ME - 0,017 = (630507, (26)

w
Il

1
whereo? + o3 = 2. Here[...]? denotes the square of each element.
Define 7' = M"Z)' for k=1,..., K andu = L, R.

2. Minimize the objective functio®(F)

o(F) =3 [ i g (27)
k=1

Note this is a linear least squares problem for the elemédnfs o
(Continued on next page.)
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Renormalized 8-Point Algorithm (Cont.)

3. ProjectF to the nearest rank 2 matrix (with the error measured in
the Frobenius norm):

(a) Form the SVD of = USVT. In general = diag[o?, 02, 03]
with o2 > o7, fori = 1,2.

(b) Resetr; = 0.
(c) AssignF to beUX V7.

4. Undo the normalization of the image points,

F = (MHTFME (28)

This algorithm has been found to provide reasonable estgifat the
F-matrix given correspondence data with small amounts den(gee
Hartley and Zisserman, 2000).

It IS not robust to outliers.

In order to deal with outliers, we apply the Random Sampleséasus
(RANSAC) algorithm to the estimation of thie-matrix.
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RANSAC Algorithm for the F-Matrix

Suppose we are given corresponding pofii&’, ")} |, which may
include outliers. Let > 0 be an error tolerance, afldbe the number
of trials.

Loop T times:
1. Randomly select 8 paitg, 7/%).

2. Use the renormalized algorithm to solve fousing only the eight
selected pairs of points.

3. Compute perpendicular erratsr/, e(z,F)) andd(Z}, e(7))), see
(20) and (21) fon < k < K.

4. |dentify inliers:

In = {k:d@F, e(@) < eand d(ZF, e(Z}F)) <€, 1 <k < K}.

5. If the number of inliers|In

, IS the largest seen so far, remember
the current estimate df and the inlier setin.

End loop

6. Solve forF using all pairs witht € In (i.e., all inliers). Re-solve for
the inlier setin as done in steps 3 and 4 above.

One can iterate step 6 until the set of inliétgloes not change.
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RANSAC: How Many Trials?

Suppose our data set consists of a fractiamliers, andl — p outliers.

How many trialsi” should be done so that we can be reasonably confi-
dent that at least one sampled data set of éize8 was all inliers?

The probability of choosing = 8 inliers from such a population is
roughly p? when K > d (it is exactlyp? if we sample with replace-
ment). So the probability that a given trial of RANSAC faitsgelect
d inliers is1 — p?. Therefore, the probability that RANSAC failed to
have any trial withi inliers is(1 — p?)”. In other words, the probability
P, that at least one of the RANSAC trials will be a success is

Py=1-(1-p")"

Given an estimate for the fraction of inliesand that the probability of
at least one successful trial shouldBgor greater, then we can choose

T to be
log(1 — Py)

log(1 —p?) -

For example, for 70% inliers andl = 8, we requirel’ > 50. Alter-

T >

natively, if we only have 50% inliers, the same formula stateatT
should be chosen to be at least 766.
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Example

Given local image features, RANSAC was used to fit fhenatrix.

Here have choosen random colours to circle image featuressdame
colour is then used for the corresponding point in the othn&rge, and
also for the epipolar lines generated from these two points.

Note:

1. By construction, each point lies close to the epipola ignerated
by its corresponding point in the other image.

2. A visual sanity check can be obtained by sampling othartpan
one epipolar line, and checking that they also appear soer&@vh
along the corresponding epipolar line. This must be the sase,
when the F-matrix is correct, both epipolar lines correspirthe
intersection of the scene with the epipolar plane. (Compage
current fit with the result of a poor fit shown on p.19.)

3. The intersection of the epipolar lines corresponds tefipgole in
each image. The nodal point of the second camera is on th@rine
world coordinates) containing the nodal point of the firanesa
and the epipole in the first image.
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Poorly Fitted F-Matrix

The same local image features were used as in the previouspéxa
and RANSAC was used to fit the-matrix (but with only 10 trials).
The solution it found is displayed below:

Note:

1. The feature points are still near the corresponding dgigmes.
Here 82% of the data points are within 4 pixels of the corragpo
ing epipolar line. In contrast, the solution on the previpage
achieved 94%.

2. However, the visual sanity check fails. This is most appafor
(proposed) epipolar planes which intersect the scene olaga
range of depths. For example, consider the (proposed) lepipo
planes which cut across the tower at the top of the image and at
least one of the buildings in front.
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