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Visual tracking: a research
roadmap

Andrew Blake!, Microsoft Research.

ABSTRACT A research roadmap to many of the best known, and most
used, contributions to visual tracking is set out. The scope includes simple
appearance models, active contours, spatiotemporal filtering and briefly
points to important further topics in tracking.

1 Introduction

Visual tracking is the repeated localisation of instances of a particular ob-
ject, or class of objects, in successive frames of a video sequence. Video
analysis may be causal or non-causal, but tracking is usually taken to be
an online process, and therefore causal with some emphasis on efficient al-
gorithms. The question of automatic initialisation, though sometimes im-
portant, is not addressed here. This is sensible in that there are plentiful
applications where initialisation is not an issue, such as tracking vehicles
on a highway, or indoor surveillance, in which initialisation can be effected
by a simple motion trigger. The aim is to achieve location estimates at
least as good as independent, exhaustive examinations of each frame [29].
Exploitation of object dynamics offers improved computational efficiency
and more refined motion estimates. Perhaps most important of all, it offers
extended capability to resolve ambiguity, as with a person in a crowd or a
leaf on a bush (figure 1).

2 Simple appearance models

2.1 Swimple patches

The most basic tracker consists of matching a template patch T'(r),r € T
onto an image I(r under translation [40] by cross correlation. The aim is
to minimise the misregistration error

p=3"[I(r) - T(x + u)]? (L1)
reT

and this can be done to subpixel resolution using an estimate of the gra-
dient g(r) = VI(r), computed using a suitable filter (such as a gradient of
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FIGURE 1. Tracking in camouflage. The trail of tracked positions of a mov-
ing leaf, in heavy camouflage, at two different times in a sequence. FOr details
of the method see section 4. Images reprinted from [8]. For related movies see
robots.ox.ac.uk/~vdg/dynamics.html.

Gaussian filter). Then the iterative registration algorithm alternates two
steps, to convergence:

1. Newton step on p

0:Z(gi-g;)_lzgibi

i
2. Recompute template offset

u—->u-—v

More generally, the class of transformations can be generalised from
translation x — x + u to a larger class x — W, (x) in which ~ are the
parameters of, for example, an affine transformation or a non-rigid spline
mapping [10] — see later for more details of these transformations. Taking
1 = o + 0 and linearising gives

@) ~ T (x,0)) + - 55V, (1.2)

which can be solved iteratively for u, to perform generalised registration
[40, 3, 24].

2.2 Blobs

An alternative approach to localising regions is to model only the gross
properties of a region, modelling it as a “blob” [56], a Gaussian mixture
model (GMM) in a joint (r,I) position and colour space. Thus a pixel I(r)
is modelled probabilistically as belonging to a model M with probability
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p(r,I(r) | M) and in a new test image, each pixel is evaluated against each
of a number of models M € M. The model with the greatest likelihood is
assigned to the pixel. The cluster of pixels with label M is deemed to be the
new position of object M, whose moments (mean etc.) can be computed
to represent the location of object M, and the GMM for M can also be
updated periodically.

Recently a variation on the blob idea, “mean-shift” tracking [12] has
been very influential because it allows progressive updating of object po-
sition without the obligation to visit all pixels of each and every frame.
Successive approximations to the estimated locations of an object are ob-
tained iteratively as:

b= 5 Y ru®gle - o) (1.3
reT

where C =3 - v/w(r)g(|lr — £:_1]|?), g is the derivative of a particular
kernel function used to build spatial density functions, and w(r) is a weight
measuring the degree of prevalence of the color of pixel r in the template
relative to its prevalence in the test object. The result, used over an image
sequence, is a remarkably tenacious tracker (figure 2), despite its simplicity.

#40 i H71 #TT

FIGURE 2. Mean shift tracking A mean-shift tracker, (here in a particle filter
form — see later) is used here to track player no 75 in a primitive form of sport.
Image reprinted from [42].

2.8 Background maintenance

Blobs represent foreground objects as distributions over colour (and space)
but modelling a background, assuming it is largely static, is also useful as
a guide to what is not part of an object. [41]. Just as blobs model the fore-
ground as a mixture, so also modelling background pixels as mixture distri-
butions is useful [46, 48]. If My is the background model, then pixels could
be tested for their likelihood of belonging to the background in general by
evaluating p(I | M), and high scoring pixels removed from consideration as
possible parts of any foreground object. What is more powerful still, when
the background is static, is to model each background pixel individually
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by collecting statistics of colour over time from that pixel, and building a
mixture model for p(I | r,Mg). These form typically narrow distributions
which make powerful tests for background membership.

Having introduced some simple, though nonetheless very effective forms
of tracker, the next section looks at some elaborations on the basic theme
of matching shapes.

3 Active contours

An active contour is a parameterised curve r(s),0 < s < 1 in the plane
that is set up to be attracted to features in an image I(r). A detailed
account of the development and mechanisms of active contours is given
elsewhere [8], but here we summarise the main types. In section 4, explicitly
dynamical forms of active contour r(s,t),t > 0, attracted to an image
sequence I(t), are outlined. It focuses on the temporal filtering required to
extract information most effectively over a sequence, exploiting fully the
temporal coherence of the moving scene. This section is restricted to the
static case and follows the development of active contours from snakes to
parametric structures and affine contour models.

3.1 Snakes

“Snakes” [36] have been one of the most influential ideas in computer vision.
They were revolutionary in their time because they directed attention away
from bottom up edge detection, an enterprise which had become stuck in a
rut, towards top down, hypothesis driven search for object structures. The
main idea is that the active contour r(s) is dropped into a potential energy
field F(r) which is itself a function of the image intensity landscape. For
example F(r) = —|VI| would generate an attraction of the snake towards
high image contrast. An equilibrium configuration of the snake satisfies an
(Euler-Lagrange) equation

(a(wlr) _ 82(w2r))

+ VEext = 0 (14)
N— —

external force

Os 0s2

~
internal forces

v

in which internal force parameters can be adjusted to give the curve a
tendency towards smooth shapes. Such a system can be converted to a
numerical scheme, for example using finite differences along a fine polygo-
nal approximation to the curve r(s), with typically hundreds of variables
corresponding to the polygon vertices q;, ¢ = 1,..., M. Equilibria are
then sought by iterative solving. Alternatively direct solution by dynamic
programming [1] is also possible, with the added attraction that hard con-
straints can be incorporated easily.
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FIGURE 3. Snakes An input image and a filter to extract a contrast map F(r),
serving as a potential field under which snakes can reach equilibrium. Images
reprinted from [8].

So far the snake is defined with respect to a single image I(r) but for
shape tracking, its behaviour over an image sequence I(r,t) must be de-
fined. This can be expressed as a Lagrangian dynamical system [51, 15] with
distributed mass and viscosity, whose equations of motion could typically
take the following form

B(wir) 0% (wer
Py = — | YTy — (wrr) + ( 5 ) + _VF (1.5)
—— Js Js ~——
inertial force ~ ~ » external force
internal forces

in which the additional parameters v and p respectively govern viscosity of
the medium and distributed mass along the contour.

Of course this leaves questions about how to choose parameters wy , ws, 7, p,
which may be spatial functions, not just constants, unanswered. This is a
problem that can be addressed effectively in a rather different framework,
that of probabilistic temporal filtering (see section 4). This idea was first
cast [51] in a space of state vectors consisting of vertices of the snake poly-
gon {q;}. Practical implementation however, demands a much lower dimen-
sional state space, not just for computational economy but for stability [7],
and this is elaborated in section 4.

3.2  Parametric structures

If a lower dimensional state space is essential for stable tracking, one way to
construct such a state space is in terms of a state vector X = (A1,...,Ak)
whose components are physical degrees of freedom in the underlying object,
representing a contour (or set of contours) r(s; X), s € [0,1]. For example
X could encode the position and orientation of a rigid object. Then the
image locations r(s;, X), i = 1,...,M of M distinguished features on




6 Andrew Blake, Microsoft Research.

the curve (for example vertices of a polyhedral object) can be predicted,
and compared with observed locations rz(s;). In principle X can then be
estimated by minimising an error measure such as

M
E= Z l[r(si, X) — x4 (s3)lI>. (1.6)

To include the possibility that the model contains vertices or multiple dis-
connected segments, r(s; X), s € [0, 1] need not be everywhere smooth, and
may be discontinuous at a finite set of points along s € [0, 1].

A simple and highly effective example applies to the view of a road
from a camera mounted forward-looking on a car, for navigation purposes
[16]. In that case X encodes the offset and orientation of the car on the
road, and the observations are the road edges. Such a system resulted
in the first autonomous, vision guided automobile to travel at realistic
speeds on the open road. Other prominent examples of the parametric
approach include real-time tracking of complex 3D wire-frame structures
[27] and a hinged box [39], in which the prediction function r(s; X') applies
perspective projection to map a canonical structure, in state X, onto the
image plane. The state vector X can also incorporate further parameters
which allow adjustment of the underlying canonical structure, in addition
to position and orientation, allowing tracking of any object from a given
family of objects. This was successful for example with tracking automobiles
in overhead views of the highway [37], in which the pose of the vehicle and
also variations in automobile shape were encoded together in the state
vector X.

3.8 Affine contours

Another natural way to construct a low-dimensional state space for tracking
is to specify parameters relating directly to image-based shape of the active
contour. This is especially appealing because because, as we will see, the
contour r(s; X) can then often be expressed as a linear function of X and
this considerably simplifies the task of curve fitting and (later) of temporal
filtering [7]. One natural choice is the planar affine space in which r(s; X)
sweeps out the space of 2D affine transformations of a base shape F(s):

r(s; X) = Ar(s) +u (1.7)

where A is a 2 X 2 matrix and u is a 2 X 1 vector. It is natural because it
is known to span the space of outlines of a planar shape, in an arbitrary
3D pose, and viewed under affine projection (the approximation to image
projection that holds when perspective effects are not too strong). It is
linear because we can choose X = (A, u) so that r(s; X) is linear in X, and
this linear relation is denoted

r(s; X)=H(s)X, (1.8)
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where H(s) is a simple (linear) function of ¥(s). For nonplanar 3D out-
lines, still under affine projection, there is a linear parameterisation of the
form X = (A,u,v) (see [8] for details) where v is another vector, so the
dimensionality of X increases from 6 to 8. Of course the underlying dimen-
sionality of the space is still 6 — three parameters for 3D translation and
3 for rotation — and the additional 2 are the price of insisting on a linear
parameterisation.

Having defined the linear parameterisation r(s; X) of image curves, a
curve can now be fitted to a particular set of image data. Suppose the
data itself is a curve ry(s), then the least squares fit, the curve r(s; X)
minimising

JECSSEROIEN (1.9)

is given simply by
X :H_I/HT(S)I'f(S)dS where H = /HT(S)H(S)dS, (1.10)

provided the solution is unique. For better stability, regularisation on r(s; X)
can also be introduced. The integrals in (1.10) have to be computed finitely
in practice, and this can be achieved by a using finite parameterisation of
the base curve T(s) (and therefore also of H(s)): for example ¥(s) can be
modelled as a B-spline [7, 8] or simply as a polygon [14].

There remains one important issue. The fitting scheme above is correct
only if correspondence between the curves is known — that is, for any
given value of s, the point r(s; X) in the plane is supposed to correspond
to the point ry(s) on the data curve. In practice, of course, this is not the
case: ry(s) may be parameterised quite differently from r(s; X) so that in
principle one should fit r(s; X) to rz(g(s)), for some unknown reparameter-
isation function g. In the case that the reparameterisation is not too severe,
this is dealt with approximately by replacing total displacement in (1.9)
by normal displacement [8, Ch. 6] , as in figure 4. Normal displacement is
commonly used, for this reason, in tracking systems [27, 14].

For full details on curve fitting, regularisation, recursive fitting and nor-
mal displacement see [8, ch. 6].

3.4 Nonrigidity

Nonrigid motions fall outside the affine families described above, but may
still be captured by a suitable space of shapes. The widely used “Ac-
tive Shape Model” (ASM) [14] does this by analysing a training set of
contours, and constructing an eigen-space of shape by Principal Com-
ponents Analysis (PCA). Initially the high-dimensional parameterisation
X = (q4 i = 1,...,V) of polygon vertices is chosen. Then the training
set {r1(s),...,rn,(s)} of curves is encoded in terms of its polygon-vertex
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FIGURE 4. Normal displacement a) Displacement along the normal from one
curve to another, as shown, forms the basis for a measure of difference between
curves that is approzimately invariant to reparametrisation. b) Total displacement
can be factored vectorially into two components, tangential and normal. Image
reprinted from [8].

representation Xi,...,Xn,. Now the sample covariance matrix ¥ of the
X1,...,Xn, is computed and, as usual in PCA, its dominant eigenvectors
are retained, and form a compact basis for curve shape. Components in
this basis form a new, low-dimensional curve parameter X which captures
nonrigidity. Finally it is possible to combine the rigid and the nonrigid
approach by explicitly projecting out the affine variations in the training
set {r1(s),...,rn.(s)} of cirves, and using PCA to account only for the
remaining nonrigid variability. In this way the curve parameter X contains
both affine components and, separately, components for nonrigid deforma-
tion as in figure 5.

\Ld// ~

FIGURE 5. ASM components The dominant eigenvectors from PCA analy-
sis of a training set of lip shapes, describing the main non-rigid components of
motion. Images reprinted from [8].
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3.5 Robust curve distances

Simple least squares error measures like (1.9), and its modified counterpart
for normal displacement, have no built in robustness to distortions of the
data, in particular those caused by occlusion and clutter. The advantage of
(1.9) is its tractability, in that it is quadratic and so can be minimised in
closed form. ”Chamfer matching”, which has been used with notable suc-
cess in pedestrian detection [19], exchanges some tractability for robustness.
In place of summing squared-distance (1.9), summing a truncated distance
J de(x(s; X) —rs(s))ds, where de(z) = min(|z|, €), is more tolerant to out-
liers. Furthermore, the ideal of minimising over possible parameterisations,
previously approximated by normal displacements, can be fully restored to
give an asymmetric distance

p= /ngnde(r(s;X) —rys(s"))ds, (1.11)

which can be expressed as
p= /D(r(s;X)) ds, where D(r) =mind,(r —rs(s")). (1.12)

The image D(r) is the “chamfer image” which can be precomputed for a
given observed data curve r¢(.). In this way, much of the computational
load of computing p is compiled, once for all, into the computation of
D(r). Then the marginal cost of multiple evaluations of p for numerous
different values of X is very low, consisting simply of a summation along
the curve r(s; X). This low marginal cost makes up considerably for the
lack of closed form minimisation, and can be used to search efliciently over
both pose and shape. Further organisation of shapes into a tree structure
based on similarlity makes matching even more efficient by reducing the
number of evaluations of p required, and this has been very successful in
matching even articulated shapes [19, 49].

A related distance measure [30], mentioned briefly here as a relative of
the chamfer distance, is the Hausdorff distance min, ming |r(s; X) —rz(s')]|
which is also asymmetric and, in its pure form, not robust. Robustness is
dealt with in practice by replacing ming, which is frail in that it makes
the Hausdorff distance dependent on the distance between two particular
points on each of the curves, by a quantile over s.

4 Spatio-temporal filtering

The difference between tracking and localisation is that tracking exploits
object dynamics, both for efficiency and for effectiveness.
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4.1  Dynamical models

Dynamical models can be more or less elaborate, according to the nature of
the motion being modelled. Some motions, for example of vehicles, talking
lips or human gait are often quite predictable and it makes sense to model
them in some detail [4, 9]. In any case it is natural to think of a classes
of motions, and a probability distributions over that class, which is very
naturally represented as an AutoRegressive process (ARP) on the state
vector X at time ¢ (denoted X;). A simple ARP on X;, expressed in terms of
a “driving” vector wy of independent Gaussian noise variables, and constant
square matrix B, takes the form (first order AR process)

X = F(Xi_1,w), (1.13)
with F linear, and some examples follow.
Tethered: X; = Bw;
Brownian: X; = X;_; + Bw;
Constant velocity: X; = X; 1 + Bw; +v
Constrained Brownian: X; = aX; 1 + Bw; with |a| < 1

Damped oscillation: X; = a; X; 1 + as X;_o + Bw; with appropriate
ai, a.

The last is, of course, not a first-order AR process, but is 2nd order, of the
form X; = F(X;_1,X:—2) + w;. Details of the expressive power of various
AR models, the roles of the various constants, and algorithms for learning
them from training data are detailed in [8, Ch. 9]. Of course these are just
a few of the possible linear dynamical models. More elaborate models may
also be appropriate, and nonlinearity is also powerful for allowing switching
between different kinds of motions [33] — effectively miztures of AR models.

4.2 Kalman filter for point features

Classically, the Kalman filter is the exact computational mechanism for
incorporating predictions from an AR model of dynamics into a stream
of observations, and in due course this important idea was introduced into
machine vision [25, 21, 17]. The most straightforward setting is the tracking
of point features, such as polyhedral vertices, used with an affinely deform-
ing image structure [45] (recall section 3.3) or a 3D rigid body structure
[26] (as section 3.2). In either case, it is essential to represent explicitly the
uncertainty in the observation r(s;) of each point, in terms of independent,
two-dimensional standard Gaussian noise vectors v;:

re(s) =r(s;, X))oy i=1,..., M (1.14)
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where o; is the magnitude of the positional uncertainty associated with
the measured the image location rs(s;) of the i*! feature. Measurement
uncertainty can then be traded off with uncertainty in the (noise driven)
AR predictions to achieve a natural and automatic balance between the
influence of observations and of prediction. The result is that an estimate
X, of state X; is propagated in the following manner.

At each clock tick, predict:
X; = F(X;_41,0). (1.15)
— the ARP prediction equation (1.13) with zero noise.

Each measurement r¢(s1,t),...,r¢(sm,t) is assimilated as:
KXo = Xy + Kig(rs(si t) —r(si, Xe)). (1.16)

The “Kalman gains” K;; are computed by an associated recursion whose
details are omitted here, but see e.g. [16].

4.8 Kalman filter for contours

Kalman filtering for contour tracking [7] proceeds in a similar fashion as
for point-features, but using the idea of normal displacement, introduced
in section 3.3 and illustrated here in fig 6. Only the normal component of

s new

estimate from L7 _— /'-J/ \\ estimate
previous time s /;—} r;\ .

/’ Object motion
N\

prediction N\

FIGURE 6. Kalman filter for contours Prediction and measurement phases
for contours, with observations (double arrows) of normal displacement. Images
reprinted from [8].

feature displacement is assimilated, so that step (1.16) above takes instead
the form:

Xt =< Xt + Kz{,t[n(siat) ) (I'f (siat) - I'(Si, Xt))]7 (117)

where n(s;, t) is the normal to the curve r(s, Xt) at the i*P sample point s =
s;. Unlike the case of point features, where the locations s = s; are locations
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on the contour of distinguished point features, here the s = s; are simply a
convenient sampling pattern along the length of the contour, implementing
a numerical approximation of the mean-square normal displacement.

4.4 Particle filter

The Kalman filter has two limitations that can prove very restrictive in
relatively unconstrained tracking problems.

1. Clutter: it is limited to one observation rs(s;,t) for each contour
location r(s;, ). Clutter in the image tends to generate multiple ob-
servations at each location, as figure 7 shows.

= \ﬁ\

FIGURE 7. Image clutter disrupts observations Active contour and normals
are shown. Crosses mark observations of high contrast features, some of which
are triggered by the true object outline while others are responding to clutter, both
inside and outside the object. Image reprinted from [31].

2. Dynamics: the Kalman filter is limited to ARP models of dynam-
ics. Mild non-linearities can be dealt with, in practice, by local lin-
earisation. Hybrid dynamical models that switch between ARPs (e.g.
flight /bouncing/rolling) demand a more powerful mechanism for tem-
poral filtering.

Particle filters are a class of Monte-Carlo temporal filters that are more
powerful than the Kalman filter in that they escape both from the re-
strictions of clutter [31] and dynamics [33], but at the cost of being only
approximate. The idea of sampling shapes in cluttered observations derives
originally from static studies [23]. The earliest form of the particle filter was
the “bootstrap filter” [22]. The more powerful form described here is based
[32, 38] on importance sampling .
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Temporal update for time step t — 1 — ¢

From the sample-set {Xt(f)l, 77,@1, n=1,...,Ng} at time ¢ — 1, construct

a new sample-set {Xt("), w,gn)}, n=1,...,Ng for time ¢, as follows.

1. Select samples X, by sampling from the “proposal distribution”
@ (X | Xitq).
2. Weight the new particles in terms of the vector of measured fea-
tures z; = {rg(s1,¢),...,rp(sa, )
o) p(ze) Xe = X)) p(Xy = XP| X1 = Xt(f)l)
=t @(Xe = X7 | Xpq = X1 4)

) -

3. Resample, at occasional time-steps, to avoid the distribution of
weights becoming too uneven:

(a) Sample, with replacement, from {X,n =1,..., Ng}, select-
ing X* with probability proportional to 7}, to form a new,
resampled set {X*,n=1,...,Ng}.

(b) Reset all weights to 7} = 1.

FIGURE 8. A Particle filter. Standard form of particle filter, following [43].

The essence of the particle filter is summarised in figure 8. In place of the
single estimate X, in the Kalman filter, particle filters maintain an entire
set {Xt(f)l,n =1,..., Ng} of possible estimated values of the state X;. This
is a robust approach that allows the explicit representation of ambiguity
in a way that a Kalman filter simply cannot. For example in clutter, the
ambiguity is generated by uncertainty as to which of many visible features is
actually generated by the true object. With hybrid dynamics, the ambiguity
reflects uncertainty as to which ARP model currently explains the observed
motion; typically ambiguity is heightened around the time that the model
switches. The particle set for time ¢ consists of the set of possible values
{x{™} along with a set of positive weights {m\") }.

The algorithm description explains how the particle set evolves from one
timestep to the next. First new values X;(™ are generated by sampling
from a proposal distribution g;. In the simplest CONDENSATION [31] or
bootstrap [22] forms of the filter,

qe( Xy | Xitq) =p(Xe | X1 = Xi* 1)

— the proposal is simply a simulation of the dynamical model itself. In
other words, particles are generated by predicting the change of state from
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time-step ¢ — 1 to timestep #. In the case of ARP dynamics (1.13) this gives
X =F(X{.,w), (1.18)

where the wi', n = 1,...N are independent draws of a standard normal
variable, thus using the ARP to make noisy predictions of object position.
In this way, particles X[* sweep out a set of a priori probably values for X;.
A more adventurous form of proposal distribution uses hints from the image
— “importance sampling” — at time £ to generate probable values for X;.
For example, tracking hands or faces, a “pinkness” measure ¢”™*(X) can
be used to generate states likely to coincide with skin colouration in the
image.

The second step of the algorithm generates the weights 7 and in doing
so achieves two things: 1) it takes account of the new measurements r¢(s;, t);
and ii) it compensates for any bias in the proposal distribution ¢;(.). Again,
the simplest case is the CONDENSATION filter, in which ¢;(.) is unbiased,
and the formula for weights simplifies to

m™ = 1™ p(ze) Xy = X™). (1.19)

A simple example of a measurement process was given earlier (1.14), and
in that case the observation likelihood is the Gaussian

p(z|X) o exp — Z 5l (si —r(s;, X)|% (1.20)

Of course, part of the point of the particle filter is to be able to track
in clutter, and then the simple likelihood (1.20) is replaced by something
non-Gaussian with multiple modes [31].

The third step of the algorithm controls the efficacy of the particle set in
representing the posterior distribution over X; via occasional reweightings.
Details of how exactly reweighting is triggered are omitted here, but see
[?].

Results of particle filtering for an active contour was given in figure 1.
This example uses simple CONDENSATION [31] to track a blowing leaf in
severe clutter. The figure shows a trail of estimated mean states (??) over
time.

5 Further topics

There are a number of further topics in tracking that build on the ideas
already outlined, and go beyond them in various intriguing ways. There is
no space here to explore them in the depth they deserve, so pointers and
brief summaries will have to suffice.
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Fusing contour and appearance Much of this roadmap has addressed
contour tracking, and in section 2 we briefly outlined approaches to
appearance tracking. More recently there have been breakthroughs in
joint modelling and localisation of contour and appearance [13] and
the related approach [47], without dynamics however. An alternative
fusion of appearance and contour combines particle filtering of con-
tours [42] with an observation model like the one used in mean-shift
tracking.

Filter Banks Observations based around contours have drawbacks both
from the point of view of the principles of good Bayesian inference
and, as above, the need to fuse both contour and appearance infor-
mation. A complementary approach is to model the observations as
the joint output of a set of filter banks [20, 50], which harnesses both
appearance from filters within the object contour, and contrast from
those that straddle the contour. The approach becomes even more
powerful when combined with background modelling [34]. Another
impressively powerful variation models filter outputs as a hybrid [35],
with each filter switching independently between models for stasis,
steady motion, or random walk.

Articulated and deformable structures Modelling deformation has
been discussed above, and there are numerous variations on the theme,
for example “deformable templates” [18, 57]. Outright articulation —
jointed assemblies of rigid bodies — can be dealt with effectively us-
ing greedy strategies [29, 44], though at considerable computational
cost, which can be mitigated using observation-cost gradient infor-
mation [11]. Alternatively, the ASM approach of section 3.4 can be
used for articulation also [5]. Issues arising in image-based models
when image topology changes as the body articulates have been ad-
dressed using several shape space models connected via “wormholes”
[28], in a Markov network. Alternatively, cartoon-like catalogues of
outline-exemplars with differing topologies [19, 52], also connected in
a Markov network, and matched using chamfers, are a very effective
memory-intensive approach.

Persistence Finally, there have been striking advances in trained recog-
nisers for localising faces and walking figures, in a single frame [53, 54].
These are so powerful and efficient that, without any recourse to dy-
namical models, real-time performance can be achieved on a modern
workstation. However, these too can benefit from a dynamical ap-
proach [2, 55], promising real-time tracking in the background of a
desktop machine’s process load, and on portable devices, in the fu-
ture.

All of these issues and others will be treated in more detail in a forthcoming,
long version of this roadmap article [6].
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