
Epipolar Geometry

Goal: Explore basic geometry of multiple images to support the infer-

ence of 3D scene structure from two or more images of the scene.

Consider two perspective images of a scene as taken from a stereo pair

of cameras (or equivalently, assume the scene is rigid and imaged with

a single camera from two different locations).

• Given a scene point~Xp which is imaged in the “left” camera at~p L,

where could the image of the same point be in the right camera?

• The relationship between suchcorresponding image points turns

out to be both simple and useful; i.e., the corresponding point in

the ”right” camera,~p R, is constrained to lie on a line.

Demos: 3dRecon/grappleFmatrix.m (utvis)

Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce.
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Epipolar Line

Perspective Cameras: Let ~d L and ~d R be the 3D nodal points of the

left and right cameras. The projection of scene point~Xp onto the left

image,~p L, is the intersection of the image plane with the line through
~Xp and~d L.
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Epipolar Line: The scene point~Xp that projects to~p L lies on a ray

from ~d L through~p L, but the position of~Xp on the ray is unknown.

Importantly, the image of the ray can be shown to be a line in the right

image, called theepipolar line, e(~p L).

Epipolar Plane: Consider the 3D plane defined by~p L and the nodal

points,~d L and~d R:

• This epipolar plane also contains the 3D scene point~Xp.

• It must also contain the image of~Xp in the right camera, i.e.,~p R.

• The image of the ray from~d L through~p L is the line formed by the

intersection of the right image plane and the epipolar plane.
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Epipolar Constraint

Epipolar Constraint: Let ~p L be the left image point for the 3D scene

point ~Xp. Then, the corresponding point in the right image,~p R, lies on

the epipolar linee(~p L).
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Right Epipole

The epipolar linee(~p L) depends on the position of the left image point.

A different point,~q L, generally produces a different epipolar line,e(~q L).

Epipole: All epipolar lines in the right image pass through a single

point (possibly at infinity), called theright epipole. It is the intersection

of the line containing the nodal points,~d L and~d R, with the right image

plane. The line through the two nodal points must be in all theepipolar

planes, and hence its image must be on all the epipolar lines.
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Constraints on Correspondence

Clearly we can swap the labels “left” and “right” in the aboveanalysis,

it does not matter which image we start with.

The previous analysis showed there is a mapping between points in one

image and epipolar lines in the other. This mapping is computationally

useful as it provides strong constraints on corresponding points in two

images of the same scene.

• E.g., for each point in one image, we could limit the search for a

corresponding point in the second image to just the epipolarline

(instead of searching the whole second image). Searching for such

corresponding points is central to stereo depth estimation.

• Alternatively, given a set of hypothesized correspondences, we can

use the epipolar constraints to identify (some) outliers.

For such applications we need to be able to estimate the parameters the

mapping from points to epipolar lines. We next consider this, first with

two calibrated cameras, and then in the uncalibrated case.
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Epipolar Plane

Consider a 3D point~Xw, in world coordinates, its image in the left and

right image planes,~p L
w and~p R

w , and nodal points,~d L
w and~dR

w .
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The 3D plane defined by~p R
w , ~d L

w and~d R
w , has normal direction

(~d L
w − ~dR

w )× (~p R
w − ~dR

w ) , (1)

where ’×’ denotes the vector cross-product.

The left image point~p L
w must also lie in the plane. So the vector from

~p L
w to ~d L

w must be perpendicular to the normal; i.e.,

(~p L
w − ~d L

w )
T
[

(~d L
w − ~dR

w )× (~p R
w − ~dR

w )
]

= 0 . (2)

The epipolar plane equation is important as it provides constraints on

the left and right image locations to which a 3D scene point projects.

We formulate this next.
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Image Formation

Let left and right camera-centered coordinate frames have origins at the

respective nodal points, andz-axes aligned with the optical axes.

A 3D point, ~Xw is transformed into the left coordinate frame using the

external parameters of the left camera (see the image formation notes):

~XL
c = ML

ex

(

~Xw

1

)

, (3)

with ML
ex the3×4 matrixML

ex = [RL − RL~d L
w ]; here,RL is a3×3

rotation matrix, and~d L
w is the left nodal point in world coordinates.

The left image of~XL
c is given by perspective projection,

~p L
c =

fL

XL
3,c

~XL
c =









pL1,c

pL2,c

fL









, (4)

where,fL is the nodal distance.

Finally, given (3) above, the camera and world coordinates of 3D points

on the left image plane are related by

~p L
c = ML

ex

(

~p L
w

1

)

= RL(~p L
w − ~d L

w ) . (5)

And similarly, for image points in the right camera,

~p R
c = RR(~p R

w − ~dR
w ) . (6)
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The Essential Matrix

The epipolar plane, on which the left and right projections of ~Xw must

lie, is given by

(~p L
w − ~d L

w )
T
[

(~d L
w − ~dR

w )× (~p R
w − ~dR

w )
]

= 0 . (7)

• Based on (5) and (6), we know that~p L
w − ~d L

w = (RL)T~p L
c , and

~p R
w − ~dR

w = (RR)T~p R
c .

• We can replace the cross-product by the equivalent matrix-vector

product,

~T × ~p = [~T ]×~p, where[~T ]× =









0 −T3 T2

T3 0 −T1

−T2 T1 0









.

[~T ]× is rank 2, with two identical, non-zero singular values.

It therefore follows that the epipolar constraint in (7) canbe re-expressed

as

(~p L
c )

TE ~p R
c = 0 , (8)

whereE is the3× 3 essential matrix (or E-matrix):

E = RL [~d L
w − ~dR

w ]× (RR)T . (9)
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Properties of the Essential Matrix

1. Clearly, any nonzero scalar multiple of the E-matrix provides an

equivalent epipolar constraint (8).

2. From (9) it follows that the E-matrix has rank2, with two equal

non-zero singular values and one singular value at0.

3. Given a point~p L
c in the left image, the epipolar constraint (8) states

that the corresponding point~p R
c in the right image must be on a line.

I.e., with~a = ET~p L
c , it follows that

~aT~p R
c = a1p

R
1,c + a2p

R
2,c + a3f

R = 0 .

The normal to the line is(a1, a2).

4. The right epipole~eR
c lies on all epipolar lines. That is, for all left

image points,~p L
c , the right epipole must satisfy

(~p L
c )

TE ~eR
c = 0 . (10)

It follows that~eR
c must be a null vector forE. Further, using

(~p L
c )

TE~eR
c = α(~p L

c )
TRL[~d L

w − ~dR
w ]×(R

R)TRR(~d L
w − ~dR

w )

we find that the epipole can be written as

~eR
c = αMR

ex

(

~d L
w

1

)

= αRR (~d L
w − ~dR

w ) .

For a point~p R
c in the right image, analogous expressions provide the

epipolar line in the left image, and the left epipole.
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Internal Calibration

We wish to rewrite the epipolar constraint (8) in terms of homogeneous

pixel coordinates~x L = (xL, yL, 1)T , where(xL, yL) are the coordinates

of an image point in terms of pixels.

The internal calibration matrixML
in provides the transformation from

camera coordinates to homogeneous pixel coordinates (see the image

formation notes),

~x L = ML
in ~p

L
c . (11)

For example, a camera with rectangular pixels of size1/sx by 1/sy,

with nodal distancef , and piercing point(ox, oy) (i.e., the intersection

of the optical axis with the image plane provided in pixel coordinates)

has the internal calibration matrix

Min =









sx 0 ox/f

0 sy oy/f

0 0 1/f









. (12)

We can use (11) to rewrite the epipolar constraint in terms ofpixel

coordinates.
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The Fundamental Matrix

Using (11) we can rewrite the epipolar constraint (8) forhomogeneous

pixel coordinates in the left and right images; i.e.,

(~x L)T F ~xR = 0 . (13)

Here thefundamental matrix (or F-matrix) is given by

F = (ML
in)

−T E (MR
in)

−1 , (14)

where the notationM−T denotes the transpose of the inverse ofM .

Like the E-matrix, the F-matrix has rank2, but the two nonzero singu-

lar values need not be equal. The over-all scale of the F-matrix does

not effect the epipolar constraint (13). So there remain7 degrees of

freedom inF .

The right (left) null vector ofF gives the homogeneous pixel coordi-

nates for the right (left, resp.) epipole.

More explicitly, for example, the epipolar constraint (13)states that,

given a point~x L in the left image, the corresponding point~xR in the

right image must be on the epipolar line

~a T~xR = a1 x
R + a2 y

R + a3 = 0,

where~a = F T~x L .
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Estimating the Fundamental Matrix

Given corresponding image points{(~x L
k , ~x

R
k )}

K
k=1

we wish to estimate

the F-matrix.

Gold Standard Approach: Suppose the noise in the point positions

~x µ
k , for µ = L,R is additive, independent and normally distributed

with mean zero and covarianceΣµ
k :

~x µ
k = ~m µ

k + ~n µ
k , (15)

where~m µ
k is the true position and~n µ

k is the noise. Note: there is no

noise in the third component of~x µ
k in homogeneous coordinates.

Then the (maximum likelihood) problem is to findF ∈ ℜ3×3 and ~m µ
k ,

for k = 1, . . . , K andµ = L,R, such that the following objective

function is minimized:

O ≡
∑

µ∈{L,R}

K
∑

k=1

(~x µ
k − ~m µ

k )
T (Σµ

k)
†(~x µ

k − ~m µ
k ) (16)

where(Σµ
k)

† denotes the pseudo-inverse. We minimize this objective

functionO subject to the epipolar constraints:

(~mL
k )

TF ~mR
k = 0, k = 1, . . . , K, (17)

rank(F) = 2 (18)

Thus,O is a quadratic objective function for the~mµ
k ’s, with nonlinear

constraints (17) and (18).
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Alternative Estimation Approaches

We would like to avoid a nonlinear optimization problem, at the risk

of a noiser estimate of theF -matrix than that provided by the gold

standard objective. One simplification is to ignore the noise in~x L
k when

estimating the epipolar linee(~mL
k ). That is, let’s say the corresponding

right point~xR
k should be close toe(~xLk ) instead ofe(~mL

k ).

This epipolar linee(~xLk ) can be written as

(~n T , c) ~xR = 0 , (19)

where
(

~n

c

)

=
1

||(I2 ~0)F T~x L
k ||2

F T ~x L
k . (20)

The normalization in (20) ensures~n is theunit normal to e(~x L
k ). Then,

d(~xR
k , e(~x

L
k )) ≡ (~n T , c) ~xR , (21)

is the perpendicular distance between~xR
k and the epipolar linee(~x L

k ).

Right


Epipole
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R
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k
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L

k ))

We could minimize the sum of squared epipolar distancesd(~xR
k , e(~x

L
k ))

for k = 1 . . .K. However, due to the normalization factor in (20), the

objective function is not quadratic in the unknownF .
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Algebraic Error

Instead, consider the reweighted epipolar distance objective function

O(F ) ≡
K
∑

k=1

w(~x L
k ) d

2(~xR
k , e(~x

L
k ))

=

K
∑

k=1

[

(~x L
k )

T F ~xR
k

]2
. (22)

Here the weightsw(~x L
k ) are chosen to provide a quadratic objective

functionO(F ). That is,

w(~x L
k ) = || (I2 ~0)F

T ~x L
k ||22 . (23)

This objective function corresponds to thealgebraic error in the noise-

less epipolar constraint (13).

Equation (22) is a suitable ML estimator when errors in the algebraic

constraints (13) are mean zero with constant variance. If the variances

differ significantly, we will get poor estimates forF .

Indeed, without any rescaling (which we discuss next), thisapproach

provides excessively noisy estimates ofF .
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Renormalized 8-Point Algorithm

Hartley (PAMI, 1997) introduced the following algorithm. Given cor-

responding points{(~x L
k , ~x

R
k )}

K
k=1

with K ≥ 8,

1. Recenter and rescale the image points usingMµ, µ = L,R, such

that

Mµ =









sµ 0 bµ
1

0 sµ bµ
2

0 0 1









, (24)

with

1

K

K
∑

k=1

Mµ~x µ
k = (0, 0, 1)T , (25)

1

K

K
∑

k=1

[Mµ~x µ
k − (0, 0, 1)T ]2∗ = (σ2

1, σ
2

2, 0)
T , (26)

whereσ2
1 + σ2

2 = 2. Here[...]2∗ denotes the square of each element.

Define ~r µ
k = Mµ~x µ

k for k = 1, . . . , K andµ = L,R.

2. Minimize the objective functionO(F̂ )

O(F̂ ) ≡
K
∑

k=1

[

(~r L
k )

T F̂ ~r R
k

]2

. (27)

Note this is a linear least squares problem for the elements of F̂ .

(Continued on next page.)
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Renormalized 8-Point Algorithm (Cont.)

3. ProjectF̂ to the nearest rank 2 matrix (with the error measured in

the Frobenius norm):

(a) Form the SVD ofF̂ = UΣV T . In generalΣ = diag[σ2
1, σ

2
2, σ

2
3]

with σ2
i ≥ σ2

i+1 for i = 1, 2.

(b) Resetσ3 = 0.

(c) AssignF̂ to beUΣV T .

4. Undo the normalization of the image points,

F = (ML)T F̂MR (28)

This algorithm has been found to provide reasonable estimates for the

F -matrix given correspondence data with small amounts of noise (see

Hartley and Zisserman, 2000).

It is not robust to outliers.

In order to deal with outliers, we apply the Random Sample Consensus

(RANSAC) algorithm to the estimation of theF -matrix.
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RANSAC Algorithm for the F-Matrix

Suppose we are given corresponding points{(~x L
k , ~x

R
k )}

K
k=1

, which may

include outliers. Letǫ > 0 be an error tolerance, andT be the number

of trials.

LoopT times:

1. Randomly select 8 pairs(~x L
k , ~x

R
k ).

2. Use the renormalized algorithm to solve forF using only the eight

selected pairs of points.

3. Compute perpendicular errorsd(~xR
k , e(~x

L
k )) andd(~x L

k , e(~x
R
k )), see

(20) and (21) for1 ≤ k ≤ K.

4. Identify inliers:

In = {k : d(~x L
k , e(~x

R
k )) < ǫ and d(~xR

k , e(~x
L
k )) < ǫ, 1 ≤ k ≤ K}.

5. If the number of inliers,|In|, is the largest seen so far, remember

the current estimate ofF and the inlier set,In.

End loop

6. Solve forF using all pairs withk ∈ In (i.e., all inliers). Re-solve for

the inlier setIn as done in steps 3 and 4 above.

One can iterate step 6 until the set of inliersIn does not change.
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RANSAC: How Many Trials?

Suppose our data set consists of a fractionp inliers, and1− p outliers.

How many trialsT should be done so that we can be reasonably confi-

dent that at least one sampled data set of sized = 8 was all inliers?

The probability of choosingd = 8 inliers from such a population is

roughlypd whenK ≫ d (it is exactlypd if we sample with replace-

ment). So the probability that a given trial of RANSAC fails to select

d inliers is 1 − pd. Therefore, the probability that RANSAC failed to

have any trial withd inliers is(1− pd)T . In other words, the probability

P0 that at least one of the RANSAC trials will be a success is

P0 = 1− (1− pd)T

Given an estimate for the fraction of inliersp, and that the probability of

at least one successful trial should beP0 or greater, then we can choose

T to be

T >
log(1− P0)

log(1− pd)
.

For example, for 70% inliers andd = 8, we requireT > 50. Alter-

natively, if we only have 50% inliers, the same formula states thatT

should be chosen to be at least 766.
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Example

Given local image features, RANSAC was used to fit theF -matrix.

Here have choosen random colours to circle image features. The same

colour is then used for the corresponding point in the other image, and

also for the epipolar lines generated from these two points.

Note:

1. By construction, each point lies close to the epipolar line generated
by its corresponding point in the other image.

2. A visual sanity check can be obtained by sampling other points on
one epipolar line, and checking that they also appear somewhere
along the corresponding epipolar line. This must be the casesince,
when the F-matrix is correct, both epipolar lines correspond to the
intersection of the scene with the epipolar plane. (Comparethe
current fit with the result of a poor fit shown on p.19.)

3. The intersection of the epipolar lines corresponds to theepipole in
each image. The nodal point of the second camera is on the line(in
world coordinates) containing the nodal point of the first camera
and the epipole in the first image.
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Poorly Fitted F-Matrix

The same local image features were used as in the previous example,

and RANSAC was used to fit theF -matrix (but with only 10 trials).

The solution it found is displayed below:

Note:

1. The feature points are still near the corresponding epipolar lines.
Here 82% of the data points are within 4 pixels of the correspond-
ing epipolar line. In contrast, the solution on the previouspage
achieved 94%.

2. However, the visual sanity check fails. This is most apparent for
(proposed) epipolar planes which intersect the scene over alarge
range of depths. For example, consider the (proposed) epipolar
planes which cut across the tower at the top of the image and at
least one of the buildings in front.
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Further Readings

R. Hartley (1997) In defense of the eight-point algorithm.IEEE Trans. on Pattern Analysis and

Machine Intelligence 19(6): 580–593.

R. Hartley and A. Zisserman (2000)Multiple View Geometry in Computer Vision. Cambridge Uni-

versity Press.
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