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1 Introduction

In 2004, I was a guest at the Center for Machine Perception at the Czech
Technical University. During my visit, a graduate student was kind enough
to show me around Prague, including a visit to the Museum of Modern and
Contemporary Art (Veletrz̆ńı Palác). It was there that I saw the sculpture
by Karel Nepras̆ entitled “Great Dialogue,” a photograph of which appears
in Figure 1. The instant I laid eyes on the sculpture, I recognized it as two
humanoid figures seated and facing each other; when I’ve presented a 2-D im-
age (Figure 1) of the sculpture to classroom students and seminar audiences,
their recognition of the two figures was equally fast. What’s remarkable is
that at the level of local features (whether local 2-D appearance or local 3-D
structure), there’s little, if any, resemblance to the features constituting real
3-D humans or their 2-D projections. Clearly, the local features, in terms
of their specific appearance or configuration, are irrelevant, for individually
they bear no causal relation to humans. Only when such local features are
grouped, and then abstracted, do the salient parts and configuration begin to
emerge, facilitating the recognition of a previously unseen exemplar object
(in this case, a very distorted statue of a human) from a known category
(humans).

The process of image (or feature) abstraction begins with the extrac-
tion of a set of image features over which an abstraction can be computed.
If the abstraction is parts-based (providing the locality of representation
required to support object recognition in the presence of occlusion and clut-
ter), the local features must be perceptually grouped into collections that
map to the abstract parts. For the features to be groupable, non-accidental
relations [152] must exist between them. While such relations could be
appearance-based, such as color and texture affinity, appearance is seldom
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Figure 1: The two shapes depicted in this statue clearly represent two hu-
manoid figures seated and facing each other. At the level of local features,
the figures are unrecognizeable. However, at a more abstract level, the
coarse parts of the figures begin to emerge which, along with their relations,
facilitate object categorization. The local features that constitute the ab-
stract parts were not learned from training examples (they don’t exist on
a real human), nor were they grouped/abstracted using a prior target (hu-
man) model. This sculpture by Karel Nepras̆, entitled “Great Dialogue,” is
found in the Museum of Modern and Contemporary Art (Veletrz̆ńı palác),
in Prague; image reproduced with permission.

generic to a category. Had the statue been painted a different color or
textured with stripes or spots, for example, recognition would have been
unaffected. Clearly, we require more powerful grouping cues that reflect the
shape regularities that exist in our world – cues that have long been posited
by the perceptual organization community [131, 265, 42, 43].

The ability to group together shape-based local features, such as contours
or regions, is an important first step that has been acknowledged by shape-
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based object recognition researchers since the 1960’s [198]. However, the
grouping of causally (i.e., non-accidentally) related features is necessary but
not sufficient for object categorization. Returning to Figure 1, the grouping
of the various local features that make up the torso of one of the figures is
indeed an extremely challenging and important problem. Having recovered
and grouped a set of salient shape features, a typical recognition system
would proceed to establish one-to-one correspondence between salient im-
age features (in the grouping) and salient model features. But herein lies
the problem. Assuming a one-to-one correspondence between local image
features, such as points, patches, contours, or even regions, constrains the
model to be little more than a template of the image.

The true correspondence between the collection of local features mak-
ing up the torso and the torso “part” on any intuitive model of a human
lies not at the level of local image features but at a more abstract level
of shape features. For example, one such abstraction of the seated human
model is shown in Figure 2, which includes an elliptical part corresponding
to the torso.1 Under a one-to-one correspondence assumption, the myriad
local features making up the statue torso (including many long, “salient”
contours) must be abstracted before correspondence with the model torso
can be established. It is important to note that this abstraction does not
live explicitly in the image, i.e., it is not simply a subset of the grouped
image features. And while such an abstraction clearly requires a model
(in this case, an elliptical shape “prior”), the model assumes no object- or
scene-level knowledge.

The problem of abstraction is arguably the most important and most
challenging problem facing researchers in object categorization. This is not
a new problem, but one which was far more commonly acknowledged (but
no more effectively solved) by early categorization researchers whose mod-
els captured object shape at high levels of abstraction. Over the last four
decades, our inability to effectively recover such abstractions from real im-
ages of real objects has led us to increasingly specific object recognition
domains that require little or no abstraction. Understanding this evolution
not only brings the abstraction problem into focus, but helps to identify the
many important contributions made by categorization researchers over the
last four decades.

1This is not meant to imply that the abstraction process is necessarily 2-D. Many,
including Biederman [27] and Pizlo [184], would argue that such abstraction is 3-D. In
that case, the ellipses in Figure 2 might be interpreted as the projections of ellipsoids.
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Figure 2: A shape abstraction of the seated humanoid on the left in Figure 1.
Note that the boundaries of the shape abstraction do not map one-to-one
to (or align well with) local features (e.g., contours) in the image.

2 Avoiding the Abstraction Problem: A Histori-

cal Trend

The evolution of object recognition over the past 40 years has followed
a very clear path, as illustrated in Figure 3. In the 1970’s, the recogni-
tion community focused on generic (alternatively, prototypical, categorical,
or coarse) 3-D shape representations in support of object categorization.
Objects were typically modeled as constructions of 3-D volumetric parts,
such as generalized cylinders (e.g., [29, 2, 169, 45]), superquadrics (e.g.,
[176, 91, 229, 107, 238, 143, 144]), or geons (e.g., [27, 72, 74, 73, 24, 191, 40]).
Figure 4 illustrates an example output from Brooks’ ACRONYM system,
which recognized both categories and subcategories from the constraints
on the projections of generalized cylinders and their relations. The main
challenge facing these early systems was the representational gap that ex-
isted between the low-level features that could be reliably extracted, and
the abstract nature of the model components. Rather than addressing
this representational gap through the development of effective abstraction
mechanisms, the community effectively eliminated the gap by bringing the
images closer to the models. This was accomplished by removing object
surface markings and structural detail, controlling lighting conditions, and
reducing scene clutter. Edges in the image could then be assumed to map
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Figure 3: The evolution of object categorization over the past four decades
(see text for discussion).

directly (one-to-one) to the occluding boundaries (separating figure from
background) and surface discontinuities of the high-order volumetric parts
making up the models.

The results left many unsatisfied, as the images and objects were often
contrived (including blocks world scenes), and the resulting systems were
unable to deal with real objects imaged under real conditions. Nevertheless,
some very important principles emerged in the 1970’s, many of which are
being rediscovered by today’s categorization community:

1. the importance of shape (e.g., contours) in defining object categories;

2. the importance of viewpoint-invariant, 3-D shape representations;

3. the importance of symmetry and other non-accidental relations in fea-
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(a) (b)

(c) (d)

Figure 4: Brooks’ ACRONYM system [45] recognized 3-D objects by search-
ing for the projections of their volumetric parts and relations: (a) input
image; (b) 3-D models composed of generalized cylinders; (c) extracted rib-
bons from extracted edges; and (d) recognized objects (images courtesy of
Rod Brooks).

ture grouping;

4. the need for distributed representations composed of sharable parts
and their relations to help manage modeling complexity, to support
effective indexing (the process of selecting candidate object models
that might account for the query), to support object articulation, and
to facilitate the recognition of occluded objects;

5. the need for hierarchical representations, including both part/whole
hierarchies as well as abstraction hierarchies;

6. the need for scalability to large databases, i.e., the “detection” or
target recognition problem (as it was then known) is but a special
case of the more general recognition (from a large database) problem,
and a linear search (one detector per object) of a large database is
unacceptable;

7. the need for variable structure, i.e., the number of parts, their identi-
ties, and their attachments may vary across the exemplars belonging
to a category.
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(a) (b) (c)

Figure 5: Lowe’s SCERPO system [152] used perceptual grouping to prune
hypothesized correspondences between image contours and polyhedral edges:
(a) extracted edges; (b) extracted perceptual groups; and (c) detected ob-
jects and their poses (images courtesy of David Lowe).

The 1980’s ushered in 3-D models that captured the exact shape of an ob-
ject. Such models, inspired by CAD models, were effectively 3-D templates,
e.g., [106, 225, 116, 152, 153, 240, 60, 5, 57, 61]. Figure 5 illustrates an exam-
ple output from Lowe’s SCERPO system, which recognized a 3-D polyhedral
template of an object from non-accidental groupings of features comprising
its projection. Provided that such models could be acquired for a real object
(requiring considerable overhead), the community found that it could build
object recognition systems capable of recognizing real (albeit restricted) ob-
jects – a very important development indeed. While object models were
still viewpoint-invariant (since they were 3-D), hierarchical representations
became less common as the models became less coarse-to-fine. This time,
the representational gap was eliminated by bringing the model closer to the
imaged object, requiring the model to capture the exact geometry of the
object. Moreover, since the presence of texture and surface markings seri-
ously affected the search complexity of these systems, once again the objects
were texture-free, so that a salient image edge mapped to (for example) a
polyhedral edge. Again, there was dissatisfaction, as the resulting systems
were unable to recognize complex objects with complex surface markings.
Moreover, the overhead required to construct a 3-D model, either by hand
or automatically from image data, was significant.

It is important to note that while both the above generations of systems
assumed a one-to-one correspondence between salient image features and
model features, there was a dramatic redefinition of the problem from cate-
gory recognition to exemplar recognition. In earlier systems, the bottom-up
recovery of high-level volumetric parts and their relations, forming powerful
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indexing structures, meant that models could accommodate a high degree of
within-class shape variation. However, as the scope of indexing structures
later retreated to individual lines, points, or small groups thereof, their in-
dexing ambiguity rose dramatically, and extensive verification was essential
to test an abundance of weak model hypotheses. The need for 3-D model
alignment, as a prerequisite for verification, required that models were es-
sentially 3-D templates that modeled the shape of an exemplar rather than
a category (although some frameworks supported the articulation of rigid
parts). Still, at the expense of backing down from the more challenging
categorization problem, recognition had begun to penetrate real industrial
domains, providing real solutions to real problems.

Most object recognition systems up to this point employed 3-D models
and attempted to recognize them in 2-D images (3-D from 2-D). However, a
number of researchers, e.g., [102, 23, 213, 251, 47, 263, 75, 20], began to study
the invariant properties of views and their application to view-based 3-D
object recognition (2-D from 2-D). Inspired by the early aspect graph work
of Koenderink and van Doorn [129], a large community of researchers began
to explore the properties of aspect graphs in support of view-based object
recognition [118, 132, 185, 76, 206, 233, 74, 73, 79, 70, 77, 101, 100, 217,
230]. While view-based methods were gaining momentum, they still lagged
behind the 3-D from 2-D methods, which were now shifting toward the use
of geometric invariants to enable recognition from larger object databases
[136, 165, 94].

In the early 1990’s, a number of factors led to a major paradigm shift
in the recognition community, marking the decline of 3-D shape models in
favor of appearance-based recognition. Faster machines could now support
the high throughput needed to accommodate the multitude of image tem-
plates required to model a 3-D object. Moreover, no 3-D modeling (including
software and trained personnel) was required for model acquisition; a mere
turntable and camera would suffice. More importantly, by focusing on the
explicit pixel-based appearance of an object, the complex, error-prone prob-
lem of segmentation could be avoided. For the first time, recognition systems
were constructed that could recognize arbitrarily complex objects, complete
with texture and surface markings, e.g., [128, 250, 166, 193, 142, 162, 170,
49, 32]). Figure 6 illustrates an example output from Murase and Nayar’s
appearance-based (view-based) 3-D object recognition system, which used
PCA and nearest-neighbor search to drastically reduce the complexity of
image correlation over a large database.

This time, the representational gap was eliminated by bringing the mod-
els all the way down to the image, yielding models that were images them-
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(a) (b)

(c) (d)

Figure 6: Murase and Nayar’s appearance-based (view-based) recognition
system [166]: (a) a database of objects; (b) a dense set of views is acquired
for each object; (c) the views trace out a manifold in low-dimensional space,
with each view lying on the manifold; (d) recognizing a query object (im-
ages reproduced from [166] with permission of the International Journal of
Computer Vision, Springer).

selves. The resulting systems could therefore recognize only exemplar ob-
jects – specific objects that had been seen at training time. Despite a number
of serious initial limitations of this approach, including difficulties in dealing
with background clutter, illumination change, occlusion, translation, rota-
tion, and scaling, the approach gained tremendous popularity, and some of
these obstacles were overcome [142, 49, 21, 141, 19]. But the templates were
still global, and invariance to scale and viewpoint could not be achieved.

To cope with these problems, the current decade (2000’s) has seen the
appearance model community turn to the same principles adopted by their
shape-based predecessors: a move from global to local representations (parts),
and the use of part representations that are invariant to changes in trans-
lation, scale, image rotation, illumination, articulation, and viewpoint, e.g.,
[154, 155, 261, 262, 50, 1, 53, 52, 161, 137, 130, 210]. While early systems
characterized collections of such features either as overly rigid geometric
configurations or, at the opposite extreme, as unstructured “bags”, later
systems, e.g., [209, 256, 51, 52, 89, 90, 82, 87, 189], added pairwise spatial
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(a) (b)

Figure 7: Learning scale-invariant parts-based models from examples (Fer-
gus et al. [87]): (a) Learned motorcycle model with ellipses representing
part covariances and labels representing probability of occurence; (b) ex-
ample model detections in query images, with colored circles representing
matched part hypotheses (images reproduced from [87] with permission of
the International Journal of Computer Vision, Springer).

constraints, again drawing on classical shape modeling principles from the
1970’s and 1980’s. For example, Figure 7 illustrates the system of Fergus et
al. [87], in which a scale-invariant, parts-based object model is learned from
a set of annotated training examples and is used to detect new instances
of the model in query images. Unlike the 1970’s and 1980’s, today’s sys-
tems are applied to images of cluttered scenes containing complex, textured
objects. Yet something may have been lost in our evolution from shape to
appearance, for today’s appearance-based recognition systems are no more
able to recognize yesterday’s line drawing abstractions than were yesterday’s
systems able to recognize today’s images of real objects.

Like the 1990’s, today’s models have been brought close to the image.
But this trend is clearly reversing and starting to swing back. And unlike
the previous three decades, the representational gap has not been completely
eliminated. The scope of a local feature has expanded from a single pixel
to a scale-invariant patch. Moreover, the patch representation encodes not
the explicit pixel values, but rather a weak abstraction of these values (e.g.,
the gradient histograms found in SIFT [155] or the radial distribution of
mass found in Belongie et al.’s shape context [22]). The increased level of
abstraction offered by these local features supports an increased amount of
within-class variation of a category’s appearance. This proved to be suffi-
cient to handle some restricted categories whose exemplars do indeed share
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the same local features. Such categories, including cars, faces, people, and
motorcycles, can be characterized as geometrically regular configurations of
recurring, distinctive, local features. However, such categories are likely to
be the exception rather than the rule, for local features are seldom generic
to a shape category. In fact, for most categories, it’s quite possible for two
exemplars to not share a single local appearance-based feature.

If one extrapolates this upward trajectory in (decreasing) feature speci-
ficity, one might first predict a return to those image contours that encode
the shape (occluding boundaries or surface discontinuities) of an object –
features that are far more generic to a category than appearance.2 Yet
the cost of more generic features is their increased ambiguity, for a small
fragment of contour (e.g., resulting from a curve partitioning process that
parses contours at curvature discontinuities or inflections) carries very little
category-specific information. As proposed decades earlier, the solution lies
in grouping together causally related, nearby contours into more distinctive
structures.

How distinctive depends entirely on the problem. In a detection (or tar-
get recognition) task, for which model selection is provided, the need for
complex, bottom-up contour grouping to yield distinctive indexing struc-
tures is absent in the presence of a strong template; rather, only minimal
grouping is required to test a particular model. This is precisely the ap-
proach taken in recent work, e.g., [167, 172, 87, 145, 88], which builds rela-
tional models of contour fragments in support of object detection. However,
in a more general recognition task, more ambitious domain-independent
grouping is essential, which clearly introduces additional complexity. To
help manage this complexity, feature hierarchies have re-emerged, in com-
bination with powerful learning tools, to yield exciting new categorization
frameworks [7, 6, 179, 41, 241, 92, 171, 4, 242, 273].3 Figure 8 illustrates
the system of Todorovic and Ahuja [242], in which a region-based hierarchi-
cal object model is learned from training examples and used to detect new
instances of the model in query images.

But what of the more general categorization problem of recognition from
a large database? Continuing our trajectory of working with image contours,
we will have to group them into larger, more distinctive indexing structures

2In all fairness, appearance-based methods (based on explicit pixel values) implicitly
encode both shape and non-shape information, but cannot distinguish between the two.
Hence they are less invariant to changes in appearance when shape is held constant.

3In fact, Tsotsos [247, 248, 249] proved that such hierarchies are essential for managing
the complexity of visual recognition.
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(a) (b)

Figure 8: Learning hierarchical segmentation tree-based models from exam-
ples (Todorovic and Ahuja [242]): (a) learned hierarchical tree-union model
(right) from examples (left), capturing the recursive containment and spa-
tial layout of regions making up the model; (b) example model detections
(below) in query images (above) (images reproduced from [242], Copyright
c©2008 IEEE).

that can effectively prune a large database down to a few candidates.4 If
we want our models to be articulation invariant, then our indexing struc-
tures will map naturally to an object’s parts. And if we want to reduce
the dimensionality of the parts to allow part sharing across categories, then
we somehow have to boost the power of our indexing structures to offset
the increased ambiguity of our parts. That means grouping parts together
until the resulting indexing structures are sufficiently powerful. Interest-
ingly enough, this is exactly the original framework proposed in the 1970’s,
meaning that if our prediction holds, we will have come full circle. If we do
revisit this paradigm, we will do so with vastly faster machines, more pow-
erful inference and search algorithms, and a desire to learn representations
rather than handcraft them. But has this convergence of machine learning
and object categorization led to deeper representational insight?

The trend over the last four decades is clear. Rather than developing
mechanisms for image and shape abstraction that are required to bridge the

4Indexing can take many forms, including hashing, e.g., [136, 93, 94], e.g., decision
trees (including kd-trees) [118, 102, 20, 214, 215], and coarse-to-fine model hierarchies,
e.g., [45]. All assume that the query object is unknown and that a linear search of the
database is unacceptable (or intractable).

12



representational gap between our favorite “salient” image features and true
categorical models, we have consistently and artificially eliminated the gap,
originally by moving the images up the abstraction hierarchy (simulating the
abstraction) and later by moving the models down the abstraction hierar-
chy (making them less categorical). Driven by a desire to build recognition
systems that could solve real problems, the evolution of recognition from cat-
egory to exemplar was well-motivated. But the community is clearly headed
back toward categorization. And although our models are slowly creeping
back up the abstraction hierarchy, image features are still tightly coupled to
model features, and the critical problem of abstraction continues to receive
little attention. Until this important problem is addressed, progress in more
general categorization seems unlikely.

3 The Abstraction of Shape

In the 1970’s, there was no shortage of abstract shape representations. For
example, Binford’s generalized cylinder (GC) [29] (see Figure 4) was a pow-
erful, symmetry-based part model whose complexity was unbounded.5 To
manage the complexity of bottom-up shape recovery, a number of restric-
tions were introduced that arguably strengthened the fundamental role of
symmetry. Such restrictions included, for example, a straight axis, a homo-
geneous sweep function, a linear sweep function, or a rotationally symmetric
cross-section [169, 2, 159, 45, 253, 272, 188, 31, 133, 186, 160, 30, 157, 59].
While an abstract object model composed of restricted generalized cylinders
and their spatial relations could support powerful categorization, recover-
ing such parts and relations from images of real objects was the stumbling
block. When image contours mapped one-to-one to the occluding bound-
aries or surface discontinities of restricted GC’s, such recovery was indeed
possible. However, when the projected model contours were not a subset
of the observed image contours, part recovery was not possible. Abstrac-
tion mechanisms for mapping observed image contours to abstract model
contours were simply not available at that time.

In the 1980’s, two powerful symmetry-based, volumetric shape abstrac-
tions emerged, still founded on the symmetry axis concept, but each taking
a very different approach to restricting the complexity of the generalized
cylinder. Superquadric ellipsoids [17, 176, 229, 107, 91, 143, 144, 71] pro-
vided a rich set of deformations with a small set of parameters. While most

5The generalized cylinder is defined by axis, cross-section, and sweep functions, each
of which can be arbitrarily complex.
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(a) (b)

Figure 9: Two powerful 3-D shape abstractions evolved from the general-
ized cylinder (GC), each retaining a powerful symmetry property and each
restricting the GC in different way: (a) superquadric ellipsoids [17] were typ-
ically recovered from 3-D range data (from Leonardis et al. [144], Copyright
c©1997 IEEE); (b) geons [27] were typically recovered from 2-D image data
(from Pilu and Fisher [181]; image reproduced with permission of Springer).

successful superquadric ellipsoid recovery lived in the range data domain
(see Figure 9(a)), where a surface model could often be abstracted from a
cloud of 3-D shape points, their recovery from 2-D images was far more chal-
lenging and far less successful, again lacking the abstraction mechanisms to
map observed image contours to abstract model contours [69].

Biederman’s geons [27, 28] represented a qualitative partitioning of the
space of GC’s according to simple dichotomous and trichotomous proper-
ties that humans could distinguish effortlessly. While this psychological
theory launched a subcommunity of categorization researchers to develop
computational models for geon recovery [25, 24, 191, 192, 268, 66, 181]
(see Figure 9(b)), including more general qualitative volumetric part models
[72, 74, 73, 67], they again faced the same challenge as their GC ancestors:
salient image contours do not necessarily map one-to-one to abstract model
contours. While proponents of GC’s, restricted GC’s, superquadric ellip-
soids, and geons were well motivated in attempting to model an object’s
abstract parts and their relations, their assumption that the features com-
prising these models could be directly observed in the image was unrealistic.
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Instead of pursuing the abstraction mechanisms that would allow such mod-
eling frameworks to be further explored, the frameworks were abandoned due
to their inability to recognize real images of real objects.

Blum’s medial axis transform (MAT) [35, 36, 37] is a 2-D axial symmetry-
based shape description which, like Binford’s generalized cylinder which fol-
lowed it, spawned an entire shape subcommunity. Just as geons imposed a
qualitative partitioning of the space of generalized cylinders, shock graphs
[223] (see Figure 10(a)) imposed a qualitative partitioning on the branches
of the medial axis transform. And just as geons inspired a community of
geon-based recognition systems, shock graphs inspired a community of shock
graph-based recognition systems [223, 174, 212], while 3-D medial surfaces
(analogous to medial axes) led to medial surface graph-based recognition
systems [224] (the mathematics, algorithms, and applications of medial rep-
resentations are detailed in [222]). However, just as GC-based systems as-
sumed that salient contours in the image map one-to-one to contours gen-
erated by the (GC) model, the medial axis-based community assumed that
salient contour points (i.e., all points on an object’s silhouette) map one-
to-one to points generated by the (MAT) model. For either framework to
succeed on real images of real objects, image abstraction must yield a set of
abstract contours which, in turn, map to the features of an abstract cate-
gorical model.

One might ask to what extent abstract shape recovery can be purely
bottom-up. Part models like the unrestricted GC in 3-D and a medial
branch in 2-D impose no mid-level shape priors (i.e., shape constraints) to
help regularize their recovery from real images of real objects. As a conse-
quence, too much stock is placed in features arising from simple bottom-up
segmentation, such as contours or regions, and the assumption that they map
one-to-one to salient model features. Looking back at the geon-based recog-
nition systems, geons provided a powerful set of regularizing constraints on
the data, but were never used as the basis for an image abstraction process.
Shock graphs offered a similar set of constraints, but have also not yet been
effectively used as the basis for image abstraction, although there have been
efforts to regularize, in a bottom-up sense, the MAT [8, 236, 255, 83, 10].

The mid-level shape prior of symmetry has been used, albeit with limited
success, as a basis for such image abstraction. Multi-scale blobs, including
the work of Crowley [62, 63], Lindeberg [148, 149], Blostein and Ahuja [34],
and Shokoufandeh et al. [220, 218] all employ ridge and/or blob models
(see Figure 10(b)) as symmetry-based mid-level part constraints. While the
models provide excellent regularization and have led to powerful hierarchical
shape representations for recognition, they have not been successfully recov-
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(a) (b)

Figure 10: Two powerful 2-D qualitative shape abstractions: (a) the shock
graph (from Siddiqi et al. [223]), whose parts represent a qualitative parti-
tioning of Blum’s medial axis transform [35], and whose edges span adjacent
parts, directed from larger to smaller (image reproduced from [223] with
permission of the International Journal of Computer Vision, Springer); (b)
the blob graph (from Shokoufandeh [218]), whose parts capture elongated
symmetric structure at different scales, and whose edges capture parent-
child (topological=green) and sibling (geometric=red) relationships between
parts (image reproduced from [218] with permission of Computer Vision and
Image Understanding, Elsevier).

ered from textured objects. Moreover, it’s not clear whether they provide a
rich enough shape description, for unlike shock graphs or geons, the parts
cannot bend or taper.

Symmetry is an invariant in all these approaches, and has its roots in
Gestalt psychology. The above symmetry-based abstractions (superquadrics,
geons, and shock graphs) represent but a small fraction of a much broader
community working with symmetry-based shape models for object catego-
rization, both in 3-D, e.g., [164, 177, 178, 239], and in 2-D, e.g., [147, 200,
211, 95, 274, 3, 126, 271, 9]. While symmetry provides a basis for perceptual
grouping of image structure, such as contours, it’s important to realize that
in general (at least for real images of real objects), the groups may not be
in a form suitable for direct matching to an abstract model. Rather, the
groups must be abstracted and regularized to yield a set of abstract features
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that only then can be matched to an abstract model. It is highly unlikely for
such features to exist explicitly in the image; rather, they must be inferred
from appropriate groupings of local features that we can extract. For exam-
ple, in Figure 2, the elliptical contour defining any of the part abstractions
does not exist explicitly in the image, but rather defines the extent of an
elliptical cluster of local features that are causally related.

Finally, despite the community’s focus on exemplar (or restricted cate-
gory) recognition over the last 15-20 years, it is important to acknowledge
that there has been an active community who is committed to the problems
of shape abstraction and categorization. Apart from the symmetry-based
frameworks described above, important shape abstractions include shape
contexts [22], inner-distance [150] in 2-D and shape distributions [173] in
3-D, multi-scale boundary-based methods, e.g., [97], parameterized blob
models, e.g., [122], deformable models, [18, 86, 269], and articulated mod-
els, e.g., [119, 194, 85, 264]. It is also important to acknowledge the work
of the content-based image retrieval (CBIR) community [226]. While they
have focused less on the problems of segmentation, grouping, and shape
abstraction, they have focused on powerful (typically global) abstractions
of appearance that are appropriate for many image retrieval tasks. One
such image abstraction consists of simply representing an entire image at
low (e.g., 32× 32) resolution, the minimum resolution at which human sub-
jects can correctly interpret images of natural scenes [244]. If the model
database contains enough correctly labeled, low-resolution model images
(e.g., 80,000,000 in [244]), the space of real images of real objects can be
sampled densely enough to facilitate surprisingly effective, albeit restricted,
forms of object categorization.

4 The Abstraction of Structure

Successful image abstraction into a set of abstract shape primitives is only
part of the problem, for a recovered primitive configuration may still not
match the configuration of the correct model. For example, a chair having
one leg has a very different part configuration than a chair having four legs.
In fact, for most categories, part structure is variable and must somehow
be parameterized. While the current recognition community is focused on
strategies that assume a one-to-one correspondence between local image and
model features, the need for models that accommodate variable structure
was acknowledged long ago by, for example, Fu [96] and Rosenfeld [180,
202]. Brooks’ ACRONYM system also parameterized structure, allowing
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(a) (b)

Figure 11: Parameterizing structure represents a form of structural ab-
straction, supporting less brittle object categories having variable struc-
ture. Drawing on the classical shape grammars of the 60’s and 70’s and
on stochastic grammars from the computational linguistics community, Zhu
and Mumford have rekindled interest in shape grammars. In this example,
taken from [275], the clock grammar shown in (a) is used to recognize the
two clocks (real and display) in the image shown in (b) (images reproduced
from [275], courtesy of Now Publishers).

variable numbers of parts in an elaborate constraint manipulation system
[45]. As the need to model structural variability is once again acknowledged,
grammar-based methods, including AND/OR graphs, are beginning to re-
emerge, for example, in work by Zhu and Mumford [275] (see Figure 11),
Jin and Geman [123], and by Levinshtein et al. [146]. To the extent that
the rewrite rules in a grammar can model the coarse-to-fine appearance of
an object,6 a grammar can provide an effective structural abstraction [146].
Other exciting categorization frameworks that support structural variability
are also emerging, such as the hidden state shape models (HSSMs) of Wang
et al. [259].

6Recall Marr’s famous coarse-to-fine representation of a human with a single cylinder
at the most abstract end of the modeling spectrum, and a detailed configuration down to
the fingers at the least abstract end [158].
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There have been other approaches to dealing with variable structure.
One approach is to develop representations for structural abstraction, so
that two configurations (or graphs) which have similar structure have similar
structural abstractions. For example, in the domain of hierarchical struc-
tures, representing coarse-to-fine feature hierarchies that are ubiquitous in
computer vision, Shokoufandeh et al. [219] draw on spectral graph theory to
compute a low-dimensional abstraction of a directed acyclic graph (DAG).
The eigenvalues of a DAG’s antisymmetric adjacency matrix characterize
the degree distribution of the graph’s nodes, and are combined to define a
low-dimensional vector description of the “shape” of a graph. This struc-
tural abstraction forms a basis for both indexing (nearest-neighbor search)
as well as matching, unifying these two important problems in a common
representational framework. However, the approach implicitly assumes that
an effective grouping process has been used to generate the hierarchy.

In the absence of a strong set of grouping rules, a given set of extracted
features may give rise to an exponential number of possible abstraction hier-
archies. For example, consider the number of region adjacency graphs that
can be abstracted from a single region adjacency graph by contracting an
edge (merging two regions) to yield a new graph, and repeating. However,
in a supervised setting, two exemplar graphs, which may not share a single
node in correspondence, may be known to represent the same category. Ke-
selman [127] searched for the lowest common abstraction of a set of exemplar
graphs, i.e., the most informative graph derivable from each of the exem-
plars. While the technique was able to abstract a categorical model from
a set of examples for which input feature correspondence might not exist,
the method provided little insight into generating appropriate abstractions
for a single image, as it was too dependent on “evidence” provided by other
images known to belong to the same category.

Keselman’s approach sought to group features to support one-to-one cor-
respondence at some higher level, representing a many-to-many correspon-
dence at the original level. An alternative strategy, proposed by Demirci et
al. [64], computes an explicit many-to-many node correspondence between
the original edge-weighted graphs. Drawing on recent work from the graph
embedding community, the graphs are embedded with low distortion into a
vector space, where shortest-path distances between nodes in a graph are re-
flected in the geometric distances between the nodes’ corresponding points
in the embedded space. The resulting points are matched many-to-many
using the Earth Mover’s Distance (EMD) algorithm, with the computed
flows specifying the many-to-many node correspondences between the orig-
inal graphs.
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The approach cleverly transforms an intractable combinatorial problem
into a tractable geometric problem, but it relies on assigning an appropri-
ate set of edge weights in the original graphs. If an edge weight is small,
the two nodes (spanned by the edge) are embedded nearby to one another,
and will likely receive flow from a common source in the EMD solution. A
small edge weight can be thought of as a high probability that the features
are non-accidentally related. Hence the approach is only as successful as
the perceptual grouping heuristics used to generate the graph and its edge
weights. Moreover, the many-to-many solution yields only corresponding
collections, not corresponding abstractions. Still, it does acknowledge the
need to overcome the popular assumption that for every salient image fea-
ture, there exists a corresponding model feature. In fact, the need for many-
to-many matching is acknowledged by a growing subcommunity. Important
approaches have been proposed based on graph-edit distance [46, 212, 199],
spectral methods [48], tree-union [241], association graph methods [175], and
the emerging grammar-based methods mentioned earlier.

Finally, a discussion of shape and structural abstraction is incomplete
without a reference to functional object descriptions [201, 99, 267, 254],
which can be thought of as the highest form of shape abstraction. Many
categories of objects exhibit a high degree of shape and structural variability,
and that for such categories, explicit geometric models are too brittle. One
might argue that even shape grammars, in their attempt to explicitly encode
the possible structural variations, might be too unwieldy if the within-class
structural variability is too high. In response to such categories, Stark and
Bowyer [231, 232] proposed a number of functional predicates, designed to
test the essential functional features of a model whose structural variabil-
ity could be infinite. However, while these features could be described as
functional, e.g., a chair provides horizontal support, vertical support, foot
clearance, etc., such functional primitives could, in fact, be thought of as
highly abstract geometric primitives (which were, in fact, computed from
3-D shape data). Rivlin et al. [197] suggested that reasoning about func-
tion first requires the extraction of high-order shape primitives, and that
the mapping from shape primitives to functional primitives was many-to-
one. Putting these two ideas together, such a many-to-one mapping could
be considered a further form of shape abstraction. Since mechanisms for
high-order primitive shape extraction were not available, not to mention
the ability to further abstract shape to the level of functional primitives,
functional models lost popularity during the mid-1990’s.
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5 Segmentation, Grouping, and the Role of Mod-

els: Beyond Target Recognition

Today’s categorization community has clearly acknowledged the deficiency
of appearance-based region segmentation to correctly separate figure from
ground, and the need for some sort of prior knowledge to overcome this
deficiency. While the perceptual organization community sought to inject
mid-level, object-independent knowledge into the process, there has been a
recent tendency to bypass mid-level knowledge and inject object-dependent
knowledge into the process, e.g., [39, 252, 140, 270, 234, 151, 163, 243, 266,
260, 38, 111] (see Figure 12). Cast as a knowledge-based (or top-down)
segmentation problem, it’s important to note that this bears a close resem-
blance to classical target (or model-based) recognition, in which an individ-
ual object model (whether exemplar or category) is used to constrain image
segmentation. In any classical target recognition task, the target was typ-
ically aligned with its detected instance, with the alignment defining (as a
by-product) a figure/ground separation (including a parsing of the object
into parts if the representation was parts-based). While target recognition
was an important problem, particularly in military applications, knowing
exactly which object to search for in the image, and hence which constraints
to apply, was considered a special case of the more general problem of recog-
nition from a large database.

Today’s knowledge-based systems are superior to their early predeces-
sors, particularly in terms of their ability to learn such constraints from
training data. But once again the problem of mid-level shape abstraction
has been avoided through the use of overly strong model assumptions. If
the image to be labelled or segmented can contain any of 10,000 object cat-
egories (with arbitrary viewpoint, scale, articulation, occlusion, etc.), such
techniques clearly don’t scale up, and an indexing mechanism is required
to prune all but a few promising candidates. Local features will have to
be grouped and abstracted into mid-level primitives to support articulation,
occlusion, and within-class shape deformation. Given a small vocabulary
of such primitives, primitive extraction defines a tractable recognition task
in its own right. When an extracted (“recognized”) primitive is combined
with a few other nearby primitives, they together yield a highly distinctive
indexing structure. Somehow, the more specific detection problem has, in
recent years, drawn the community’s attention away from the more general
categorization problem. But in doing so, the need for mid-level, generic
parts and relations in the presence of a strong, top-down model is greatly
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Figure 12: Image labeling results from the multiscale conditional random
field approach of He et al. [110]. From labeled training images, knowledge of
an object’s appearance, position, size, and background can be learned and
applied to the segmentation of test images (image reproduced from [110],
Copyright c©2004 IEEE).

diminished, just as it was in the classical verification-oriented recognition
systems of the 1980’s.

While the detection problem may have drawn attention away from the
bottom-up perceptual grouping and mid-level shape abstraction problems,
it has nonetheless led to some very powerful abstraction mechanisms based
on local image statistics. Such statistics, computed over some appropriate
area, can take the form of distributions of semi-local features, with overlap-
ping spatial support and some degree of spatial flexibility, ranging from total
flexibility in a bag-of-features model [78] to multiple levels of spatial flexi-
bility in a multiresolution, multilevel histogram pyramid [104]. Multilevel
bag-of-feature models are by no means the only way to build representations
with multiple levels of spatial selectivity. Biologically inspired architectures
like HMAX [216] or convolutional neural networks [138] construct hierarchi-
cal representations by alternating successive layers of convolution (template
matching to prototypes) and rectification (max pooling operations over affer-
ent unit responses) in order to progressively build descriptors with increased
invariance to scale, image rotation, and position. Local image statistics can
also be used as inputs for training predictive models (complex, potentially
multivalued, or one-to-many mappings) of 3D abstractions, such as planar
structures [112] or human poses [26, 228, 227, 125].

While these approaches focus primarily on appearance and less on shape,
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they clearly acknowledge the need for flexible, abstract models that are ro-
bust to within-class variation. However, since they operate in a detection
environment, the problem of segmentation is typically avoided by simply
running the detector at all locations, orientations, and scales, until the im-
age statistics inside a window match that of the target. Such an approach,
which effectively tries all possible segmentations (over which the feature
distribution is computed), simply does not scale up to either general view-
point invariance or recognition from large databases. Perceptual grouping
mechanisms (perhaps based on feature statistics, e.g., [196, 195]) must first
group together causally related features into parts without regard to object
class. Only then should shape statistics over the part (i.e., feature group)
be computed, offering a powerful part abstraction mechanism.

6 Expanding Model Scope: Objects to Scenes

During the golden years of DARPA-funded image understanding research in
the US, much of the object recognition community was devoted to knowledge-
based vision systems (sometimes called expert vision systems [203], or context-
based vision systems) which exploited scene-specific, contextual knowledge
to provide additional evidence with which to disambiguate poorly segmented
objects (see Figure 13). Early seminal work by researchers such as Tenen-
baum and Barrow [237] and Hanson and Riseman [108] in the late 1970’s
popularized the integration of segmentation and interpretation. Over the
next 10-15 years, the knowledge-based vision community manually con-
structed models that mapped functional or semantic relationships between
objects in a scene to geometric relationships among their projections in the
image. The resulting systems were applied to such diverse problems as aerial
photo interpretation, e.g., [117, 109, 124], autonomous road following, e.g.,
[68], mechanical system image analysis, e.g., [44], medical image analysis,
e.g., [246, 103], perceptual grouping, e.g., [207], or more general contexts,
e.g., [235].

While the idea that domain-specific knowledge must play an important
role was widely adopted by those seeking solutions to practical problems,
there were those who dismissed knowledge-based vision systems as ad hoc or
overly specific. Such systems were typically very slow, and largely unsuccess-
ful, for the problems they addressed were often extremely difficult. More-
over, encoding domain knowledge in a system required significant overhead,
and the fact that knowledge of one domain rarely lent itself to the next do-
main did not encourage their widespread adoption. When appearance-based
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(a) (b)

Figure 13: The SIGMA image understanding system of Hwang et al. [117]:
(a) a contextual model of a suburban housing development; (b) detecting
instances of the contextual model’s components in an image. Contextual
constraints can help overcome poor segmentation and spurious hypotheses
(images reproduced from [117] with permission of Computer Vision, Graph-
ics, and Image Processing, Elsevier).

vision appeared on the scene in the early 1990’s, coupled with a decreasing
DARPA presence, knowledge-based vision systems all but disappeared. But
they would make a comeback, just as shape-based categorization has re-
emerged in the mainstream.

The first hints at a return to knowledge-based vision have come in the
form of encoding scene context using simple spatial image statistics without
requiring explicit segmentation or grouping, e.g., [58, 245, 110, 134] (see
Figure 14). While appropriate for the recognition of very broad contexts,
e.g., label a scene as containing people vs. furniture, the lack of segmen-
tation prevents the localization of individual objects that might comprise
a more specific context. Moreover, contexts whose components differ in
shape (rather than appearance) cannot be addressed without segmentation.
Still, unlike earlier generations of context-based or knowledge-based systems,
contextual knowledge is learned automatically from annotated training ex-
amples, making such a framework far easier to transport to other domains.
In more recent work, the community is returning to the classical ideas of
combining object recognition and 3-D scene understanding, with notions of
scene context capturing high-level relationships among objects, e.g., the fact
that cars are typically found on roads and people are not typically detected
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Figure 14: From a set of labeled training images, Torralba [245] learns
the correlation between context and object properties based on low-level
image feature statistics computed over annotated training images: (a) test
images for which p(vehicles|vc) < 0.05, where vc is a vector of contextual
features derived from statistics computed over low-level image features; (b)
test images for which p(vehicles|vc) > 0.95 (image reproduced from [245]
with permission of the International Journal of Computer Vision, Springer).

on the sides of a building [113].
When an object’s identity is ambiguous, it makes little sense to ignore the

contextual clues offered by nearby objects. If a context is too strictly speci-
fied, i.e., components appear at particular locations, scales, and orientations
in an image, then context-based vision amounts to little more than brittle
object detection. Interacting with a complex environment means explicitly
recognizing its objects whose number, location, orientation (in both the im-
age and in depth), scale, shape, and appearance may be highly variable.
The fact that objects are coupled to form contexts (or environments, such
as streetscapes, dining rooms, offices, or an army barracks) means that large
object databases can be partitioned into smaller, context-specific databases.
Determining what context (database) you’re looking at requires that you
first segment, group, and index into a set of contexts. The most likely con-
text, in turn, defines the context-specific database with which to constrain
the recognition of the unidentified or ambiguous objects in the scene. Since
contextual indexing lies at the object level, and since the objects making up
a context are typically categorical, we’re back to the same problem of shape
and configuration abstraction in support of object recognition. Contexts
are to their component objects as objects are to their component parts. In
either case, we must start with the segmentation, abstraction, and grouping
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Figure 15: Learning structured appearance models for image annotation
(from Jamieson et al. [121]): (a) Sample input image–caption collection,
where each image contains hundreds of local (SIFT) features (yellow crosses).
From the input training collection, associations between structured subsets
of local features and particular nouns are learned (discovered); (b) sample
output, where one of the objects learned during training (representing the
Maple Leafs logo) is detected (shown with red features and green relation-
ships in a yellow box), and annotated with its name (“Maple Leafs”).

of an object’s parts.
Finally, on the topic of increasing model scope, one might imagine mov-

ing beyond purely visual (shape-based or appearance-based) models toward
more semantic models, coupling visual and semantic information. Learning
the associations between visual features and nouns in training image cap-
tions has led to augmented models that combine visual appearance with
an object name, supporting automatic image annotation, e.g., [56, 15, 11,
16, 13, 33, 12, 258, 55, 120, 121, 54, 14, 190] (see Figure 15). But the
linguistic knowledge exploited by such approaches is minimal, and the un-
realized potential for object names to invoke powerful semantic knowledge
to guide image segmentation and scene interpretation is enormous. While
some efforts, e.g., [115, 114], have exploited the restricted semantic informa-
tion captured in WordNet’s IS-A hierarchy [84], little work has tapped into
more general semantic knowledge that may be captured through statistical
analysis of text corpora.
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7 Managing Search Complexity: The Case for 3-D

Models

Early categorization systems typically modeled objects in 3-D, and sought
to infer 3-D model features from 2-D image features. For in the words of the
distinguished vision researcher, Jan-Olof Eklundh, “We need to build vision
systems that look at the world, not at images.” When 3-D models gave
way to appearance models in the early 1990’s, the need for viewpoint invari-
ance in a recognition system translated from a single viewpoint-invariant
3-D model to a dense collection of 2-D views. But the appearance-based
community was not the first to propose view-based 3-D object recognition,
for the view-based [102, 23, 213, 251, 47, 263, 75, 20] and aspect graph-based
[129, 118, 132, 185, 76, 206, 233, 74, 73, 70, 77, 101, 100, 217, 230] commu-
nities had studied both the theoretical as well as the practical implications
of the approach.

The cost of transforming the 3-D recognition problem into a 2-D one is
significant [79]. Plantinga and Dyer [185] proved that for a rigid polyhedron
with n faces, the complexity of its aspect graph in terms of the number
of distinct configurations of features observed as the viewing sphere is tra-
versed, is O(n9). For articulating or deformable categories, the complexity
becomes even more prohibitive. One way out of this dilemma is to apply the
classical parts-based approach, using aspects to model not the entire objects,
but rather the views of a small number of 3-D parts which, in turn, could
be combined to form an infinite number of 3-D objects [74, 73, 70]. Thus,
the number of views is fixed, and independent of the number of objects in
the database. Moreover, since the parts are simple (having low complexity
in terms of surfaces), their aspect graphs are similarly simple.

The evolution of appearance-based categorization saw a curious move-
ment away from viewpoint invariance (which would reduce the number of
views required to model a 3-D object) to focusing on particular views of cat-
egories, such as the sides of cars, the fronts of faces, the sides of motorcycles,
or the sides of horses (effectively ignoring all but a few of the views required
to model a 3-D object). The earlier view-based recognition assumption of
having to recognize all possible views of a 3-D object did not translate into a
multitude of detectors, one per view class. Surprisingly, only recently is the
current categorization community beginning to return to the roots of view-
based 3-D recognition, seeking view-based descriptions which offer greater
viewpoint invariance.

We are starting to see representations that bear a strong resemblance
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to the aspect graphs of the 1980’s and 1990’s, e.g., [204, 135, 208]. And as
the community returns to shape modeling (as reflected in recent work on
contour-based representations, e.g., [221, 172, 87, 145]), it may well redis-
cover that for complex, articulating shape models, the number of aspects
is intractable. The problem is further compounded when the community
moves beyond object detectors to the more general problem of unexpected
object recognition. The road back to 3-D is once again on the horizon, with
exciting new work on learning to infer 3-D shape from 2-D appearance [112]
(see Figure 16), and on the perception of 3-D shape from 2-D contours us-
ing a 3-D compactness constraint [184].7 As contours once again become
fashionable, one might expect a return to the problem of 3-D shape-from-
contour. And as we move from the narrow problem of detection toward the
more general problem of unexpected object recognition, the need to extract
local (occlusion resistant) viewpoint- and articulation-invariant indices will
focus shape-from-contour at the part level (rather than at the object level).
After 40 years, we may once again be faced with the problem of recovering a
vocabulary of higher-order, 3-D part models and their relations. And once
again, the major challenge will be the abstraction of such part models from
real images of real objects.

8 Identifying Our Shortcomings: The Need for

New Benchmarks

Early work in categorization was rarely evaluated thoroughly, but rather
demonstrated on a small set of anecdotal images. The weaknesses of the
approaches were rarely discussed or illustrated in detail, and one was left
to wonder on what domains a reported method might be successful. It was
not the case that early categorization researchers did not appreciate the
importance of evaluation. Rather, a number of factors conspired to make
systematic evaluation a challenge: 1) the models were primarily 3-D and a
standard representation had not been adopted by the community; 2) image
and/or model databases were unavailable; and 3) computing power was

7Our ability to perceive 3-D objects is largely unaffected by the absence of such “direct”
depth cues as binocular disparity or motion [183, 184]. This suggests that perceptual
grouping operates on a single 2-D image, and while adding more images will always improve
3-D interpretation, it will not change the way shapes are found in, and abstracted from,
the images. While this chapter has focused on the case of categorization (and abstraction)
from a single 2-D image, it does not imply that binocular reconstruction and structure
from motion, when available, cannot contribute to the processes of 3-D shape recovery
and abstraction.
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Figure 16: Recovering 3-D surface layout from a single image (from Hoeim
et al. [112]): (a) input image; (b) recovered surface layout: colours reflect
class labels (green=support, red=vertical, blue=sky), while subclass labels
are indicated by markings (left/up/right arrows for planar left/center/right,
‘O’ for porous, ‘X’ for solid) (image reproduced from [112] with permission
of the International Journal of Computer Vision, Springer).

extremely limited, with a single image taking minutes or hours to interpret.
Not until the 1990’s, with the advent of appearance-based recognition

(where the model was the image) and faster machines, did evaluation bench-
marks begin to emerge. The most prominent was the Columbia COIL-100
database [168], followed by the ETH database [139], and more recently the
Amsterdam Library of Object Images [98], Caltech-101 [81], Caltech-256
[105], the MIT “tiny” image database [244], the LabelMe database [205],
the ESP dataset [257], and a variety of other databases contained in the
PASCAL Object Recognition Database Collection [78]. These databases
were long overdue, and provide a means for more uniform evaluation and
comparison of our work. They also provide a wealth of real-world images
with which to automatically learn object models.

Categorization algorithm evaluation has improved dramatically since the
early 1990’s. But while we can now compare each other’s algorithms on a
standard dataset, it’s not clear whether these datasets reflect the strengths
and weaknesses of our algorithms [187, 182]. While early databases tested
invariance to viewpoint (since they exhaustively enumerated a large set
of views of an object), they did not test invariance to scale, image rota-
tion, occlusion, significant articulation, clutter, or significant within-class
shape deformation. Conversely, while more recent databases test significant
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within-class appearance and shape deformation, they do not systematically
test invariance to scale, image rotation, occlusion, clutter, and articulation.
It’s not that such transformations do not exist in the database collections,
it’s that they are not systematically parameterized so that our algorithms’
failure modes can be clearly identified.

In some sense, our benchmarks are either too simple or too complex.
When they’re too simple, we run the risk of ignoring important invariance
goals in our categorization system design because such goals are not re-
flected in the data. When a system reports good results on such a dataset,
we have no way of knowing how it will fare under conditions not reflected
in the dataset. Conversely, when the benchmarks are too complex, the in-
variance goals become obfuscated by the data. When a system reports good
(or better) results on such a dataset, we don’t know which conditions are
handled well and which are not. The performance indicators simply don’t
yield critical insight into what aspects of the problem we need to improve
on.

The community clearly needs a dataset that isolates the various con-
ditions that we need to address. Such a database may take the form of
a sequence of image suites, progressing from exemplars imaged under very
controlled conditions to categories imaged under very challenging conditions,
with a full spectrum of suites in between. For example, “suite-0” might fix
a number of object imaging conditions, e.g., single scale, fixed illumination,
fixed articulation, fixed appearance (i.e., an exemplar), no occlusion, and no
clutter. The only free parameter would be viewpoint. Suite-0 would there-
fore be used to evaluate your algorithm’s invariance to viewpoint change,
and nothing else. Next up would be suite-1, which fixes all conditions ex-
cept, for example, image scale, enabling you to evaluate the scale-invariance
of your algorithm. Each successive suite, in turn, would test a different con-
dition. Moreover, each condition would be systematically parameterized, so
that where you fail on a particular suite would tell you exactly how invari-
ant you are to that suite’s condition(s). Early databases, such as COIL-100
[168] and the Amsterdam Image Library [98] parameterized viewpoint and
illumination, while one recent database [65], created from the COIL-100
database, systematically parameterizes degree of occlusion.

As the suites progress toward the “human vision” suite, exemplars would
give way to categories, rigid objects would give way to deformable objects,
and uniform backgrounds would give way to cluttered backgrounds. Cate-
gories in earlier suites would exhibit very little within-class appearance or
shape deformation, and in later suites would exhibit significant structural
variability. Further suites could then combine conditions, leading to many
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subsets of conditions which might tease out limitations of particular algo-
rithms. To evaluate your algorithm would then amount to starting at suite-0
and reporting your results on each suite up to the conditions you claim to
be invariant to. Such a set of suites would need to be designed by a con-
sortium with no prior disposition to a particular recognition paradigm. In
fact, to be paradigm invariant, 3-D data of the imaged objects should also
be provided, allowing for the automatic construction of 3-D models which
some may prefer over view-based models.

The existence of such a set of suites would allow our algorithms to evolve
in a clear direction, ever more invariant to increasingly challenging condi-
tions, but never losing sight of the need to address the fundamental condi-
tions. Without the carefully designed intermediate suites, testing on only
the most challenging suites which combine many conditions (akin to today’s
popular databases) may contribute little to our understanding of categoriza-
tion. If such databases become more performance- than diagnostic-oriented,
they may, in fact, end up distracting the categorization community from
focusing on those particular issues that deserve attention. It is here that
we can take a cue from our human vision colleagues, as the problem of de-
signing proper experiments to test the performance of a vision system and
to evaluate competing models has existed for a long time in the form of
psychophysics. The first formal presentation of psychophysical methods can
be found in Fechner [80]. A recent review that emphasizes the use of signal
detection theory can be found in Macmillan and Creelman [156], and exam-
ples of the application of psychophysical methodology to the study of 3-D
shape perception is presented by Pizlo [184].

9 Conclusions

The problem of object categorization has been around since the early 1970’s.
The legacy left by that original community was a set of rich object represen-
tations that modeled the coarse, prototypical, 3-D shape of an object. While
important concepts such as viewpoint invariance, hierarchical representa-
tions, structural variability, indexing, and symmetry are rooted in this early
work, the lack of image abstraction mechanisms restricted these systems to
contrived images of contrived scenes. Instead of incrementally building on
these rich representational ideas, models became gradually stronger, first in
terms of shape and then appearance, thereby avoiding the need for image
abstraction mechanisms. The resulting recognition systems began to be use-
ful, first solving real exemplar-based industrial recognition problems under
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tightly controlled conditions, and more recently solving real exemplar-based
recognition problems in the real world.

Having made enormous progress on the problem of exemplar recogni-
tion, the community is now eager to return to the categorization problem.
But the gradual redefinition of the recognition problem from categories to
exemplars, followed by a representational movement from shape to appear-
ance, has unfortunately displaced a rich history of categorization from our
community’s memory. The sudden popularity of object recognition in the
early 2000’s is due in part to the fact that an image can now be mapped to a
set of very distinctive local feature vectors without having to engage in the
classical, unsolved problems of segmentation and grouping. This has drawn
a new generation of computer vision and machine learning researchers into
the ring. Our progress will clearly benefit from both the increased pop-
ularity of the problem as well as the influx of new techniques from other
communities. However, a much smaller portion of this new community will
have witnessed the evolution of categorization, contributing further to the
separation of the categorization community from its roots.

Today’s categorization community has moved quickly to apply exemplar-
based appearance models to more categorical tasks. Ultimately, these are
destined to fail, for local appearance is seldom generic to a category. This
is reflected in a recent shift back to shape, along with a recent rediscovery
of the importance of viewpoint invariance.8 This is a very positive devel-
opment, for our computers, our inference engines, our ability to deal with
uncertain information, and our ability to learn a system’s parameters rather
than hand-code them represent enormous improvements over previous gen-
erations. As such, our return to earlier problems will lead to vastly more
effective solutions. Without a doubt, we are heading in the right direction
again.

But one invariant has survived the pendulum-like journey of our com-
munity: our tendency to avoid the difficult problem of image (or shape)
abstraction. Once we acknowledge this important problem, we must be pa-
tient and not expect results too soon. We must understand the history of
the research in our community, building on important representational ideas
and concepts from the past, and not being dismissive of earlier work just
because it did not deal with real images. Each generation of categorization
researchers has made important contributions and we must incrementally
build on the foundations laid by our predecessors. When we do develop

8Note that viewpoint invariance is equally important in the study of human vision,
where it is usually referred to as “shape constancy.”
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solutions, they must be carefully evaluated under controlled conditions that
can provide us with the most constructive feedback. Finally, we must re-
connect with our human vision colleagues, so that we can maximally benefit
from their research on the most impressive categorization system of them
all: the human vision system.
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