
Visualizing Structural Patterns in Web Collections

M. S. Ali
University of Toronto

sali@cs.toronto.edu

Mariano P. Consens
University of Toronto

consens@cs.toronto.edu

Flavio Rizzolo
University of Toronto

flavio@cs.toronto.edu

Categories and Subject Descriptors
H.2.1 [Information Systems]: Database Management—
Schema and subschema

General Terms
Design, Measurement

Keywords
XML, Structural Summaries, Visualization, XPath, RSS

1. VISUALIZING SUMMARIES
We present DescribeX, a tool for exploring and visualiz-

ing the structural patterns present in collections of XML
documents. DescribeX can be employed by developers to
interactively discover those XPath expressions that will ac-
tually return elements present in a collection of XML files.

The element structure of many collections of XML docu-
ments present in the Web can be fairly unpredictable. This
is the case even when the documents are validated by a
schema, and can happen for two main reasons. First, the
documents may follow a schema that allows many elements
to occur almost anywhere in the document (e.g., by exten-
sive use of <xsd:choice> in XML schema). Second, the
default namespace and corresponding schema can be ex-
tended by incorporating elements from other namespaces
with corresponding schemas (e.g., by using the <xsd:any>

XML Schema construct to allow open content models).
A collection of RSS files provides a good example of the

situations described above. The RSS schema is fairly per-
missive of where the basic elements occur. Multiple feed
schemas can be present in the collection because of multiple
versions (e.g. RSS 0.91 or 2.0) or formats (e.g. Atom, or
RSS 1.0/RDF). Finally, RSS encourages the use of exten-
sions so elements from several namespaces will be present
(e.g. Dublin core, iTunes podcast, Microsoft Simple List
Extensions). Other web collections for which the XML el-
ement structure can be fairly unpredictable are traces gen-
erated by web services requests and also XML-ized versions
of wikis (and Wikipedia, in particular).

A major challenge in working with these kinds of web col-
lections is to understand enough about their structure to be
able to pose meaningful queries employing XPath patterns.

Copyright is held by the author/owner(s).
WWW 2007,May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

Structural summaries are labeled graphs that describe the
structural patterns present in document instances. Sum-
mary nodes are associated with partitions (called extents)
formed by document elements that are indistinguishable with
respect to a simple pattern query (i.e., elements with the
same path to the root, or elements with the same leafs, or
both). Summaries were introduced to help understand the
structure present in semistructured data collections. They
are now among the most studied techniques for query eval-
uation in XML (and other semistructured) data models and
a variety of summaries have been proposed.

All of the existing proposals (as well as new ones) can be
captured in DescribeX by using a novel framework that em-
ploys XPath expressions for defining the summary extents.
An early version of the DescribeX framework and its ap-
plication to XML Retrieval is described in [1] (this citation
references an extensive list of earlier summary proposals).

The next section discusses how a developer can use De-
scribeX to explore multiple summaries to discover specific
XPath expressions that actually occur in the collection. The
last section presents features of DescribeX that allow a de-
veloper to handle large and complex summary graphs.

2. EXPLORING FEEDS
Consider a collection of sample feeds to be be aggregated.

RSS feeds are composed of channels (i.e., genre) and items
(i.e., articles in genre). The challenge is to efficiently find
feed items and understand how markup has been employed
to contextualize the information contained in feed items. A
developer may be interested in grouping together articles
that have similar meta-data structures (e.g., articles that
have known creation dates and authorship).

In trying to isolate the relevant elements for aggregating
feed items, the developer must find which paths in a collec-
tion of RSS feeds would be best suited to finding groups of
elements across different schemas. RSS feeds are comprised
of multiple schemas, with multiple versions and they con-
tain literally thousands of possible distinct root to leaf tag
paths.

Our example collection consists of a sample of feeds en-
coded in the Atom, RSS/RDF and RSS formats. In Figure
1, we show results for incoming summary graphs of our col-
lection. These graphs cluster together nodes that have the
same incoming label paths. For example, in Figure 1, there
is an item node with id 36 (center graph) that represents
all item elements that are children of RDF roots (that is, an
RDF/item incoming label path). In contrast, item 55 (right
graph) represents all item’s that are within channel’s that



are within rss roots (i.e, an rss/channels/item incoming
label path).

In aggregating feeds, a developer is interested in items
that have similar substructures. Even when considering a
relatively simple graph, as shown in Figure 1, the developer
potentially needs to write an XPath query for every possible
combination in the summary graph of children or descen-
dants of a feed item (item or entry elements). The problem
with this approach is that the number of such XPath queries
is usually quite large. For instance, if we consider only one
level down in our Figure 1 example, it is easy to see that
an Atom entry (left graph) may have any combination of 9
child elements (or 29 = 512 possible queries). When consid-
ering descendants rather than children, those numbers are
considerably larger. In addition, most of the XPath queries
written this way will usually return empty answers because
only a few of the combinations actually appear in the docu-
ments.

DescribeX can provide a more descriptive view of the col-
lection to help developers find the XPath queries that cap-
ture the paths that are present in the documents. This is
achieved by refining summary nodes. Consider now Figure
2 where item 55 has been split into five different item nodes
that correspond to different subtree patterns (the nodes in
green are new summary nodes that resulted from the refine-
ment). In this new summary graph, item 55 now represents
item elements that have comments, category, description,
pubDate, link, and guid subelements whereas item 96 rep-
resents item elements with a description, an encoded and
a title. This refinement allows the developer to under-
stand not only where item’s appear in the documents, but
also what kind of subelements they have, thus simplifying
the writing of the XPath expressions mentioned above.

For instance, in the refined trees of Figure 2 we find that,
out of the 512 possible combinations of child elements for
Atom entry’s, only 3 are actually present (indicated with
nodes circled in red in the left graph). This drastically re-
duces the number of XPath expressions to be considered
and helps to understand how markup has been employed to
contextualize the information contained in feed items.

3. COVERAGE IN LARGE SUMMARIES
One of the challenges in visualizing summary graphs is

how to ensure that a user is not overwhelmed by either the
size or complexity of the graph. For example, in visualizing
the summary of the RSS feeds, it was noted that it contains
multiple schemas and possibly thousands of distinct struc-
tural paths (e.g., our full RSS test corpus contains 3961
paths based on a heterogeneous collection of 58,338 files).

DescribeX supports interactively controlling how to view

Figure 1: Summarizing Collected Feeds

Figure 2: Summary Refinement for item and entry

Figure 3: Collected Feeds at 100% coverage

only the most popular labels used in the collection, i.e. the
elements with the most coverage. In its simplest form, the
nodes with the largest extents are displayed as coverage ap-
proaches 0%, and progressively smaller extents become visi-
ble as the coverage approaches 100% (at this point, all sum-
mary nodes would be displayed). DescribeX supports both
specifying an upper and a lower bound for coverage. So,
in order to restrict the view to only the most common sub-
structures, the user would select a range of low values for
coverage (these are the grayed nodes in Figures 1, 2 and 3).
Conversely, for a user who is interested in finding uncommon
substructures, the user would select a range of high values
for coverage. DescribeX also supports additional (more in-
volved) notions of coverage.

Figure 3 shows a typical incoming path summary of RSS
feeds at 100% coverage. In our previous discussions, figures
1 and 2 were based on a graph similar to figure 3 at a cov-
erage of 85%. For most web collections, modest changes in
coverage from 100% can have significant changes in the size
of the displayed graph. For instance, in our full RSS test
collection, a coverage of 85% (resp. 99%) of the most com-
mon extents of the incoming paths resulted in a reduction in
graph size from 3961 nodes to 144 nodes (resp. 740 nodes).

4. REFERENCES
[1] M. S. Ali, M. P. Consens, X. Gu, Y. Kanza, F. Rizzolo, and R.

Stasiu. Efficient, effective and flexible XML retrieval using

summaries. In Proc. of the 5th Intl Workshop of the Initiative

for the Evaluation of XML Retrieval (INEX), 2007.


