Edge Detection

Goal: Detection and localization of image edges.

M otivation:

e Significant, often sharp, contrast variations in imagesediby
illumination, surface markings (albedo), and surface lauies.
These are useful for scene interpretation.

e Edgels (edge elements). significant local variations in image
brightness, characterized by the positignand the orientatiofi
of the brightness variation. (Usuallymod = is sufficient.)

pixels —

J 0
Y L1
Xp “edgel”

AN (edge element)

e Edge: a sequence of edgels forming a smooth curve

Two Problems:
1. estimating edgels
2. grouping edgels into edges
Readings. Chapter 8 of Forsyth and Ponce.

Matlab Tutorials. cannyTutorial.m
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1D Ideal Step Edges
Assume an ideal step edge corrupted by additive Gaussiaa:noi
I(z) =S(x) +n(x) .

Let the signalS have a step edge of height at locationzx,, and
let the noise at each pixel be Gaussian, independent anticakn
distributed (lID).
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Remark: Violations of the main assumptions, i.e., the idedl step
edge and additive Gaussian noise, are commonplace.
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Optimal Linear Filter

What is the optimal linear filter for the detection and lozation of a
step edge in an image?

Assume a linear filter, with impulse responge):

r(z) = flz)«I(z) = f(z)=S(x) + f(z)*n(z)
= rglx) 4+ r(z)

So the response is the sum of responses to the signal andisiee no

And suppose that the magnitude of the respdnge)| is the local
measure of edge significance.

The response should be minimal when there is no edge préddart,
whenS(x) = ¢, for any constant, we require that

rs(xz) = f(z)xc = 0.

It follows that the filter should have no DC response, i.e.,

> flk) =0,
k=—K

wherekK is the radius of the filter support.
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Optimal Linear Filter

The mean and variance of the response to noige;) ,

Zf n(z+k),

are easily shown to be
Elra(l] = 3/ (H) Elnw )] = 0
Elr,(v)] = ZZf Eln(z+k)n(z+1)] = 02Zf2 k)

Note: the variance of the noise response, depends only dhmbem
of the filter kernel, not on the kernel shape.

The magnitude of the expected response to an edggeisitherefore

| Elr(@o)] | = [rs(zo) + Elra(zo)ll = [rs(zo)l = [(f *S)(xo)] -

Let the respons8&ignal-to-Noise RatigS N R) at the stepr, be the
edge response magnitude divided by the standard devidtitie oe-
sponse to noise:

snp - xSl

>k J2(F)
Note that the SNR is invariant to scaling ¢f If replacef(k) b
af(k), then this gives the same SNR for# 0.

Next, consider criteria for optimal detection and locdiaa ...
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Criteriafor Optimal Filters

Criterion 1. Good Detection.Choose the filter to maximize the
SNR of the response at the edge location, subject to conistreit
the responses to constant sigals are zero.

For a filter with a support radius df pixels, the optimal filter is a
matched filteri.e., a difference of square box functions:

A
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Response to (noiseless) ideal step:

‘ B /\

l i) xr

Explanation:

Assume, without loss of generality, that f?(x) = 1, and to ensure
zero DC response,_ f(x) = 0.

Then, to maximize th& N R, we simply maximize the inner product

of S(z) and the impulse response, reflected and centered at the step
edge location, i.e.f(zy — x).
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Criteria for Optimal Filters(cont)

Criterion 2. Good Localization.Let {z}}- , be the local maxima
in response magnitude(z)|. Choose the filter to minimze the root
mean squared error between tinee edge locatiorand theclosest
peakin |r|; i.e., maximize

1

LOC =
\/E[minl ‘f? — 330‘2]

Caveat:for an optimal filter this does not mean that the closest peak
should be the most significant peak, or even readily idebtéia

Result: Maximizing the productSNR - LOC, over all filters with
support radiuds< produces the same matched filter already found by
maximizingS N R alone.

f@)

./

2503: Edge Detection Page: 6



Criteria for Optimal Filters(cont)

Criterion 3: Sparse PeaksMaximize SNR - LOC, subject to the
constraint that peaks im(z)| be as far apart, on average, as a manu-
ally selected constant,Peak:

[ |2}, — «f|] = wPeak

What's the issue?The density of peaks depends on the local fre-
guency content of the response. The matched filter passgsiggr
frequencies, and therefore produces peaks very closeneget

f(a) Flra) [ \
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Criteria for Optimal Filters(cont)

Result;

1) Whenx Peak is very smallf (z) is similar to the difference of boxes
matched filter above.

2) But asr Peak increases the optimal filter becomes smoother, thereby
increasingly attenuating the higher frequencies in theaig

3) ForzPeak =~ K /2 the filter is well approximated by the derivative
of a Gaussian window:

dG(z; 0, —r dG(z; 0, w2o?
flz) ~ Glz; o) = L ¢ 27 with F —G(a:,a) = jwe 2
dx \/27‘(0'? dx

‘we—w20£/2|

Conclusion:

Sparsity of edge detector responses is a critical desigerierj en-
couraging a smooth envelope, and thereby less power at hegh f
guencies. The lower the frequency of the pass-band, theepire
response peaks.

There is a one parameter family of optimal filters, varyinthewidth
of filter support,o,. Detection S NR) improves and localization

(LOC) degrades as, increases.
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Edges Exist at Multiple Scales

Objects and their parts occur at multiple scales:

VAT
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2D Edge Detection

The corresponding 2D edge detector is based on the magwitdide
directional derivative of the image in the direction norraethe edge.

Let i = (cosf,sinf) be the unit normal to the edge orientation.
The directional derivative of a 2D isotropic Gaussi&i(X;o?) =
L exp (M) is given by

202 202

0

_ S N
aHG( 0?) = VG(X; 0% -1l

= G.(%; 0%) cos + G,(%; 0?) sinf

where G, = 5%, G, = 5, andVG = (G, G,).

The direction of steepest ascent/descent at each pixalas @y the
direction of the image gradient:
R(X) = VG(X; ¢?) = I(X).

The unit edge normal is then

Edge Detection: Search for maxima in the directional image deriva-
tive in the directiomi(x).
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2D Edge Detection (cont)

Search for local maxima of gradient magnitusier) = |R(X)], in
the direction normal to local edg®,X), suppressing all responses
except for local maxima (called non-maximum suppression).

In practice, the search for local maxima 8fx) takes place on the
discrete sampling grid. Givex,, with normaln,, compareS(x,) to
nearby pixels closest to the directionbfi, e.g., pixels ak, + q,
whereq) is 5 ( /8>n0 with its elements rounded to the nearest integer.

Red circle depicts pomtﬁoj:281 ﬂ/g)no. Scaling ensures that normal
directions within (blue) radial lines map to the same nealrof x,,.
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Canny Edge Detection
Algorithm:
1. Convolve with gradient filters (at multiple scales)

R(X) = (R,(X), R,(X)) = VG(X; 0°) * I(X).

2. Compute response magnitudgx) = \/Rg(i’) + R2(X) .

3. Compute local edge orientation (represented by unit afrm

L (R.(X), Ry(X))/S(X) if S(X) > threshold
n(x) = { .
0 otherwise

4. Peak detection (non-maximum suppression along edgeatorm

5. Non-maximum suppression through scale, and hystelasisi-
olding along edges (see Canny (1986) for details).

| mplementation Remarks:

Separability: Partial derivatives of an isotropic Gaussian:
LG %) = — L6l 0?) Glys o).

ox o

Filter Support: In practice, it's good to sample the impulse response
so that the support radids > 30,.. Common values fok are 7, 9,
and 11 (i.e., fow ~ 1,4/3, and5/3).
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Filtering with Derivatives of Gaussians

Imaget hr ee. pgm Gaussian Blur = 1.0
Gradient inx Gradient iny
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Canny Edgel M easurement

Gradient Strength Gradient Orientations
. ¥

Edgel Overlay

Colour gives gradient direction (red)*; blue —90°; green —270°)
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Subpixel Localization

Maximal responses in the first derivative will coincide wiéro-crossings of the second derivative

for a smoothed step edge:
s(@) ’
s@xs@

¢ @ 5@ I

9" @ * s@) /\[

Often zero-crossings are more easily localized to subpigeliracy because linear models can be
used to approximate (fit) responses near the zero-cros$img zero-crossing is easy to find from
the linear fit.

So, given a local maxima and its normdl,= (cosé, sin ), we can compute th&*¢-order direc-
tional derivative in the local region:

2
a—G()‘(’)*I()‘(’) = 05”0 Gpu(X) * [(X) +
%)« 1

o’
2 cosfsinf G,y (X) * I(X) + (1)
sin® 0 G, (%) * [(X) ,

whereG is a Gaussian. Note that the three filtes,, = 2$, G,, = g’;—gy and G, = ";27(;’ can
be applied to the image independeniiof
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Edge-Based | mage Editing

Existing edge detectors are sufficient for a wide variety mflea-
tions, such as image editing, tracking, and simple recanit

[from Elder and Goldberg (2001)]

Approach:

1. Edgels represented by location, orientation, blur sgala reli-
able scale for detection), and asymptotic brightness oh sde.

2. Edgels are grouped into curves (i.e., maximum likelihcoves
joining two edge segments specified by a user.)
3. Curves are then manipulated (i.e., deleted, moved, edigic).

4. The image is reconstructed (i.e., solve Laplace’s egnagiven
asymptotic brightness as boundary conditions).

2503: Edge Detection Page: 16



Empirical Edge Detection

The four rows below show images, edges marked manually, YCann
edges, and edges found from an empirical statistical approg
Konishi et al (2003). (We still have a way to go!)
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Row 2 — human; Row 3 — Canny; Row 4 — Konishi et al
[from Konishi, Yuille, Coughlin and Zhu (2003)]

Context and Salience: Structure in the neighbourhood of an edgel
is critical in determining the salience of the edgel, andghmuping
of edgels to form edges.

Other features. Technigues exist for detecting other features such as
bars and corners. Some of these may be discussed later iaulsec
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Boundaries versus Edges

An alternative goal is to detect (salient) region boundainstead of
brightness edges.

For example, at a pixel, decide if the neighbourhood is bisected by
a region boundary (at some orientatthand scaler)

From http://www.cs.berkeley.edfdwlkes/project/boundary

The Canny edge operator determines edgélé, o) based essentially
on the difference of mean brightness in these two half disks.

We could also try using other sources of information, suctessire
or contours (see Martin et al., 2004).
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Boundary Probability

Martin et al. (2004) trained boundary detectors using @naigi of
brightness, colour, and texture, to producepb&dge detector.

Canny

Human
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