ToXin: An Indexing Schemefor XML Data

by

Flavio Rizzolo

AQOHDS
STUDIES

@

o
3

-
-
GranY

A thesis sibmitted in conformity with the requirements
for the degreeof Master of Science
Graduate Department of Computer Science
University of Toronto

[0 Copyright by Flavio Rizzolo 2001

Abstract

Semistructured databases, unlike relational and objed-oriented databases, do not have afixed
schema known in advance and stored separately from the data. Broadly speeking,
semistructured datais lf-describing and can model heterogeneity more naturally than either
relational or object-oriented data Examples of such self-describing cata ae tagged
documents like XML.

Indexing schemes for semistructured deta have been developed in recent yeas to
optimize path query processing by summarizing peth information. However, most of these
indexing schemes can only be goplied to some query processing stages whereas others only
support a limited class of queries. To overcome these limitations we developed ToXin, an
indexing scheme for XML datathat fully exploits the overall path structure of the database in
al query processing stages. ToXin synthesizes ideas from object-oriented path indexes and
extends them to the semistructured redm of XML data.

In this thesis we study recent proposals for indexing XML data, present the ToXin
architedure, describe its current implementation, and discuss comparative performance

results.

Acknowledgments

First and foremost, | would like to thank my advisor Alberto Mendelzon for his invaluable
support and advice. Alberto’s patience and insight to point out my mistakes forced me to
become more rigorous in my reasoning. His guidance was always invaluable, especially at
the late stages of my thesis work.

| would also like to thank ReneeMiller for being the second reader of my thesis, and
the aministrative staff of the Department of Computer Science for their permanent
willingness to help.

| am also grateful to the Natural Sciences and Engineeing Reseach Council of
Canada, and the Department of Computer Science for their generous financial support that
made my reseach possible.

Special thanks go to Jose Maria Turull Torres, my friend and mentor, who first
introduced me to the fascinating world of the scientific research and encouraged me to pursue
graduate studies. | could never thank Jose Maria enough for his guidance in the first steps of
my reseach careg and for being an invaluable source of ingpiration. | consider myself lucky
for having the dhance to work with him.

| also wish to expressmy gratitude to my officemates Alfredo, Sebastian, and Carlos,
and to al my friends in Toronto, especially to Lorena, Hernan, Patricia, Gustavo, Lily, and
Diego for helping me and my wife to make this beautiful city our home.

| am also in debt with my parents, Ofelia and Juan Carlos, for helping me to become
who | am. | owe them much, and regret that | missed my best opportunities to repay. |
dedicate this thesis to them.

Above all, | have to thank a thousand times to my wife, Mariana, the person without
whom this thesis could have never been written. Her support and unconditional love ae
beyond words. It is hard to know who | would be without her; | intend never to have the

occasion to find out.

Contents

CHAPTER 1: INTRODUCTION 1
11 Semistructured data 5
12 XML 6

Well-formed and Valid XML documents 9

XML and Semistructured data models 9
13 Path queriesand XSLT 10
14 Mativation for path indexing 12
CHAPTER 2: PATH INDEXES 15
21 First Approach to Path Indexes 16
2.2 Dataguides 19
23 1-index 22
24 2-index 24
25 Access Support Relations 25
26 T-indexes 29
CHAPTER 3: TOXIN 31
31 Overview 31
3.2 I mplementation 36

The Document Object Model 36
3.2 Navigation L anguage 38

Query evaluation 40
CHAPTER 4: EXPERIMENTS 45
41 Experimental Setup 45
4.2 Experimental Results 49

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 59
51 Summary 59
52 Future Work 60
Adding arder 60
Extending the graph index with IDRefs 60
Making the index persistent 61
Extending ToXin with DOM functionality 62
APPENDIX 1: COMPLETE EXAMPLE 64
APPENDIX 2: ADDITIONAL ALGORITHMS 66
APPENDIX 3: COMPARATIVE PERFORMANCE RESULTS 68
APPENDIX 4. TREE SCHEMAS OF DOCUMENT SAMPLES 72

REFERENCES

76

Chapter 1

| ntroduction

Traditional database systems have rigid schemas and force all data to conform to
them. In contrast, many new applications that appeaed in recent yeas contain data that
evolve rapidly or contain irregularities, making the use of a-priori rigid schemas unfeasible.
Such data is no longer structured in the traditional sense and is often called semistructured
data[Abi97].

Semistructured databases, unlike traditional databases, do not have afixed schema
known in advance and stored separately from the data. Broadly speaking, semistructured data
is ¢lf-describing and can model heterogeneity more naturally than either relational or objed-
oriented data. Examples of such self-describing data ae tagged documents such as XML
[W3CO0Q]. The data model proposed for this type of data consists of an edge-labeled graph in
which nodes corresponds to objects or values and edges to elements or attributes. Figure 1.1
shows a semistructured detabase modeled as an edge-labeled graph. This data model caries
both data and schema information, being naturally suitable to represent semistructured deta.
In Sedions 1.1 and 12 we present semistructured data and XML in more detail.

Y et, semistructured data models pose new challenges in many areas. Let us consider

guery evaluation for instance. Navigation over a semistructured graph is a fundamental part

of query evaluation. Due to the ladk of information about the schema, a naive evaluation that
scans the whole database in the seach of those paths that satisfy a given query is
prohibitively expensive. In addition, since navigating the graph is essentially pointer traversal
and the objects may be scatered acossthe disk or even stored at different locaions, some

gueries may require many disk aacesses and cause significant performance degradation.

1 SIGNIOD _RECORD

wral

articl &

"8 frawm ewrorl
for irapleraenting"
auﬂwAauthor
"Tirmo thy Criffin" "Bichard Hull"
posibon J lPosition
"ag" "o

Figure 1.1: The SIGMOD Record database.

Index structures for semistructured data have been developed in recent years in order
to addressthese problems by reducing the portion of the database to be scanned duing query
processing. Examples of such index structures are dataguides [GW97], 1-indexes and 2-
indexes [MS99], T-indexes [MS99], and reversed dataguides [LS00]. They kee record of
existing paths in the database summarizing path information. We give abrief overview of

these methods here, and discuss ®me of them in detail in Chapter 2.

In objed-oriented databases, several indexing schemes have been proposed for
answering peth queries efficiently, namely path indexes [BK89, SB96] and Access Support
Relations [KM90, KM92], which materialize frequently traversed paths in the database.
Since these gproades are based on the paths found in the schema, it is not possble to use

them for the typical schema-less XML documents.

Dataguides, on the one hand, are general path indexes that summarize all paths in the
database that start from the roat. Figure 1.2 shows a dataguide that correspondsto the Figure
1.1 database. T-indexes, on the other hand, are specialized path indexes that only summarize
alimited classof paths gecified by a given path template.

Dataguides and 1-indexes reduce the portion of the database to be scanned for path
gueries and are useful for navigating the semistructured graph from the root. However, since
they do not provide any information about the parent-child relationship between source
nodes, they cannot be used for navigation from any arbitrary node. For example, from Figure
1.2 we know all the objects reatied by article.authors.author, but we canot tell exadly the
author objeds that correspond to ead article objed. As a result, in the cae of general path
gueries that require & some point badkward navigation, e.g., “find all articles written by a

given author”, we need to use alditional index structuresto optimize the query evaluation.

{ S1 GO _RECORD
{11}

l issue

{21, 22, ...,2-1203}

=il

{3-1, 34 ...}

{4-1, 4-2, ..., 4-1200}

last page

Figure 1.2: A dataguide for the SIGMOD Record database.

The Lore system [MAG+97] attempts to addressthis problem by using two additional
indexes for backward navigation. These indexes, however, do not exploit the database
structure as dataguides do: the nodes, edges and values are stored regardless of the overall
path schema of the database. Although using such indexes reduces to some degree the
number of pointer traversal operations for badckward navigation, the forward navigation from
any node remains unsupported. Reversed dataguides are also helpful for backward navigation
from the leaves of the treg but they do not suppat either forward or badkward navigation

from a generic node.

The goa of this thesis is to synthesize some ideas from dataguides and Access
Suppat Relations and extend them so that we can optimize both forward and badkward
navigation for any general path query over semistructured data such as XML. To that end we
have developed ToXin', an indexing scheme that full y exploit the overall path structure of the
database in all query processing stages. ToXin summarizes all paths in the database and can
be used for both forward and badkward navigation starting from any node. We provide &

well experimental results based on our implementation for tree data sources.

1.1 Semistructured data

In recent yeas there has been an increasing number of applicaions that neels to
handle fast evolving, irregular data which does not conform to traditional, rigid data models.
We use the term semistructured data to refer to data that presents such charaderistics
[ABS99].

Semistructured data conforms to no fixed schema known in advance and stored
separately, being better suited for modeling heterogeneity than either relational or object-
oriented data models. Examples of such self-describing cita ae tagged documents such as
XML. In addition to these data-embedded schemas, semistructured deta may present some of
the following charaderistics:

* The schemais large w.r.t. the size of the data. This is a dired consequence of the data
heterogeneity, contrasting with relational or objed-oriented data in which the schema is
often many orders of magnitude smaller than the data

* The schema is not gatic. Since the schema may be implicit in the data, updeting the
schema is as easy as upckting the data itself. For instance in a tagged document
containing kibliographical information, ead new addition not only has information about

! ToXin was developed within the ToX (Toronto XML Engine) projed at University of Toronto.

5

the pubication but also the crresponding tags. This means that adding publications to
the database may cause implicit schema updates if the new publicaion does not conform
to the previous gructure.

» The schema is descriptive rather than prescriptive. Therefore, it has to be recomputed or

incrementally updated every time there is a dhange in the data.

Semistructured data aises from a wide range of applicaions such as integration of
heterogeneous urces, modeling biologicd databases, digital libraries, and the World Wide
Web. Several aspeds of managing semistructured data have been extensively studied over
the past several yeas. This reseach has addressed, among athers, data models [BDFS97,
CACS94], query languages [AM98, AQM+97, BDHS96, FH.S97, BFS00], and query
processing and optimization [CCM96, FS98, MW97].

Most semistructured deta models organize data into dreded graphs, where eah
vertex represents an objed and each labeled edge represents a relationship between objeds.
The data in the graph is slf-describing. Some objeds are atomic and cthers are cmplex.
The value of an atomic object is one of the base types (e.g., integer, red, string, etc) whereas
the value of a complex objed is a set of objed identifiers. The objed identifiers (OIDs) are
used to reference nodes in the data graph. They are pointers to either memory or disk
locaions where nodes are stored. In the web context, they may even be URLS or any other
means of locating nodes distributed acoss &veral sites. In the XML context, however, we

restrict the types of atomic objeds to strings.

1.2 XML

Extensible Markup Language (XML) is fast emerging as the standard for representing
and interchanging cata over the Web. It is a hierarchicd dataformat derived from SGML that

models a document as an augmented tree structure. In contrast to HTML, which is aso
derived from SGML, XML has been designed as a general data structuring language caable
of modeling not only standard documents but also semistructured data in general. Another
feaure that makes XML more powerful for general data management applicaions is the
separation between content and presentation. XML deals only with content and therefore
allows changes in the formatting aspeds of a document without modifying its underlying

structure.

We will briefly discuss next the concept of document markup. Broadly spe&king,
markup is information about the document schema embedded in the document content in a
way that can be identified during the interpretation of the document. In that sense, we neal to
define some kind of special charader or string so that we can distinguish the schema from the

data. Such special charaders or strings are clled markup.

Using markup, structural information is defined in terms of elements, the basic
components of an XML document. In order to identify such elements as shema rather than
data, the element names must appea between markup delimiters, which mark the start and
end of the markup for an element. Each element name together with its markup delimiters is
called a tag. The markup celimiters in XML are the dharaders “<” and “>". Figure 1.3
shows an XML document for the SIGMOD recrd database depicted in Figure 1.1. The
strings <issue> and <article> are tags and therefore part of the document schema. A pair of
tags containing the element name delimits each element. The first one, which has the format
<element_name> is called start tag, whereas the second has the format </element_name>
and is called end tag. The string between a start tag and an end tag is called an element
content or value. For instance title in Figure 1.3 is an element delimited by the start tag
<title> and the end tag </title>, and its value is the string “A Framework for Implementing

Hypothetical Queries”.

In order to append additional element information without including it in the element
content, XML defines an additional component: attributes. Attributes allow us to include any
additional information within an element start tag. In Figure 1.3, position is an attribute of
the author element and contains additional information regarding the order in which the

authors appea in agiven pulication.

<SigmodRecord>
<issue>
<volume>26</volume>
<number>2</number>
<articles>
<article>
<title>A Framework for Implementing Hypothetical Queries</title>
<initPage>231</initPage>
<endPage>242</endPage>
<authors>
<author position="00">Timothy Griffin</author>
<author position="01">Richard Hull</author>
</authors>
</article>
<article>
<title>A Toolkit for Negotiation Support Interfaces to Multi-Dimensional Data.</title>
<initPage>348</initPage>
<endPage>356</endPage>
<authors>
<author position="00">Michael Gebhardt</author>
<author position="01">Matthias Jarke</author>
<author position="02">Stephan Jacobs</author>
</authors>
</article>

</articles>
<lissue>

</SigmodRecord>

Figure 1.3: XML document of the SIGMOD Record database.

We must point out that element names are not necessrily unique, e.g., the authors
element in our example has two nested author elements. Attribute names, in contrast, are
unique within a given element, e.g., one author element cannot have more than one position

atribute.

But not all attributes are aedaed equal. XML defines two particular attributes, usually
caled ID and IDREF, asociated to unque identifiers that they may be used to link
elements beyond the relationship given by the tree structure of the document. This

mechanism allows us to define documents that have agraph structure rather than atree

Well-formed and Valid XML documents

XML documents must satisfy syntadic constraints. An XML document is called well -
formed if it is syntadically correct, in other words, if al its elements are nedly nested and
each attributes is unique within each element. For instance we neel to end an articles
element before ending an issue element. A valid document, on the other hand, is a well-
formed XML document that has also been validated against a DTD. A DTD [W3C9§] is a

context-freegrammar for the document and may be used as an external schema.

XML and Semistructured data models

The XML data model is similar to that for semistructured data in the sense that both
represent data as a direded graph that can be interpreted either as node-labeled or edge-
labeled. An important difference however, is that the XML data model has order while
semistructured data is usually unordered. In addition, XML has a component usually not

present in the semistructured data model: the dtributes. As we discussed before, XML

defines attributes as being part of elements rather than having a separate identity by
themselves. Yet, an XML document can be modeled as a semistructured data elge-labeled
graph by simply considering XML attributes as edges pointing to atomic objeds. Therefore,
both XML elements and attributes are described as edges. Since both models are equivalent
to represent XML data, we dhoose the edge-labeled model because it is the prevalent one for

semistructured data

Many important issues about XML have been studied from the database point of
view, in particular query languages [BCOQ] and optimization techniques [Lie99, NW99].

1.3 Path queriesand XSLT

An XSLT styleshed [W3C99b] is a set of transformation rules that alows the
transformation of one XML document into another. Each rule mnsists of a pattern and a
template. The XSLT processor identifies the nodes to which the template will be gplied by
using the pattern. During stylesheet processing, the pattern is matched against the nodes of
the XML source and the template is instantiated to produce the XML result. It works as
follows. The XSLT processor starts from the root and tries to apply the pattern to that node.
A pattern specifies the @nditions that a given node must satisfy in order to be processed. A
node that satisfies the condition matches the pattern; similarly, a node that does not satisfy
the oondition does not match the pattern. When a node matches the pattern, the XSL
procesor exeautes the template of that rule. Eadh template dement specifies one
transformation rule. The pattern of that rule is gecified by the match attribute. The template
used to produce atree fragment is described in the content of the template element, aso
called arule body. The processis then repeaed over ead of the remaining nodes reaursively
in a breadth-first fashion.

10

XSL peatterns are specified by XPath [W3C99%], a simple query language for
identifying nodes in an XML document based on their names and values as well as the
relationship between nodes. Paths may be specified as absolute or relative. Absolute paths
are those that start from the root of the treg whereas relative paths gart from any given node
defined as context node. The hierarchica relationship between nodes are expressed by
operators “/” and “//". The former specifies a parent-child relationship between two nodes
whereas the later specifies an ancestor-descendant relationship between two nodes a any
depth. For instance, the query “find dl the titles of articles that appear in the database” can
be expressed in XPath as //articleftitle. The sedion between bradets of a XPath expresgon is
called afilter sedion. A filter is a predicate that is applied to the nodes that match the path
expresson before it (i.e. the pre-filter sedion). The evaluation of the rest of the pattern (i.e.,
post-filter sedion) continues only for those nodes that matches the pre-filter sedion and
satisfies the filter. XPath also includes a wildcard operator “*”, that matches any node at its
location in the path expression, and a disjunction operator “|”. Figure 1.4 shows an XSLT
styleshed that transforms the XML document from Figure 1.3 into another XML document
that contains only the title of the papers that appeaed in the issue Number 2 of Volume 26.
The mntent of the match attribute in the secnd rule is an XSL pattern. The xsl:apply-
templates diredive invokes the gplication of templates (the seand rule in Figure 1.3
example). The xsl:value-of diredive cnstructs the result with information from the XSL

pattern.

<xsl: template>
<xsl:apply-templates>
</xsl: template>
<xsl: template match="//issue[/volume=26 and number=2]/articles/article/title” >
<result>
<xsl:value-of/>
</result>
</xsl: template>

Figure1.4 XSL T stylesheet

11

Let us ehow the Figure 1.4 styleshed is applied to the Figure 1.3 database. First,
the XSLT processor starts the evaluation from <SIGMOD_Record> and attempts to match
the pattern to it. When arule does not have amatch attribute, like the first one, the template
matches any node. The next step is evaluating the body of the matching rules, only the first
one in this case. The rule body has only one instruction, <xsl: apply-templates/>, which
implies the reaursive processing of the subelements of all matched elements, i.e. volume,
number, and articles. Once aain, only the first rule matches and we reped the processon the
elements that have further nested structure, i.e. the dement articles. After two more steps we
readr a node that matches the second rule: title. Applying the rule’s body, the XSLT
procesr generates a result element with the value of the aurrent node: “A Framework for
Implementing Hypothetical Queries”. The process described above is then repeaed over the

remaining articles. The result of the query is shown in Figure 1.5.

<result> A Framework for Implementing Hypothetical Queries. </result>
<result> A Toolkit for Negotiation Support Interfaces to Multi-Dimensional.</result>

Figure 1.5: Result of the Figure 1.3 XSLT stylesheet

1.4 Motivation for path indexing

In order to process path queries like XPath patterns we need to navigate the graph
structure of the XML document. As we said before, since navigating the graph is essentially
pointer traversal, a query processing strategy that scans the whole database in the seach of

those paths that satisfies a given query isvery expensive.

12

In order to illustrate the problem let us consider again the SSIGMOD database from
Figure 1.3. Let us suppose that we want to find the volume in which a given article gpeas.

We submit then the following query:

Q1.1= /lissuel/ftitle="A Framework for Implementing Hypothetical Queries”]/volume

The query procesor will match the query pattern in all possible ways to the data
graph. It will traverse it from the root and return all nodes reachable via apath matching the
regular expression specified by the pattern. To do that following the naive gproad, it will
traverse the ettire database in the seach of paths that satisfy the regular expression
Ilissuelftitle from query Q1.1. Next, we seled those nodes having the value "A Framework for
Implementing Hypothetical Queries” out of the nodes reatable via those paths. Then, from
eah seleded node we will first traverse title/article/articles badkward and then volume
forward to complete the query. If we do not use ay auxiliary structure, this back and forth

navigation has to be done over the XML source

On the other hand, if we construct an index precomputing some paths of the graph we
may process general path queries much more efficiently. Such index will basically
summarize path information of the data graph. For instance, we may want to materialize a
view containing all nodes that ae reatable via the path
SIGMOD_Record/issue/articles/article/title if we know that a query such as Q = /fissuelltitle
is posed frequently. Then, we may use that information during query processing rather than
navigating the data source Or we may wish to store every path present in the database along
with the set of nodes readable viathe path.

In order to reduce the portion of the database to be scanned, schema-independent
index structures have been developed in recent yeas. We already introduced some of them,

which we will describe in the next chapter in more detail.

13

The reminder of this thesis is organized as follows. Chapter 2 presents the related
work. An overview of ToXin and its current implementation is discussed in Chapter 3.
Chapter 4 describes the experiment setting and the results. In Chapter 5, we present our

conclusions and possible diredions for future work.

14

Chapter 2

Path indexes

In the subsequent chapters, we will need a @mmon formalism to describe ToXin and

other related path index schemes. We begin by introducing some definitions.

Definition: let D be an XML document. A XML-graph Xp = (N, Vo, E, A, Y, 2, A, <) isa
rooted ordered graph induced by D, where N is a set of nodes; Vo,UN is a distinguished node
called aroat; E isaset of edges containing an edge for each XML element and attribute in D;
A 0 E is a distinguished set of edges containing an edge for ead attribute in D; is an
incidence function mapping E to N x N; X isa finite set of XML element and attribute names
called an alphaket; A is a labeling function mapping E to %, and < is a partial order relation
on E such that for every pair of edges e; and e, emanating from node n, e; < & iff e occurs
beforee, inn.

Definition: let € be the empty string, ¢ be the empty set, and Z be afinite alphabet disjoint
from{¢, ¢. We defineregular path expressions over = asfollows:

a) Theempty string €, the empty set ¢, and ead allZ are regular path expressons.

b) if Ry and R, are regular path expressions, then R;| Rz, Ri/ R, and (R1)* are regular path

expressons.

15

Let Ri and R, be regular path expressions over 3. The epression (Ri|R) is the
alternation of R; and Ry, (Ri/ Ry) is the concatenation of R; and R, and (Ry)* is the kleene
closure of R;. According to the XPath notation, we use (*) to denote the dternation of all
elements of Z, and (Ri//Ry) to denote (Ri/(*)*/Ry).

Ead regular path expression R denotes a set L(R) of strings of symbols from an alphabet
2. L(R) is defined as follows: L(g) = {€} ; L(¢ = ¢; L(a) = a, for allZ ; L(RyR:) =
L(R)OL(Ry) ={string s| s L(Ry) or s L(R2)} ; L(R/R2) = L(R1)/L(R) = {gring si/s: | &1
OL(R) and s, O L(R:)} ; L(R*) = Ui, L(R)', where L(R)° ={&} and L(R) = L(R)'*/L(R).

Definition: Let Xp = (N, Vo, E, A, Y, 2, A, <) be aXML-graph and p =(vo, €1, V1, ..., €, Vn),
whereviON,0<i<n,andgE, 1<j<nbe apahinXp. We all the string A(e))/ A(e)/ ...
/\(en) the label path of p, denoted by A(p).

Definition: Let Xp = (N, Vo, E, A, U, Z, A, <) be aXML-graph. A query path Qg on Xp isan
expressgon of the form xRy where x,y are variables and R is a regular path expression over 3.

The answer set to a query path Qr(Xp), denoted ans(Qr(Xp)), is defined as the set of pairs
(xy) st.thereisapathp=(x, €1, ..., & ,Y)inXp and A(p) O L(R).

2.1 First Approach to Path Indexes

Let Xp = (N, vo, E, A,), Z, A, <) be aa XML-graph. For ead node vCIN let L,(Xp) be the set
of label paths from roaot v to node v:

Lu(Xo) ={ Mp) | p=(Vvo. @,&,V)}

16

We define an equivalence relation over nodes in N as follows. Let v,w be nodes in N. We say

that v = w iff Ly(Xp) = Lw(Xp). We denote by [Vv] the equivalence classof vin N.

We all the set of nodes that belongs to the equivalence class|[v] the exent of [V],
denoted ex([Vv]). Then, we construct the index as follows. First, we compute the family of
equivalenceclasses [v4], [Vo], ... , [w] that defines a partition of N, and then we dtach to eah
of them the regular expression corresponding to languages L, (Xp), ... , L, (Xp). We also

store, for ead class|V], its extent ex([Vv]).

Given aquery path Q and the index constructed as described above, query evaluation
can be performed by simply iterating over all clases[vi], 1 <1 <k, and for ead class testing
if the oorresponding language L, (Xp) has a non empty intersedion with L(Q).

Consequently, ans(Q) will be the union of all extents where that intersedion is not empty:

ans(Q) ={ U, ext[v]) | L (DB)n L(Q) # ¢}

The index constructed as described above is inefficient becaise computing the
equivalent classes [v] is a PSFACE complete problem [MS99]. In addition, given that the
regular languages corresponding to ead class [vi] may overlap, the index size may be much
larger than the database.

Two proposals have aldressed these problems. dataguides [GW97] and 1-indexes
[MS99]. Dataguides consist of a more cncise representation of the equivalence classes [vi]
based on a deterministic automaton. 1-indexes, on the other hand, are based in the use of a
different equivalence relation to compute the equivalence classes. The resulting index, when
viewed as a finite state attomaton, is non-deterministic. Next, we will discuss both
approaches in more detail. We will use a cyclic data graph corresponding to a generic
pulicaions database (Figure 2.1).

17

Pub]icatiu:-ns
2
3
title ear
Hitl ar
publis her = ¥e
3 Eype 2 type
n n
"Pu]:-. tte1" articles a 1250 10 13
T [0} . n 1 2 "199':'"

"jl:uumal" 1] .;':'LCI".I'I" PU]ZI tl'H.E 2 i mnf,,

article arbicle ref e coara
i /,F\
14 W 16 17
pages
title title wag&s - g
20 ”
||1 -2':'" 21 .
21-40" 26
" title 1" " title 21 o authors s - authors

authors it " title 3" titls 4

L] Sk N
22
/wlnr mwnr
author author
28 M A 31 g2 ¥
n n n n
author 1 author 2 30 gt i i
" author 3" L —

Figure2.1: A generic publications database.

18

2.2 Dataguides

Dataguides are a oncise and acarate summary of the path structure of a
semistructured database. It is acarate becaise every label path in the data source gpeasin
the data guide and conversely every label path in the data guide gpeas in the data source. It

is concise because the data guide describes every label path of the source exadly once

Notice that the aitomaton that describes the language |J;L, (Xp) is a non
deterministic finite astomaton (NFA). The anstruction of a dataguide from a data graph is
equivalent to the cnversion of a NFA into a deterministic finite aitomaton (DFA)
[NUWC97]. This conversion takes linear time when the sourceis a tree and exponential time
(in the worst case) when the sourceis a graph. It is important to note that a data graph does
not necessarily have aunique dataguide in the general case. Since one NFA may have
multiple equivalent DFA [HU79], a single data graph may also have several dataguides. In
contrag, there isa unique one that isthe smallest possble, and it is called minimal datagude.

Two possible dataguides for the Figure 2.1 data graph are shown in Figure 2.2.

Data Guide 1 Data CGuide 2

rublicat ons
publicati ons

r
issue l isswe
r

titla publisher

author
Htle
pages
= thor

Figure 2.2: Two dataguides corresponding to the publications data graph.

18

However, not all dataguides are suitable for indexing puposes without additional
structures. For instance, the paths publications/issue/articles/article and
publications/issue/articles/article/references do not belong to the same equivalence classand
yet they reach the same node in the Datagude 2 from Figure 2.2. This is © becaise
dataguides guaranteethat ead label path in the data graph reades one node in the dataguide
but do not prevent multiple label paths from reading the same dataguide node. There is only
one type of dataguide which guarantees that all label paths that read the same node in the
dataguide belong to the same ejuivalence class [v], and it is called strong ddagude
(Datagude 1 in Figure 2.2). Since ea&h node represents a different equivalence class, we can
add the extents to the nodes to use the strong dataguide & a path index, as shown in Figure
2.3. Strong dataguides are the only type of dataguides that can be used for indexing puposes
without needing additional structures.

{ax

publicati ons

{34
e . el
{s5, 10} e i ar =3}
fe, 113]
. 123 I=, 153
article

Htle

{18,21,24,26}

authaors

{12, 22, 25, 27}

Jauﬂ:’lor

[z, 29, 30, 51, 2, 35}

{22, 25}

lauﬂ:’lor

{30, 31, 313}

Figure 2.3: Strong dataguide with extents for the publications data graph

20

We define next strong dataguides more precisely in the context of the XML-graph
formalism.

Definition: Let Xp = (N, Vo, E, A, U, Z, A, <) be aan XML-graph. A strong detaguide

Dx= (N, %o, Ei, Y1, Z, A, Xp, e€X) isarooted graph where N, is a set of nodes; x,[1 N, isa

distinguished node alled roat; E; is a set of edges; Y is an incidence function mapping E, to

N x N;; 2 is the alphabet of Xp; A is a labeling function mapping E, to X; ex is a function

mapping N; to 2" defined as ext(X)={ v | Opi = (X, ... , X), (P = (Vo, ..., V) st. A, (P)=A(P) };

and the following two conditions are satisfied:

1. For every pair of pathsp = (vo, ..., V), P’ = (Vo, ..., V') St. A(p) = A(p’), there is exadly
one pathpi = (Xo, ... , X) St. Ay (p1) = A(p) = A(p).

2. Foreveryp =(Xo, ..., X), thereisapath p = (vo, ..., V) St. A; (pr) = A(p).

One of the problems that we face when we cnstruct a dataguide of a deeply nested,
cyclic graph is that, in the worst case, we may end up credaing a node for every subset of
nodes in the data source As a result, the size of the data guide will grow exponentially in
terms of the number of objeds in the source. When the sourceis a treg however, the size of
the dataguide is equal to that of the source in the worst case. A comprehensive study of the
theoretical foundations behind dataguides can be found in [NUWC97].

Algorithm 2.1 below constructs a strong dataguide from an XML-graph. It is based in
the subset construction algorithm from [ASU86].

21

Algorithm 2.1: construction of a strongdatagude from a XML-graph
INPUT:

XML-graph Xp = (N, vo, E, A,), 2, A, <)
OUTPUT:
Strong dataguide Dx = (N, Xo, Ei, Y, Z, A, Xp, ext)
METHOD:
Ei -0
N, « new node Xq
ext(Xg) « {Vvo}
Extents — unmarked set ext(xo)
while there is a set SLIExtents do
mark S
for each symbol all1Z do
T « {y | (xy)Uans(Qa(Xp)), xUS}
if T LExtents then
Extents ~ Extents + unmarked set T
N, « Ny O {new node vy}
extly) « T
else
y — node y[IN s.t. ext(y) =T
fi
E/ - E, O{newedgee}
X « node x[IN s.t. ext(x) = S
Wi (e) — (xy)
A(e) -a
od
od

2.3 1-index

Like dataguides, 1-indexes are intended to be used by queries that search the database
from the root for nodes matching some abitrary path expresson R. A 1-index therefore,
represents the same set of paths that dataguides do, although using a different approadh. The
basic idea behind the index construction is the generation of a non-deterministic automaton

(NFA) to get amore compact structure than dataguides (DFA).

22

To construct the 1-index of a data graph we compute for eat node the equivalence

classusing a bisimulation as equivalence relation. We define bisimulation next.

Definition: Let Xp = (N, Vo, E, A, U, Z, A, <) be aXML-graph. A binary relation ~ on nodes
in N is called abismulation if it satisfies the following. If v ~ V', then for any edge e, y(e) =
(u, v), A(e) = a, there existsanedge €, Y(€') = (U, V), A(€) =ast.u~u'. Conversely, If v ~
V', then for any edge €', Y(€') = (U, V'), A(€') = a, there eists an edge e, Yi(e) = (u, v), A(e) =

ast.u~u.

We say that two nodes v, u are bisimilar (noted v = u) iff there exists a bisimulation ~ sit.

V~Uu

Using bisimulation we can tadle the index size and the @nstruction cost problems that
dataguides yield, obtaining an index structure in which extents are disjoint. As we mentioned
before, the type of dataguides used for indexing puposes are the strong dataguides. Since
they are mnstructed over the power set of nodes in the database, the size of the dataguide
graph may be & large @ exponential in that of the database, while for 1-index it is at most
linea. In addition, given that dataguide target sets may overlap (due to the power set
construction), the total size of the target sets may be @ large & exponential on the size of the

database in the worst case, while for 1-index is again at most linea.

We mnstruct the index as follows. Let Xp = (N, Vo, E, A, Y, Z, A, <) be aa XML-graph.
The nodes of the index will be the family of equivalence classes [vi] computed by
bisimulation, which defines a partition of N. The index | has an edge e, Y(€) = ([vi], [vi]), A(€)
= aiff datagraph D containsan edge €', Y(€') = (v, V'), A(e) = a for some vlI[vi] and v’ U[v].
We @n think of 1-indexes, when seen as finite state aitomata, as a non-deterministic version

of dataguides (Figure 2.4).

23

{1}

publications
{2}
{34}
title publisher
[5, 10} o o i3 {#}
{&, 11}
(7. 12} {8, 13}
article artHcle
raf
{14, 17} {15, 1¢}
title pages tHitle
pages
{18,263} {20} {24,243
authors authors {23}
{1, 27} {22, 25}
author author {
{28,2%,35} {30, 31, 32}
Figure 2.4: A 1-index for the publications data graph.
2.4 2-index

2-indexes are intended to be used by queries that seach the database for pairs of
nodes matching some abitrary path expresson R. Similarly to 1-indexes, we have to define a
language eguivalence to construct equivalence classes of nodes. We define next a language

between pairs of nodesin N.

24

Let Xp = (N, Vo, E, A, U, 2, A, <) be aXML-graph. For ead pair of nodes v,win N let
Lvw(Xp) be the set of label paths from roct v to node w.

LV,W(XD):{)\(D) | p=(v,e1,... ,Qq,W)}

Then, we define an equivalence relation over nodes in N, as follows. Let v,w,v' W be
nodes in N. We say that pars (v,\w) = (Vv ,w) iff LyW(DB) = Ly w(DB). As in language

equivalence for single nodes, we denote by [(v,w)] the equivalence class of (v,w) in N.

As before, pairs (v,w), (V' ,w) in N’ may be distinguished by a query path, iff (v,w)
O[(v',w)]. Using the previous language definition, we @nstruct the index as follows. We
compute the family of equivalence classes [(vi,wi)], [(V2,W2)], ... , [(VikWk)] that defines a
partition of N?, and then we dtach to ead of them the regular expresson corresponding to
languages L., (Xp), .. , Ly w (Xp). In addition, we also store the extent for ead class

consisting of all pairs (v,w) in the class[(v,w)].

Since omputing equivalence pairs of nodes is expensive, we may consider using

bisimulation, as we did for 1-indexes.

2.5 Access Support Relations

Access Suppot Relations [KM90] are general indexing structures for objed-oriented
databases. They are designed to support functional join along arbitrary reference chains
leading from one objed instance to another. They also support colledion-valued attributes
within the dtribute chain by materializing frequently traversed reference chains of arbitrary
length. Since acess sipport relations are based on the paths found in the schema, it is not

possible to use them in a straight-forward manner for the typicad schema-less XML

25

documents. However, we present them here because some of the techniques behind them can

be cmbined with other path index schemes for indexing XML data.

Access Support Relations are ageneralization of the binary join indices originally
proposed for the relational model [Val87]. One fundamental difference, however, is that
rather than relating only two relations (or objed types), AccessSupport Relations materialize
acces paths of arbitrary length. For comprehensive wverage of the objed-oriented data

model, we refer the reader to [KKS92].

Definition: A path expression on objed o has the form p = 0. As. A2 ... Ay, where 0 is an
objed that contains the dtribute A;, 0.A; refers to an objed or set of objeds that have an
atribute Az, and so on. Since Access Suppat Relations are typed, we give next a formal
definition of path expressons based on types. For smplicity, we asume that types are not

being defined as a subtype of any other type.

Definition: [KM92] let to ... t, be (not necessarily distinct) types. A path expression p ontp is

an expresson p = tp. Ai. A2 ... Ay if for eadh 1<i <n one of the following two conditions

holds:

1. Thetypet.: isdefined astype ti.iis[..., Ai: t, ...], I.e., ti.iisatuple with an attribute A; of
type .

2. Thetypeti. isdefined astype t.1is [..., A : t, ...] and the type ti’ is defined astype t/ is {
ti}. i.e, ti" isaset type @mntaining elements that are instances of ti. In this case, we say

that there isa set occurrence d A inthepathp =tp. Ar. A2 ... An.
According to this definition, we can represent the SIGMOD Reoord database & shown in

Figure 2.5. Ead level from top to bottom corresponds to a different type and the redangular

boxes represent the objects.

26

Sigrond_Fecord

Iytick Set

Lrticke

Sothor Set

Suther

Figure 2.5: object-oriented representation of the SIGMOD Record database

Having defined the ancept of path in this object-oriented data model, we may define Access

2al Vohiee: 26"

Irtinles: "3-2"
Ihoeber: "2"

1,42, 410} |

4.1

Title: "84 frarework ... "
LButhors: "5-2"
it page: "231"
hstpage: "242"

&-1

rarce: "Tioothy Sriffin®
pos: "00"

Suppat Relations as following.

Definition: [KM92]: let to ... t, be (not necessarily distinct) typesand p =to. A1. A2... Anbea
path expression on to. Then the AccessSuppot Relation [to. Ar. Az ... Aq] is of arity n+1 and
its tuples have the form [&, ... , §]. The domain of the dtributes S is the set of OIDs of

objeds of type ti, 1<i <n. If t, is an atomic type then the domain of S, ist,, i.e. values are

stored dredly inthe ASR.

27

2-2

Voluroe: 27"
Aytirles: "3-5"
Thurrber "2

35|

{11, 412, 420}

3.2

Tide: "& wokir .. ."
Sythoss: "5-a"
it page: "348"
hstpapge: "3 56"

o< [ensses |

E-2

raroe: "Ridard Hull"
pos: "0

-3

rare: "hifichael Geblardt”
pos: 00"

Access Support Relations may be maintained in four different extensions, which define
the amount of information kept in the index structure. The four possble extensions are the
following:

1. The anonical extension, denoted [to. A1. A2 ... AnJean , Which contains only complete

paths, i.e. paths fromty endingin t,.

2. The left-complete extension, denoted [to. A1. Az ... Anliest , Which contains all paths

originating in type to but not necessarily ending in type t,.

3. The right-complete extension, denoted [to. A1. Az ... Aqliigne , Which contains paths ending
in t, but possibly originating in some object of type t; that is not referenced by any objed

of typetj.1 via dtribute A;.

4. The full extension, denoted [to. A1. Az ... Aqlsun , Which contains all partial paths.

Figure 2.6 shows a full extension of an Access Support Relation for the path
SIGMOD_Record/issue/articles/article/title on the Figure 2.5 database. It contains all paths
corresponding to the indexed path expresson.

[digrood record f Isswes Syticles ¢ Article £ Tite]

Sigrood reoord Issue Lrtinles Lrtinls Title
11 21 3-2 +1 "4 frarmework"

11 21 3.2 4-2 "4 toolkt .. "
11 21 3.2 4-2 pE

Figure 2.6: Access Support Relation (full extension).

For gorage, Access Support Relations use an approach similar to binary join indexes
[Val87]. Eadh relation is redundantly stored in two B+-trees: the first keyed on the left-most
atribute and the second keyed on the right-most atribute. For the relations of Figure 2.6,
there is a B+-treeon SIGMOD_Record and another one on title. This dorage schema is well

suited for traversing peths forward and backward.

28

2.6 T-indexes

Since 1-indexes and 2-indexes are not tailored to specific paths in the database, when
facal with very irregular, cyclic data the index may become too large and inefficient.
Restricting the class of queries supported by the index structure can reduce the index
complexity and yield better performance This approacd is similar to that of Access Support

Relations.

Definition: Let Xp = (N, Vo, E, A, U, Z, A, <) be a1 XML-graph. A generalized query path
QR on Xp is an expresson of the form xoRix1Re... R, where x;, 0<i < n, are variables and
R, 1 <j < nareregular path expression over . The answer set to a generalized query path
QR (Xp), denoted ans(Qr'(Xp)), is defined as the set of tuples (Xo, ..., X») St. for al pairs (X1,
Xj), thereisapathpj = (X-1, €1, ..., &, X) in Xp and A(p;) U L(R).

In order to define T-indexes, the mncept of path template was introduced [MS99]. A
path templatet has the form voT1X;... ToX, Where x;, 1<i<n are variablesand each T, 1<i<n,
is either a regular path expression or a generic placeholder P that represents any path. By
instantiating each of the placeholders P with a concrete path expression we get a concrete
generalized query path. For instance the path template v, publications x; P x title x; has

several possible instantiations, two of them are:

i1 = Vo publications x; // X, title X3

i2 = Vo publications x, //article x; title X3

Once defined a path template t, a T-index is constructed to support path queries that
are instances of t. As in Access Support Relations, templates are used to guide the indexing
mechanism on the more frequently queried part of the database. Special cases of T-indexes
are 1-indexes and 2-indexes. The template that corresponds to a 1-index is t;= voPx; and the

one that corresponds to a2-index ist,= vo // X1 P X2.

29

For the mnstruction of the index, we proceal in a manner similar to 1 and 2-indexes.
We first define the language equivalence to be the eguivalencerelation on nodes, this time a
tuple (x1,... ,X). Then, we @mpute the ejuivalence classes defined by the language

equivalence For acomprehensive discusgon of T-indexes, we refer the reader to [MS99].

30

Chapter 3
ToXin

3.1 Overview

In order to speal up query processing for regular path queries we have developed an
index scheme we @l ToXin. Our original goal when designing ToXin was to have an index
that supports navigation of the XML graph both backward and forward to answer any regular
path query. At the same time, we wanted to keep the size of the index schema linea (in the
worst case) w.r.t. the size of the XML graph. In addition, we needed data structures to help
locate nodes that not only satisfy regular path expressons but also predicaes over values.
Previous index schemes developed for OODB and semistructured data satisfy only some of
these requirements. We have described some of them in previous chapters. Srong ddagudes
store only paths from the root and do not help in backward navigation. They also have the
additional problem of exponential growth when indexing deeply nested, cyclic data graphs.
AccessSuppot Relations and T-indexes, on the other hand, store only a predefined subset of
paths and, therefore, support only a limited classof path queries. ToXin borrows me ideas

from these techniques and extends them in several ways.

31

ToXin consists of two dfferent types of index structures: the value indexand the path
index The path index has two components: the indextree which isaminimal dataguide, and
a set of instance functions, one for eat edge in the index tree Ead instance function kegos
tradk of the parent-child relationship between the pair of nodes that defines each XML
element. Since the instance functions play the role of the extents, we can relax the @ndition
requiring that al label paths that read the same node in the dataguide belong to the same
equivalenceclass That is the reason why we ae ale to use aminimal dataguide instead of a

strong dataguide.

The storage structure of the instance functions is similar to that of Access Support
Relations (see Sedion 2.5). Eadh instance function is gored in two redundant hash tables: a
forward instance table for forward navigation and a backward instance table for backward
navigation. The value index, on the other hand, consists of a set of value relations that store
the XML nodes and values corresponding to an index edge. For eat edge in the index
schema that corresponds to a set of XML nodes containing values, there is a value relation.
Ead relation is implemented as a B+-trees keyed on the values, which are always grings.
Value and path indexes combined can be used to answer regular path queries with predicaes

over values such asthose expressed using XPath.

We present below a definition of the path index. This definition does not interpret

IDRef attributes as links, hencethe resulting index schema has a treestructure.

Definition: let Xp = (N, Vo, E, A, U, 2, A, <) be an XML-graph. A path indextree

Ix= (N, X, B,y ,Z A, Xp, 0)is atreewhere N, is a set of nodes;, x,[J N, is a
distinguished node alled roat; E; is a set of edges;) is an incidence function mapping E; to
N x N;; Z is the alphabet of Xp; A is a labeling function mapping E, to Z; o is an instance
function mapping E; x N to 2" defined as

oe,vV)={w|P=(WM,..,v,eewW) b =X, ..., X% a,Yy), and A (p)=A(p) }; and the
following two conditions are satisfied:

32

1. For every pair of pathsp = (vo, ..., V), P’ = (Vo, ... , V') St. A(p) = A(p’), there is exadly
one path pi = (Xo, ... , X) St. Ay (p1) = A(p) = A(p).
2. Foreveryp =(Xo, ..., X), thereisapath p = (vo, ..., V) St. A; (pr) = A(p).

We will present next an algorithm for computing the ToXin treefrom an XML-graph.
It performs a depth-first traversal of the tree defined by the natural element nesting in the
XML-graph. For eat element visited it first checks whether the crresponding edge has
arealy been added to the index and adds it if it was not. Then, it defines the instance
function o for the edge and the aurrent element. Since the algorithm traverses the underlying
tree defined by the element nesting, it terminates after traversing all edges exadly once Note
that it does not follow the edges defined by the atributes.

Algorithm 3.1: construction of a ToXin tree from a XML-graph

INPUT:

XML-graph Xp = (N, Vo, E, A, Y, 2, A, <)
OUTPUT:

ToXin Tree Ix = (Ny, Xo, Ei, Ui, Z, A, Xp, 0)
METHOD:

El -9

N, « new node Xq
Index(Xo, Vo)

procedure Index(x, v) // xUN,, vLIN
for each edge ell(E-A) s.t. y(e) = (v, w) do
if there is no edge e/LJE, s.t. Y, (e) = (X, y) and A, (e)) = A(e) then
E/ - E U {newedge e}
N, « N, O {new nodey}
Ai(e) « A(©)
Wi(e) - (xy)
fi
oe,Vv) «w
Index(y,w)
od
end

33

Let us sewith an example how ToXin works. Figures 3.1, 3.2 and 3.2 show the ToXin tree
and the tables for the XML document from Figure 2.1. The VT boxes in Figure 3.1 represent
the value tables and the IT boxes the instance tables. In contrast to dataguides and 1-indexes,
which index only paths which start from the roct, al paths in the database ae represented in
ToXin. For instance not only do we find the paths that match x/publications/issuely
(represented by the reference chains in tables pubdications and pulblications/issue) but also
those that match x/issuely (represented by the table pubdications/isaie). This way we @n use

ToXin for both forward and backward navigation starting from any node in the index.

H

{Pub]icati oS
L
-

anl publis her
=
] [T]
N 2 3 car
ST = [=
e §
= [|

L L)
L J

i
Hg

i

article
r
L
title
pages
authors
L |
i
' -
L]
amthor
i

Figure 3.1: ToXin treefor the publication data graph.

Farent Child Farent Child
1 2 b= 2
2 4
| publicatices ¢ Esue Aarticles | publications & ssue farticles farticle
Farent Child Faremt Child
2 7 14
1z 7T 15
12 1a
1z 17

| publicatioes # Bsue fartcles farticle f authoes

Farernt Child
14 13
15 22
1a 25
17 T

Figure 3.2: ToXininstancetables for Figure 3.1 index tree.

publicaticas f Bsue f ttle | publicatioes f fsue § type
Tlode Walue Tode Walue
2 "pib. dte 1" 3 onmmal”
+ "pib. tite 2" 1 [—
publimatices # Bsue F year publicaticas # Bsue £ publisher
Iode Walue Iode walue
2 "1 g0 E] B e T
L "1 ga0"
publicati ¥ boie farticles farticle £ itk | | publicatices ¢ Bsue farticles farticle £ authors £ audhor
Iode Walue biode it
it e 1 12 "auther 1"
15 e o 22 "autheor 2"
16 e - 22 “author 2"
17 ke 4t 25 "author 4"
25 “author 5
=7 “author 6"

publicatices ¢ Bsue farticles farticle fpages

Tlode Walue
14 b i 1
15 "z1-40"

Figure 3.3: ToXin valuetables for Figure 3.1 index tree.

35

3.2 |Implementation

The Document Object M odel

In the previous ®dions we explained how to construct a path index from an XML-

graph. Next, we show how to processan XML document in order to obtain the XML-graph.

To processan XML document we need to use APIs and our choice was the document
objed model (DOM). DOM is a tree structure-based APl from a W3C Reacmmendation
[W3C98]. An XML document is represented in DOM as a tree structure whose nodes are
elements. The DOM tree corresponding to the data graph of Figure 2.1 is depicted in Figure
3.4. DOM provides a set of APIsto accessand manipulate the nodesin a DOM tree

EE
[year |
l
J
LTS L " N
- ,
article "1a90!

Figure 3.4: DOM treefor the publications data graph

36

We implemented the prototype of ToXin in Java and we use the IBM parser XML4J
to create the DOM tree from the XML document. We based our implementations on the
DOM treegenerated by the XML4J parser. Since our model requires an edge-labeled graph,
first we compute the XML-graph from the DOM tree ad then we build the index acerding
to Algorithm 3.1.

For eah XML element containing values, DOM credes an extra node cdled text.
Therefore, the DOM tree contains more nodes than the number of XML elements in the
documents. As a @nsequence, the XML-graph presents additional text edges as well. If
indexed as normal edges, this extra layer of text edges induces a significant overhead for both
building and querying the index tree ad the XML-graph. Figure 3.5 shows the ToXin tree
for XML-graphs presenting text edges. The value tables and instancetables for Figure 3.5 are
shown in Appendix 1.

publicati ons
=3
issue
-
) i publisher
Htle
_
-
- T v articl es o -
IT -
. - = [1 - -
. - [t]
] .
L) __"'iI - temct i
— T 1
= =
I
L]
Hile
= pages
authors
(-
L]
r
et - -
[~T] P
=T 1
[a] = thor
__I'T [
ko]
text
[

Figure 3.5: Index tree for the publications data graph (with text edges)

37

Our first implementation of ToXin regards text edges in the XML-graph as normal
edges and computes the index tree acordingly. For the second implementation, we eliminate
the text edges from the XM L-graph and move the nodes at the end of such edges one level up

using the following algorithm:

for each edge elJE, Y(e) = (v, w), s.t. A(e) = text do
for each edge e’'LIE, s.t. Y(e’) = (u, v) do
W(e) = (u, w)
remove edge e from E
remove node v from N
od
od

Applying this procedure, we obtain the more compad and netura structure of Figure
3.1. It iseasy to seethat the XML-graph is always larger in the first implementation than in

the second one and, consequently, so is the index graph.

3.2 Navigation Language

For testing ToXin performance, we needed a language that suppats path expressons
and predicaes over values. This functionality is provided by a number of query languages for
XML, such as XML-QL [DFF+99], XSLT [W3C9%], XQL [RLS98] and XPath. In addition,
most of these languages also provide complex mechanisms for restructuring and upditing
documents, functionality we did not require for our experiments. Our final choice was XPath
because it is simple to implement and yet powerful enough for testing ToXin cgpabilities in

spealing up qeries involving tree navigation and value seledion. Nevertheless, since the

38

current ToXin implementation does not support order, we did not implement the XPath

functionality for supporting gueries involving order.

The navigation language we designed consists of a set of navigation and filtering
functions that support tree traversal, both forward and badkward, and selection of nodes
satisfying a cetain value. Functions navigateDown and navigateUp accept a set of nodes N
and a regular path expresson R as input and return the set of nodes that are reatable by
paths matching R. The only difference between them is the direction in the evaluation of the
regular path expresson R. The function seledNodes, on the other hand, accepts a set of nodes
N and a value v as inpu and returns the set of nodes whose value is exadly v. For instance,

the following query:

Q3.1 = publications/issue[year = “1990")/articles/article/title

may be expressed in our navigation language & a cmposition of four subqueries as follows:

Q3.2.1 = navigateDown(v0, “publications/issue/year”)
Q3.2.2 = selectNodes(Q3.2.1, “1990")

Q3.2.3 = navigateUp(Q3.2.2, “year”)

Q3.2.4 = navigateDown(Q3.2.3, “articles/articlef/title”)

The ToXin index scheme was designed to speed-up all query processing stages.
According to our query decomposition strategy mentioned above we define three stages in
the query evaluation. The first stage (cdled pre-seledion stage) comprises the first
navigation down the tree for the pre-filtering sedion. The second stage (called seledion
stage) consists of the value seledion performed by the filter sedion. Finally, the third stage
(called post-seledion stage) spans the navigation up after the seledion stage and the last

navigation down. We clasgfied ToXin along with other path indexes <heme eplained in

39

Chapter 2 with regards to the query evaluation stages in which they can be used. The

classificaion is shown in Table 3.8.

Scheme name pre-selection | selection post-selection
stage stage stage

Dataguides Yes .)

1‘i nd@(Y& _ _
General Path 2-index Yes)]
Indexes

Dataguides + Value Yes Yes)

Index (Lore)

ToXin Yes Yes Yes
Path-specific ASR Yes Yes Yes
Indexes Tindex Vs _ _

Table 3.8: Classification of the indexing schemes described in Chapters 2 and 3.

Query evaluation

Let Ix= (N, %, E, Yy, Z, A\, Xp, 0) be aToXin tree ad let Qr=xRy be aquery
path. We have two evaluation strategies depending on whether the variable x is instantiated
with the index roat xp or not. We describe first the evaluation strategy for the general case in
which x is not instantiated with the root. Starting from node x, we follow the reference dhains
over the instancetables that belong to the edges in the paths matching R. The answer ans(Qg)
contains the set of nodes that are a the end of those reference chains. The procedure is the
same for both forward and badkward navigation; the only difference is the instance tables

used for computing the reference dains (forward or badkward instance tables respedively).

Let us consider now the special case in which x is instantiated with the index root x.

In this case, we can avoid following the reference chains over the instance tables. Since there

40

is no previous filtering involved and we ae computing over an index treg we can simplify
the computation as follows. First, we follow the paths over the index schema that match the
regular path expresson R. Then we seled the last instance tables of each path and we
compute the union of the dild column of the seleded instancetables. This geaal case of the
evaluation strategy is closely related to query processing over dataguides, where the dild

column of the instancetables are the equivalent to the extents of dataguides nodes.

In order to present the algorithm that computes the navigateDown and navigateUp
functions acording to the evaluation strategies described above, we need to define first a
formalism called query graphs. Query graphs are transition graphs constructed from the NFA
corresponding to a regular path expression. By using Thompson's construction [ASU86] we
compute first the NFA corresponding to aregular path expresson and then we @nstruct the

transition graph associated with it.

Definition: let P = (S Z, §, S, F) be an NFA corresponding to aregular path expression. The
guery graphassociated with P isadireded graph Q = (S, o, Eq, Yo, Z, Ag, F) where Sis a set of
states; 5[Sisadistinguished node clled initial state; Eq is a set of edges; Yq is an incidence
function that maps Eq to Sx S X is the alphabet of Q; Ag is a labeling function mapping Eq
toX;and F O Sisaset of final states. If statet [&(s, a) for s, t I Sand allZ, then there is
and edge e [J Eq with Yo (€) = (S, t) and A (€) = a.

Algorithm 3.2 implements navigateDown for the general case in which the input node
x is not the root. The dgorithm is related to that in WebOQL for computing the navigation of
atreein aweb [Aro97]. Algorithm 3.3, on the other hand, implements navigateDown for the

case in which the navigation starts from the roct xo.

41

Algorithm 3.2 (navigateDown v1.0): computation of a forward navigation over a ToXin
tree.

INPUT:
ToXin tree Ix = (N, Xo, Ei, Wy, Z, A1, Xp, 0), where Xp = (N, Vo, E, Y, Z, A, <)
query graph Q = (S, So, Eq, g, Z, Ag, F)
Xi, Vi
OUTPUT:
ans(Q(Xo))
METHOD:
Result — ¢
Added ~ ¢
Visited « ¢
Selected « v,
SearchDown(x; , si, Selected)
procedure SearchDown(x, s, Selected)
Visited ~ Visited O {(v, s)}
for each edge el] E; s.t. Y (e) = (x, y) do
for each edge eqllEq s.t. Yo (€g) = (S, t) and Ag(eq) = Ai(e) do
if tLIF and e[JAdded then
Added ~ Added O {e}
Result — Result O Follow(e, Selected)
fi
if (y, t)L]Visited then
Selected —~ Follow(e, Selected)
SearchDown (y, t, Selected)
fi
od
od
end

procedure Follow(e, X)
Yo
for each x[OX do
Y « Y Oo(e Xx)
od
Follow « Y
end

42

Algorithm 3.3 (navigateDown v2.0): computation of a forward navigation from the root
over a ToXin tree.
INPUT:
ToXin tree Ix = (N, Xo, Ei, U1, Z, A1, Xp, 0), where Xp = (N, Vo, E, g, Z, A, <)
query-graph Q = (S, So, Eq, Yo, Aq, F)
OUTPUT:
ans(Q(Xo))
METHOD:
Result — ¢
Added ~ ¢
Visited « ¢
Selected «~ vq
SearchDown(Xo , So)

procedure SearchDown(X, S)
Visited — Visited I {(x, S)}
for each edge el] E; s.t. Y (e) = (x, y) do
for each edge eqllEq s.t. Yo (€g) = (S, t) and Ag(eq) = Ai(e) do
if tLIF and e[JAdded then
Added ~ Added O {e}
Result — Result O Child(e)
fi
if (y, t)L]Visited then
SearchDown (y, t)
fi
od
od
end

procedure Child(e)
Yo
for each x[IN s.t. o(e, x) is defined do
Y « YOo(e X
od
Child - Y
end

43

In order to perform the @mparative experiments we have also implemented
navigateDown for the XML-graph and Strong dataguides. The algorithms are presented in
Appendix 2.

44

Chapter 4

Experiments

4.1 Experimental Setup

We implemented the ToXin prototype in Java 2 and we used the IBM parser XML4J
to create the DOM treefrom the XML document. All the experiments presented herein were
conducted in a Sun SPARCstation runnng Solaris 2.5. Both Index and DOM were kept in

memory in the experiments.

In order to study the tradeoffs of a set of indexing schemes we caried out a series of
comparative performance experiments. We use query processing time as performance metric.
The experiments evaluate the dfect of several parameters on the performance of the query
evaluation using ToXin, dataguides, dataguides + value index, and the XML source itself.
The parameters can be clasdfied into data source-spedfic and query-specific. The data
source-specific parameters are document size number of XML nodes and values, path
complexity (degree of nesting), and average value size (short or long strings). Those query-
specific ae seledivenessof the path constraints (queries expressed with or without // and *
operators), size of the query answer (small or large), and number of elements sleded in the

filter sedion (small or large).

45

Our benchmark consists of four data sources: the mnference papers from the DBLP
database [Ley0Q], a sample of movies from the Internet Movies Database [IMDBOQ], the
four religious texts from [Bos98] and twenty Shakespeare plays from [Bos99]. The doice of
the document samples was aimed at determining the impad of nesting and average value size
on the index performance DBLP is a classical example of a bibliographical database
containing ceeply nested data. IMDB presents a flat structure typical of a straight-forward
mapping from relational data. The values contained in both the DBLP and IMDB documents
are short drings. The religious texts and the Shakespeae works, on the other hand, are
exponents of text databases: the former containing in average longer string values than the
latter and yet similar degree of nesting. The path structures of the tested documents are
shown in Appendix 4.

We use DBLP and IMDB to explore the impact of nesting. To study the effeds of
different value sizes, we use the religion texts and the Shakespeare works. In addition, to test
the index performance with different document sizes and similar path structures, we aested
two XML documents for ead data source, one larger than the other one. Table 4.1 shows

some parameters of the benchmark.

46

DBLP IMDB Shakespeare Religion
Docl | Doc2 | Docl | Doc2 | Docl | Doc2 | Docl | Doc?2

Filesize (Mb) 1.8 8.9 0.8 3.9 11 4.4 1.0 7.0
Index generation 172 80.2 55 415 41 257 13 9.3
time (sec)

of XML nodes 90040| 405103| 57854| 293183 45776| 181438| 16810 95594
#of XML values 44027| 190232| 27084| 137296| 20437| 81779 8283| 46334
of index nodes 47 73 14 14 52 62 25 78
(ToXin 1)

of index nodes 27 40 8 8 31 37 17 49
(ToXin 2)

Avg. Value Size Short Short Short Short Long Long Long Long
Degree of Nesting High High Low Low High High High High

Table4.1: Parameters of the benchmar k

The queries we used for our experiments test the performance of simple seledion of

nodes by value and tree navigation. We tested ead query in two versions. one with very

seledive path constraints 9 that the portion of the index scanned is smaller, and the other

with more relaxed constraints with a resulting extensive index navigation. We present next

the queries grouped by document sample:

DBLP

q:1'=/l[year = “1998"]/ltitle

g1 = /dblp/conferencel/issues/issue/inproceedings[year = “1998"]/title

g2’ = /lconferenceltitle = “VLDB"]/*/Hitle

gz = /dblp/conferenceltitle = “VLDB")/issues/issue/inproceedingsftitle

gs’ = //[author = “Serge Abiteboul”]//title

47

gz = /dblp/conferencel/issues/issue/inproceedings[author = “Serge Abiteboul]/title

IMDB

g4’ = /l[genre = “Drama”]//title

g4 = /movies/movie[genre = “Drama”]/title
gs’ = //[title = “Bolero”]//year

gs = /movies/movieltitle = “Bolero”]/year
ge’ = /l[year = “1950")//title

Jes = /movies/movie[year = “1950")/title

Shakespeare Works

g7 = /l[speaker = “Mark Anthony”]//line

g7 = /shakespeare/play/act/*/speech[speaker = “Mark Anthony”)/line

gs’ = /l[title = “The Tragedy of Anthony and Cleopatra”]/act//line

gs = /shakespeare/play[title = “The Tragedy of Anthony and Cleopatra”)/act/*/speech/line
qo’ = //[title = “The Tragedy of Anthony and Cleopatra”]//persona

go = /shakespeare/play[title = “The Tragedy of Anthony and Cleopatra”]/personae/persona

Religious Texts

g0’ = //[bktshort = “Matthew]/Iv

g10 = /religion/book/bookcoll/book/[bktshort = “Matthew”)/chapter/v

g1’ = /[title = “The New Testament”]//bktlong

g11 = /religion/bookf[titlepg/title = “The New Testament”]/bktcoll/book/bktlong

To compare query performance acoss different documents we classify the queries
with regards to the selediveness of its path constraints and the sizes of the query answer and
node selection in the filter sedion. The following table shows the classification acording

with these aiteria:

48

Query Type Query Characteristics

LL ql, o4, g7 Large query answer
Largefilter selection

LL* ql’, 4, g7 Large query answer
Largefilter selection
Relaxed path constraints

LS g2, g8, q10 Large query answer
Small filter selection

LS g2, g8, qlo Large query answer
Small filter selection
Relaxed path constraints

SS g3, 05, g6, 99, g11 Small query answer
Small filter selection

SS* g3,05,06’,q99, 11 Small query answer
Small filter selection
Relaxed path constraints

Table 4.2: Query classification

4.2 Experimental Results

Figures 4.3, 4.4, 4.5, and 4.6 show the exeaution time for ead stage of every query
type of Figure 4.2. The rows represent the performance of each query evaluation stage over
the XML-graph (XML), the first ToXin implementation with text edges (ToXin 1) and the
seoond implementation without text edges (ToXin 2). The first three @lumns of each table
correspond to the small documents and the seaond three @lumns to the large ones. This way

we can appreciate the impad of using a path index in each query processing stage.

49

DELF ML [Taxin 1 | Toxn 2 | =ML | Taxin 1 | Taxin 2
Fre 49. 86 0.31 0.18] 18312 0.46 0.26
LL* | Sel 1.18 0.03 0.03 13.28 0.03 0.03
Fost 0.54 0.08 0.05 §.33 0. k& 0 .35
Taotal B1.88 0.4 0.25] 214.73 1.15 0.64
Fre 22,34 0.10 0.08] 116.E4 0.0% 0.07
LL [Sel 1.09 0.03 0.03 12.5¢ 0.03 0.03
Fost 0.77 0.0 0.05 §.36 067 0.40
Tatal 24, 20 0.21 0.16] 137.53 0.74 0.50
Fre R2.21 0.20 o.14] 197.99 0.34 0.31
L=* | Sel 0.01 0.0z 0.0z 010 0.04 0.04
Fost 36.71 1.29 0.54 36.40 0.64 0.47
Total g8 32 1.51 1.00] 234.50 1.0k 0.Ge
Fre 0.0z 0.04 0.0z 0.11 0.03 0.0z
L= | =el 0.oo 0.0z 0.0z 0.0% 0.04 0.04
Fost 20,44 0.64 0.51 2013 0.34 0.29
Total 20.51 0.70 0.55 20.30 0.40 0.34
Fre 39.06 0.24 0.13] 193.00 0.55 0.30
=5* | =el 1.5k 0.ov o.o0vy 2042 0.09 0.09
Fost 0.14 0.03 0.0z 017 0.0 n.m
Total 41,08 0.34 0.21] 213.54 0.k5 0.40
Fre 23.85 0.08 0.07| 107.78 0.08 0.07
53 | Sel 1.99 0.0v 0.av 2014 0.08 0.09
Fost 0.14 0.01 0.01 016 0.02 n.m
Total 25 98 0.16 0.15] 12813 0.14 0.17

Table 4.3: Performanceresults of DBLP queries

50

DB AL | Taxin 1 | Taxin 2 1 =ML | Taxdn 1 | Taxin 2
Fre 21.95 n.09 0.05] 114.28 0.0g 0.03

LL* [Sel 1.57 n.04 0.04 8.71 0.04 0.04
Fost 274 052 029 15.56 0.84 0.49
Total 26 2h 0.E5 0.38] 138.56 0594 .56
Fre 11,64 0.03 n.oz k9.85 0.03 0.0z

LL | =&l 1.58 n.04 n.04 5.6E 0.04 0.04
Fost 2. bR 0.51 0249 15.86 0.05 0.05
Total 15.87 0.55 0.35 34.37 0.1z 011
Fre n.oo 0.00

L3* | Sel n.oo 0.00
Fost n.oo 0.00
Total n.0oo n.0oo n.0oo 0.00 0.0 0.0
Fre n.oo 0.00

LE | Sel n.oo n.oo 0.00
Fost n.oo 0.00
Total n.0oo n.0o n.0oo 0.00 0.0 0.0
Fre 21.48 N1z 0.07] 10288 0.14 0.08

F i = 1.05 0.0& 0.0& B7 0.14 0.14
Fost 0.01 n.oo n.0o 0.07 0.01 0.00
Total 22,53 01§ 0.13] 105.06 0.2g 022
Fre 12.42 0.03 n.03 E1.10 0.04 0.03

=5 [Sel 1.05 0.0& 0.0& .11 0.14 0.14
Fost 0.01 n.oo n.oo 0.07 0.01 0.00
Total 13. 48 0.04 0.09 Be 22 0.1g 0.1g
Fre 23.63 013 0.07) 107.33 0.08 0.04

a5 | Sel 1.33 n.04 n.04 B34 0.0g 0.0g
Fost 015 n.04 0.0z 0.58 0.08 0.05
Total 2511 021 D3] 114.24 022 015
Fre 13.31 0.03 0.0z B3.78 0.04 0.03

=5 [Sel 1.33 0.04 0.04 b.40 0.06 0.0k
Fost 014 0.04 0.0z 0.58 0.08 0.05
Total 14.78 0.11 0.05 /0.75 0.1§ 0.14

Table 4.4: Performanceresults of IMDB queries

51

shakespeare ML | Tain 1 | Toxin 2 ML | Toxin 1 | Toxin 2
Fre 23.41 0.4z 0.27v 897.34 0.43 0. 26

LL* | Sel 278 0.05 n.0s 9.73 0.05 0.05
Fost 0.60 0.14 niz 0.75 01z 0.09
Total 26.74 0.61 0.44] 107 82 0.60 0.40

Fre 16. 88 0.08 0.0g 55.04 0.10 0.09

LL | Sel 2.4z 0.05 n.0& §.45 0.05 0.05
Fost 0.5z 016 n.os 2.08 0.09 0.07
Total 19.82 0.28 0.2z 69.63 0.24 n.z:2

Fre 23.63 a.41 0.24 96.10 0.40 027

LS* | Sel 01z 0.0z n.oz 0.40 0.03 0.03
Fost .54 0.73 n.55 7.54 0.6z 0.43
Total £9.64 1.16 0.51] 104.05 1.05 0.73

Fre 0.0z 0.09 n.ov 0.04 0.09 0.08

LS [Sel 0.07 0.0z n.oz 0.01 0.03 0.03
Fost 511 0.57 n.43 511 0.49 0.39
Total 513 067y .56 51K 0.61 0.50

Fre £3.13 0.35 0.2z 94.95 0.36 0.2z

S33* | Sel 01z 0.0z n.oz 0.41 0.03 0.03
Fost B.16 0.39 n.34 787 0.64 0.44
Total 29. 41 .77 0.58] 103.23 1.03 .63

Fre 0.03 0.05 n.o4 0.04 0.09 0.07

55 | Sel 0.01 0.0z n.oz 0.0z 0.03 0.03
Fost 0.04 0.0v n.0& 0.04 0.01 0.0a
Total 0.08 0.14 n11 0.14 013 010

Table 4.5: Performance results of Shakespeare works queries

52

Feligion #ML | Taxin 1 | Taxin 2 #ML | Toxin 1 | Toxin 2
Fre 0.0a 0.0a
LL* | Zel 0.00 0.00
Fost 0.0a 0.0a
Total 0.00 0.0a 0.00 0.00 0.0a 0.00
Fre 0.00 0.00
LL | Sel 0.0a 0.0a
Fost 0.00 0.00
Total 0.00 0.0a 0.00 0.00 0.0a 0.00
Pre 8.24 010 0.06 39.07 0.20 01z
L= | =el 0.01 0.0z 0.0z 0.0g 0.0z 0.z20
Fost 0.85 0.0z 0.0z 0.99 0.05 0.03
Total .10 0.14 g.10 40.14 0.27 0.36
Fre 015 0.03 0.0z 0.7z 0.04 0.04
LS [Sel 0.01 0.0z 0.0z 0.03 0.0z 0.0z
FPost 0.63 0.0z 0.07 0.97 0.03 0.0z
Total 0.79 0.07 0.06 13 0.04 0.08
Fre §.57 0.11 g.av 45.37 0.22 0.14
53" [Sel 0.01 0.0z 0.0z 0.0z 0.0z 0.0z
Fost 5.00 0.09 0.06 /.58 0.26 0.20
Total 17.58 022 0.15 52.96 (.50 0.35
Fre 0.01 0.03 0.0z 0.0z 0.ov 0.06
53 | Sel 0.01 0.0z 0.0z 0.0z 0.0z 0.0z
Fost 0.19 0.04 0.03 0.25 0.27 0.21
Total 0.z20 0.04 0.0v 0.29 0.35 0.29

The results suggest that the first stage (pre-seledion) generally benefits the most by
the use of a path index scheme. All query types, except LS, SSin the Shakespeae works, and
religious texts, have shown important performance improvements when using an index in the
first dage. In some queries the performance of third stage (post-seledion) is also
considerably improved by using the index. Those query types with large query answers
benefit the most by the use of a path index during the third query processing stage. From the
results we can also conclude that, when using an index, the closer to the roat the filter sedion

starts, the better the improvement in the performance of the third stage and the worse that of

53

Table 4.6: Performance of religious texts queries

the first stage. Since dataguides support only the first stage, using only a dataguide without
additional structures can do little to improve the performance of the entire query evaluation

when the filter sedion is close to the roct.

Regarding the results when using a value index, except for queries with small number
of values ®leded in the filter sedion, the improvement is also considerable. Nevertheless it
is important to note that in none of the tested queries does the seledion stage play an

important role in the total performance of the query evaluation.
Figures 4.7, 4.8, 4.9, and 4.10 summarize the performance of four different index

schemas. both versions of ToXin, dataguides, and dataguides with value indexes. In all of

them ToXin outperforms the other two schemes, in some caes by one order of magnitude.

54

DBLP DBLP
75 40
20
30
o 18 B oG P B oG
—
= O pG+v1 | 5 4 [DGV
= M TN | 2 B TxN1
10 L] TXN2Z []TXN2Z
10
5
0 0
LL* LL LS* LS
Chart 1 Chart 2
DBLP
25
20
w15 B oG
£ O DG+vI
i B N1
W]
10] TXNZ
5
0
SS* SS
Chart 3

Figure 4.7: Compar ative perfor mance of selected index schemes with DBL P.

55

IMDB IMDB
30 7
25 6
5
20
s H oG 2 4 M oG
e O pG+wi | E [DG+
3 SRECRIN - B TxXN1
] TXN 2 C] TXN 2
10 3
3 1
0 0
LL* LL 55" 55
Chart 4 Chart 5
IMDB
& B oG
E O pG+vi
5% B TxXH1
] TXN 2
55* 55
Chart B

Figure 4.8: Compar ative perfor mance of selected index schemeswith IMDB.

56

Shakespeare Shakespeare
12 25
10 -
8
i M oG o 15 M oG
S & O bGswi | E O DG+
.;% B XN 1 L% B TXN1
(] TXN 2 10 (] TXN 2
4
5 5
0 0
LL* LL LS LS
Chart 7 Chart
Shakespeare
25
20
w15 M oG
5 O DG+VI
B [TXN 1
10 (] TXN 2
5
0
S§* SS
Chart 9

Figure 4.9: Compar ative per for mance of selected index schemes with Shakespear e works.

57

Seconds

Religion

35

x]
(%]

L%

ury
&n

0.5

Ls* LS
Chart 10

B oG
O DG+vI

B TN 1
C] TN 2

Seconds

25

20

—
[,]

-
=

Religion

|

88 s88
Chart 11

B oG
O DG+vI

B TN 1
C] TN 2

Figure 4.10: Compar ative per for mance of selected index schemes with thereligious texts.

58

Chapter 5

Conclusons and Future Work

5.1 Summary

In this thesis we presented ToXin, an indexing scheme that suppats path queries over
XML data. We discussd its architedure, related work and presented performance results.
The motivation for this work wasto overcome some limitations of current indexing proposals
for semistructured data, such as the ladk of support for all query processing stages
(dataguides, 1-indexes and 2-indexes), and the need for an explicit specification of the paths
to index (T-indexes). To that end, we combined ideas from dataguides and access support
relations in a way that allows us to use the index in all the query evaluation stages for any

general path query.

59

5.2 FutureWork

The work presented in this thesis can be extended en several ways. The main
diredions are: adding order to the index structure; implementing the ToXin graph, by
extending the ToXin treewith the semantic of the IDRefs; making the index persistent; and
investigating ways to extend ToXin so it can be used as an alternative to DOM for storing,
querying and upditing XML documents. We give next a brief overview of these possible

extensions.

Adding order

We ae oonsidering two options for this extension. One is to replace the Hash
structures in the instance tables with a data structure that supports order, such as B-trees.
Other option is to give the index more flexibility by keeping the order information in a
separate structure that may be alded or not depending on the particular user’s needs. This
new order tables would be dtaded to the ToXin nodes and would contain information about
the order in which the elements of the instance and value tables appea in the original XML
document. With this addition, ToXin will support queries involving order of XML elements

and attributes.

Extending the graph index with IDRefs

In order to construct the ToXin graph from the XML graph we use Algorithm 5.1. It
performs a depth-first seach of the underlying tree (the element nesting treg and for eath
edge dedks whether it is an attribute or an element. Since dtributes do not have further
structure, when the algorithm finds an attribute it smply adds it to the index and does not

continue with the reaursive seach.

60

Algorithm 5.1: construction of a ToXin graph from an XML-graph

INPUT:

XML-graph Xp = (N, vo, E, A,), 2, A, <)
OUTPUT:

ToXin Graph Ix = (N, Xo, Ei, A, Yy, Z, Ay, Xp, 0)
METHOD:

Ei -0

N, « new node Xq
Index(Xo, Vo)

procedure Index(x, v) // xUIN;, vLON
for each edge elJE s.t. Y(e) = (v, w) do
if there is no edge e,LJE, s.t. Y;(e) = (x, y) and A, (e)) = A(e) then
E/ -« E 0 {newedge e}
N, « Ny O {new node vy}

Ai(er) < A(e)
Pi(e) < (X y)
fi
oge,vVv) «w
If eJA then
A« AO{e}
else
Index(y,w)

fi
od
end

Making theindex persistent

In its current implementation ToXin is kept in main memory. To make the index
persistent we ae currently considering two approacdhes. mapping the index to a RDBMS or
to an OODBMS. Some hybrid scheme is also possble, sincethe value and instance tables are
more naturally suited to be stored in relational tables whereas the schema graph can be best
described using an objed-oriented data model. A number of methods for storing XML

61

documents using relational and objed-oriented databases have been proposed over the past
few yeas (see[Bar0Q] for a survey). Some of these goproaches can be alapted for storing
ToXin, and we plan to sudy in particular two of them: Ozone [WLA99] and Edge Tables
[FK99].

Extending ToXin with DOM functionality

Since the DOM treeis used only to populate the instance and value tables and all
further query processing is done over the index, once we ald order to ToXin we cn discard
the DOM structure for query purposes. However, if we want to have the full DOM
functionality, we need to implement the wre dassinterfaces of DOM. Table 5.1 contains a

short description of the minimum set of classinterfages that needs to be implemented.

62

ClassInterface Name

Description

Attr It represents an attribute within an element objed. DOM views
attributes as properties of elements rather than objeds itself.

CDATASedion It represents a CDATA sedion, primarily used for XML
fragments.

CharaderData It provides methods for string manipulation.

Comment It represents the content of an XML comment.

Document It representsthe root of the DOM tree

Document Fragment

It represents a subtreeor a set of subtrees of DOM tree

DocumentType It provides acaessto the list of entities defined inthe DTD.

Element It represents an element in an XML document.

Entity It represents an entity in an XML document.

NamedNodeMap It represents an unordered colledion of nodes that can be
accesed by aname.

Node It represents asingle node in the DOM tree

Nodel ist It represents an ordered colledion of nodes.

Notation It represents a notation defined in the DTD. A notation declares

the format of an unparsed entity.

Processinglnstruction

It represents a processing instruction in an XML document. A
processing instruction contains procesor-specific information

stored in the text of the document.

Text

It represents the textual content of an element objed or

atribute.

Table5.1: DOM classinterfaces.

63

Appendix 1

Complete Example

We present here the full extension of value and instance tables corresponding to
Figure 3.5.

publicatioss ¢ Bsue § title f tet publicatioes 7 Bsue # type £ text

TMode Vale Mode alue
5 "pib. tide 1" P Crp—
10 “rab. title 2" . P

publicatiors £ Bsue f year f Ext

publicatiors ¢ fsue f publEher fF text

Mode Value
a "y gen” Llode I‘I\FalLE s
1z " a9 a B CTl

| publications £ hsue farticles farticle £ titke £ ExE

HMiade Wahie

g Tiode Valus
18 'titke 1 i 0"
21 “rirle 2" oe hay g
| e

L =

| publicatioes ¢ Esue fartdcles fartele £ authors ¢ awhor £ et

Iode Value
23 "author 1"
29 “auther 2"
20 “auther 3"

21 “audher 4
2z “audher 5
32 "auther &"

Figure Al.1: Valuetables for the index tree of Figure 3.5

64

publications | publiations / isne

Faremt Child Farert child
L s 1 2
2 4
publicatices ¢ Bsue £ title publicatiors / &swe f type
Pavert | Child Farert | Child
E] 5 3]
& 10 + 1
| publicatioss £ Bsue farticles publicatioes £ Esue § year
Farert | Child Farent | Child
3 7 E] a
+ 1z &+ 1z
publications ¢ Esue £ piblsher | publicatioes ¢ E5ue farticles farticle
Pavemt Child Farent Child
3 9 7 14
7 15
12 la
1z 17
| publicatioes ¢ Bsue farticles farticle f ttls | | publicatioss ¢ Fsue farticles farticle £ authors
Farert | Child Farent Child
14 12 14 1a
15 21 15 22
1a 24 1a 25
17 26 17 27
plblez /Bt fartEles el paees | publications ¢ Gawe /articls Jarticle 7 autves ¢ auhor
Rareny|| Child Parent| Chid
14 20 19 73
13 =5 22 29
22 20
25 2
25 32
27 a2

Figure A1.2: Instance tables for the index tree of Figure 3.5

65

Appendix 2
Additional Algorithms

Algorithm A2.1 (navigateDown): computation of a forward navigation over an XML-graph
INPUT:

XML-graph Xp = (N, vo, E, A,), 2, A, <)

query graph Q = (S, so, Eq, Wq, Aq, F)
OUTPUT:

ans(Q(Xo))
METHOD:

Result - ¢

Added ~ ¢

Visited « ¢

SearchDown(Vo , So)

procedure Navigate(v, S)
Visited ~ Visited + (v, S)
for each edge elJE s.t. y(e) = (v, w) do
for each edge eqllEq s.t. Yo (€g) = (s, t) and Ag(eq) = A(e) do
if tLIF and e[JAdded then
Added ~ Added O {e}
Result —~ Result O {w}
fi
if (w, t)[IVisited then
SearchDown(w, t)
fi
od
od
end

66

Algorithm A2.2 (navigateDown): computation of a forward navigation over a dataguide
INPUT:
index-graph Dy = (N, Xo, Ei, Yy, Z, A, Xp, ext), where Xp = (N, Vo, E, Y, Z, A, <)
query-graph Q = (S, o, Eq, Wo, Aq, F)
OUTPUT:
ans(Q(Xo))
METHOD:
Result — ext(xo)
Added ~ ¢
Visited « ¢
SearchDown(Xo , So)

procedure Search(x, s)
Visited ~ Visited 1 {(x, S)}
for each edge e/l]1 E; s.t. Y (e) = (x,y) do
for each edge eqllEq s.t. Yo (€g) = (S, t) and Ag(eg) = A(e) do
if tJF and e, JAdded then
Added —~ Added O { e}
Result — Result 0 ext(y)
fi
if (w, t)[IVisited then
SearchDown (w, t)
fi
od
od
end

67

Appendix 3

Compar ative Perfor mance Results

We present in this Appendix the cmplete results of the cmparative performance

experiments simmarized in Figure 4.7, 4.8, 4.9 and 4.10.

DELF DG DG + %I | Taxinl | Taxin 2

LL* | Pre 0.46 0.46 0.46 0.26
Sel 13.28 0.03 0.03 0.03

Fost g.33 8.33 0.66 0.35

Taotal 22.07 0. 82 1.15 0.64

LL Fre .05 0.09 0.04 0.07
Sel 12.52 0.03 0.03 0.03

Fost g.36 8.36 0.67 0.40

Total 20.97 g.47 0.79 0.50

Ls* |Fre 0.35 0.39 0.34 0.31
Sel o.1o 0.04 0.04 0.04

Fost 36.40 36.40 0.64 0.47

Total 6. 59 Jh.83 1. 06 0.a62

L= Fre 0.03 0.03 0.03 0.0z
Sel 0.05 0.04 0.04 0.04

Fost 20.13 20.13 0.34 029

Total 20.21 20.19 0.40 0.34

=5* [Fre 0.55 0.55 0.55 0.30
Sel 20,42 0.09 0.09 0.0s

Fost 017 017y 0.01 0.01

Total 21.14 0.561 0.65 0.40

=5 Fre .08 0.08 0.0& .07
Sel 20.19 0.09 0.09 0.0%

Fost 0.16 016 0.0z 0.01

Taotal 20.43 0.33 0.19 017

Figure A3.1: Compar ative performance results of DBLP queries

68

0B DG DG+ % Taxinl | Takn 2
LL* | Pre 0.0k 0.08 0.0& 0.03
=el 8.71 0.04 0.04 0.04

Fost 1556 15.5E 084 0.44

Total 24.34] 15.EE .94 .56

LL | Fre 0.03 0.03 0.03 0.0z
el 8.ER 0.04 0.04 0.04

Fost 15,86 15.66 0.05 0.05

Total 24.54] 1553 N1z 0.11

L=* |Fre 0.00 .00 0.00 0.0
Sel 0.00 0.00 0.a0 0.00

Fost 0.00 0.00 0.a0 0.00

Total 0.0o .00 .00 0.0n

Lz |Pre 0.00 0.00 0.00 0.00
el 0.00 0.00 0.00 0.00

Fost 0.00 0.00 0.00 0.00

Total 0.00 0.00 0.00 0.00

== [Fre 0.4 0.14 0.14 0.0a
=el b7 0.14 0.14 0.14

Fost 0.0 0.m n.m 0.00

Total k.31 0.28 0 .28 022

i 0.04 0.04 0.04 0.03
=] B.11 0.14 0.14 0.14

Fost 0.0 0.m n.m 0.00

Total k. 1h 0.18 0.18 0.18

==* [Pre 0.08 0.08 0.08 0.04
el k.34 0.06 0.06 0.06

Fost 0.58 0.58 0.08 0.05

Total /.04 0.72 0.2z 015

=5 | Pre 0.04 0.04 0.04 0.03
=el b.40 0.0 0. 08 0.06

Fost 0.58 0.5 0.08 0.05

Total /02 .68 013 014

Figure A3.2: Compar ative perfor manceresults of IMDB queries

69

=hakespeare B[] DG+ 51| Taxinl | Taxin 2
LL* | Pre 0.43 0.43 0.43 0.26
=el 9.73 0.05 0.05 0.0%

Fost 0.75 0.75 nie 0.0
Tatal 10.91 1.23 0. 60 0.40

LL [Fre 010 010 010 0.09
Sel 5.45 0.05 0.05 0.05

Fost 2.08 2.08 0.09 0.07
Taotal 10.63 2.23 0. 24 0.2z

LE* [Fre 0.40 0.40 0.40 0.27
el 1.00 0.00 0.00 0.00

Fost 15 86 18.86 062 0.43
Taotal 20.27 19 26 1.02 0.70

L= |Fre 0.09 0.04 0.04 0.08
Sel 0.m 0.00 0.00 0.00

Fost 12.76 12.76 0.43 0.39
Total 12 86 12.85 053 0.47

S5* | Pre 0.36 0.36 0.36 n.2e
=el 1.02 0.oo 0.oo 0.00

Fost 159 69 19 69 0. 64 0.44
Taotal 21.06 20.04 1.00 0. 6B

S5 | Pre 0.09 0.0% 0.03 0.07
el 0.m 0.00 Q.00 0.00

Fost n.2e 0.2z 0.01 0.00
Taotal 0.3 0.31 010 0.07

Figure A3.3: Compar ative per formance results of Shakespeare works queries

70

Feligian OG OG + %[Toxinl | Taxin £
LL* | Fre 0.00 0.00 0.a0 0.00
Sel 0.00 0.00 0.a0 0.00
FPost 0.00 0.00 0.00 0.00
Total 0.00 0.00 0.00 0.00
LL |Fre 0.00 a.00 0.a0 0.00
ael 0.00 0.00 0.00 0.oo
Fost 0.00 0.00 0.a0 0.00
Total 0.00 0.00 0.00 0.00
LS* | Pre 0.20 020 0.20 0.1z
Sel 0.20 a.01 0.m 0.0
Fost 2.48 2.48 0.05 0.03
Total 2.88 268 0.25 0.16
LS |Fre 0.04 0.04 0.04 0.04
Sel 0.08 0.01 0.m 0.0
FPost 2.44 2.44 0.03 0.0z
Total 2.55 2.48 0.08 0.07
55* |Pre nee neze 0.2z 0.14
Sel 0.01 0.00 0.a0 0.00
Fost 18.95 18.95 0.26 020
Total 19.18 1917 0.48 0.34
53 | Pre 0.07 0.07 0.07 0.06
=el 0.00 0.00 0.00 0.00
Fost 0.64 0.64 0.27 0.21
Total 0.70 0.70 0.33 0.27

Figure A3.4: Compar ative perfor mance results of religious texts queries

71

Appendix 4

Tree Schemas of Document Samples

We include in this appendix the tree schemas of the documents used in the
experiments. These tree schemas show the general path structure of the document samples

(DBLP, IMDB, Shakespeae works and religious texts)

movies movie titla

rating

Figure A3.1: Tree schema of the I nter national M ovies Database sample

72

DELF

EOI{H’EEI.L‘E

title

issues

issue

inprocesdings

pro ceedings

author

title

note
title I

title i

» —

editor

title

Eu]:-]js her

ishn

Figure A3.2: Tree schema of the DBL P sample

73

] - —-
fin 3
= @
personae " .
&5 ona
| pgow | o pesona
gpdesar
sondesor
Pla}-su]:-t
_— title
—_— . —_—
sCEne . title
stagedir
speach - spealcer._
line
smEd:ir
subhead
subhead
epilogue ® title
stagedir
speach - sPealcer._
line -

Figure A3.3: Tree schema of the Shakespeare Works sample

74

religion

bool COWErpE

- title
Hile?
subtitle i
o P *
Hitl title
EPE__ * g
subtitle r
ttle2
. P
I:-r\eﬁcel * pHtle 2 i
i
F - i
pitleD
writlist writness
suracoll . U bltlong
blashort
w
— =
spigrph
L
bioel ol book - bltong
bltshort
e s—"
chapter o e
I
chstitle
diwr o divtitle -
I;..
chsurn - P
]:-l':u.rn - P i
sura - bletlong
bltshort
blsuwm . ® P N
L & g

Figure A3.4: Tree schema of the Religious Texts sample

75

References

[ABS99]

[AMOS]

[AQM+97]

[Aro97]

[ASUSE]

[Bar0Q]

[BCOQ]

[BDFS97]

S. Abiteboul, P. Buneman, and D. Suciu. Data onthe Web: from
relations to semistructured daa andXML. Morgan Kaufmann, 1999

G. Arocena and A. Mendelzon, WebOQL : Restructuring documents,
databases and webs. Procealings of the IEEE Internationd Conference
on Data Engineaing, pages 24-33, 1998

S. Abiteboul, D. Quass J. McHugh, J. Widom and J. Wiener. The Lorel
guery language for semistructured data. Internationa Journal on Digital
Libraries, 1(1): 68-88, April 1997

Gustavo Arocena. WebOQL: Exploiting Document Structure in Web
Queries. Master’s Thesis, Department of Computer Science, University
of Toronto, 1997

Alfred Aho, Ravi Sethi and Jeffrey Ullman. Compilers: principles,
tedniques andtoadls. Addison Wesley, 1986

Denilson Barbosa. On Storage Alternatives for Semistructured Data. Oral
Qualifying Report, Department of Computer Science, University of
Toronto, 200Q

Angela Bonifati, Stefano Ceri. Comparative analysis of five XML query
languages. SGMOD Reaord 29(1): 68-79.

P. Buneman, S. Davidson, G. Hillebrand and D. Suciu. Adding structure
to unstructured deta. In Proceadings of the Internationd Conferenceon
Database Theory, pages 336-350, 1997.

76

[BDHS96]

[BFSOQ]

[BKSY]

[Bos9g]

[Bos9g]

[CACS94]

[CCMO6]

[DFF+99]

[FFLS97]

P. Buneman, S. Davidson, G. Hillebrand and D. Suciu. A query language
and optimization techniques for unstructured data. In Proceelings of the
ACM S GMOD Internationd Conference on Management of Data, pages
505516, 19%.

Peter Buneman, Mary F. Fernandez and Dan Suciu. UnQL: aquery
language and algebra for semistructured data based on structural
reaursion. VLDB Journal 9(1): 76-110, 2000.

E. Bertino and W. Kim. Indexing techniques for queries on nested
objeds. |[EEE Transactions on Knowledge and Data Engineeing, 1(2):
196-214, 1980.

Jon Bosak. Religious Textsin XML.
http://www.ibibli o.org/xml/examples/religion. 1998

Jon Bosak. Complete Plays of Shakespeaein XML.
http://www.ibibli o.org/xml/ examples/shakespeare. 1999

V. Christophides, S. Abiteboul, S. Cluet and M. Scholl. From structured
documents to novel query facilities. In Procealings of the ACM

S GMOD Internationd Conference on Management of Data, pages 313
324, 199%A.

Vassilis Christophides, Sophie Cluet and Guido Moerkotte. Evaluating
gueries with generalized path expressons. In Proceedings of the ACM
S GMOD Internationd Conference on Management of Data, 413-422,
1996

A. Deutsch, M. Fernandez, D. Florescu, A. Levy adn D. Suciu. A query
language for XML. In Proceedings of the 8" Internationd World Wide
Web Conference, WWAWWS, 1999

M. Fernandez, D. Florescu, A. Levy and D. Suciu. A query language for
aweb-site management system. SGMOD Reaord, 26(3): 4-11, 1997.

77

[FK99]

[FSOg]

[GW97]

[HU79]

[MDBOO]

[KKS92]

[KMOQ]

[KM92Z]

[Ley0O]

[Lie9d]

Daniela Florescu and Donald Kossmann. Storing and guerying XML data
using and RDBMS. |EEE Data Engineaing Bulletin 22(3): 27-34, 1999

Mary Fernandez and Dan Suciu. Optimizing regular path expressons
using graph schemas. In Proceedings of the IEEE Internationd
Conference on Data Engineeing, pages 14-23, 1998.

Roy Goldman and Jennifer Widom. DataGuides. enabling qiery
formulation and optimization in semistructured databases. In Proceedings
of the Internationd Conference on Very Large Databases, pages 436-
445 199/.

J. Hopcroft and J. Ullman. Introduction to auomata theory, languages
and computation. Addison-Wesley, 1979

The Internet Movie Database. http://mwww.imdb.com. 200Q

M. Kifer, W. Kimand Y. Sagiv. Querying objed-oriented databases. In
Proceedings of the ACM SSGMOD Internationd Conferenceon
Management of Data, pages 393-402, 192.

Alfons Kemper and Guido Moerkotte. Advanced query processing in
objed bases using access support relations. In Proceedings of the
Internationd Conferenceon Very Large Databases, pages 294305,
1990

Alfons Kemper and Guido Moerkotte. Access sipport relations: an
indexing method for objed bases. Information Systems, 17(2): 117-145,
1992

Michael Ley. DBLP database web site. http://www.informatik.uni-

trier.de/~ley/db. 200Q

Hartmut Liefke. Horizontal query optimization on ordered semistructured
data. Informal Proceadings of the Internationd Workshop onthe Web
and Databases, pages 61-66, 1999.

78

[LSO0]

[MAG+97]

[MS99]

[MW97]

[MW99]

[NUWC97]

[RLS98]

[SB96]

[Val87]

Hartmut Liefke and Dan Suciu. XMill: an efficient compressor for XML
data. In Proceadings of the ACM SGMOD Internationd Conferenceon
Management of Data, pages 153-164, 2000.

J. McHugh, S. Abiteboul, R. Goldman, D. Quassand J. Widom. Lore: a
database management system for semistructured data. SSGMOD Reoord
26(3): 54-66, 1997.

Tova Milo and Dan Suciu. Index structures for path expressons. In
Proceedings of the Internationa Conference on Database Theory, pages
277-295, 1990.

Jason McHugh and Jennifer Widom. Query optimization for
semistructured data. Technical Report, Sanford University, 1997.

J. McHugh and J. Widom. Query Optimization for XML. Proceelings of
the Internationd Conference on Very Large Databases, pages 315326,
1999

Svetlozar Nestorov, Jeffrey Ullman, Janet Wiener and Sudarashan
Chawathe. Representative Objeds. concise representations of
semistructured, hierarchical data. Procealings of the IEEE Internationd
Conference on Data Engineaing, pages 79-90, 1997.

J. Robie, J. Lapp and D. Schach. XML Query Language (XQL). In
Proceedings of the Query Languages Workshop, 1998

B. Shidlowsky and E. Bertino. A graph-theoretic gpproad to indexing in
objed-oriented databases. Proceedings of the IEEE Internationd
Conferenceon Data Engineaing, pages 230-237, 19%.

P. Vaduriez Join indices. ACM Transactions on Database Systems,
12(2): 218-246, 1987

79

[WLAQ]

[W3C98]

[W3C99%]

[W3C99b]

[W3CO00]

J. Widom, T. Lahiri, S. Abiteboul. Ozone: Integrating structured and
semistructured data. In Procealings of the Internationd Conferenceon

Database Programmng Languaggs, 1999

W3C Reacommendation. Document Objed Model (DOM) Level 1
Specificaion. In http://www.w3.org/TR/IREC-DOM-Level-1. 1998

W3C Recommendation. XML Path Language (XPath) 1.0. In
http://wwwwa.org/ TR/xpath. 199.

W3C Recommendation. XSL Transformations (XSLT) 1.0. In
http://www.w3.org/ TR/xslt. 1990,

T. Bray, J. Paoli, C.M. Sperberg-McQueen, Eve Maler (Eds.). Extensible
Markup Language (XML) 1.0 (Second Edition). In
http: //wwww3.or g/ TR/REC-xml.

80

