
XPlainer-Eclipse: Explaining XPath within EclipseTM ∗

John W.S. Liu
†

IBM Canada Ltd., Toronto

jwsliu@ca.ibm.com

Mariano P. Consens
University of Toronto, MIE

consens@cs.toronto.edu

Flavio Rizzolo
University of Toronto, DCS

flavio@cs.toronto.edu

ABSTRACT
The popularity of XML has motivated the development of novel
XML processing tools many of which embed the XPath language
for XML querying, transformation, constraint specification, etc.
XPath developers (as well as less technical users) have access to
commercial tools to help them use the language effectively. Exam-
ple tools include debuggers that return the result of XPath subex-
pressions visualized in the context of the input XML document.

This paper provides a glimpse of the functionality of XPlainer-
Eclipse, a novel kind of query understanding and debugging tool
that provides visual explanations ofwhyXPath expressions return a
specific answer. XPlainer-Eclipse combines editors for visualizing
both XML documents and XPath expressions as trees together with
the explanation of the answers.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—Pro-
grammer workbench, Integrated environments; D.2.5 [Software
Engineering]: Testing and Debugging—Code inspections and walk-
throughs, Debugging aids; D.2.2 [Software Engineering]: Design
Tools and Techniques—User interfaces

General Terms
Languages, Program Analysis

Keywords
XPath, Debugging, Eclipse, IDEs, XML, Data Visualization

1. INTRODUCTION
XML is an important practical paradigm in information technol-

ogy with a broad range of applications. Its many uses include be-

∗Copyright c© 2006 by the Association for Computing Machinery,
Inc. and IBM Corporation. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept., ACM,
Inc., fax +1 (212) 869-0481, or permissions@acm.org.
†This work was completed while the author was a graduate stu-
dent at the Department of Computer Science at the University of
Toronto. The opinions expressed in this article are those of the
authors and do not necessarily represent the views of IBM Corpo-
ration and/or any of its affiliates.

ing a platform-independent markup language for web development,
and a common media to facilitate data exchange and integration.
The widespread adoption of XML has motivated the development
of new languages and tools geared toward XML processing.

Since XML is used as a data medium and carrier, accessing, re-
trieving and presenting XML data is crucial in most of these ap-
plications. As the most ubiquitous XML query language, XPath
[19] is used as a sublanguage for tasks like XML querying and
transformation, constraint specification, web service composition,
etc. This widespread use of XPath expressions in a large variety
of computer languages (such as XSLT, XQuery, XForms, BPEL,
XML Schema, XJ, and SQL extensions) motivates an increasingly
large population of developers to learn how to use the language
effectively. In this context, providing explanations ofwhy XPath
expressions return specific answers is a compelling approach to fa-
cilitate understanding and debugging XPath applications.

A large number of software tools are developed to help XPath de-
veloper understand how query expressions are evaluated. Example
tools include debuggers that return the result of XPath subexpres-
sions visualized in the context of the input XML document. These
initiatives include both open source projects and commercial prod-
ucts.

But these art tools typically simply display the result of the XPath
expression; they do not display the intermediate nodes selected by
the subexpressions that contribute to the answer. Therefore, they do
not provide information about relationships among subexpressions,
contexts, and/or selected nodes.

This paper introduces the novel idea of explanation queries for
XPath. We define a new language, XPlainer[?], that relies on visual
explanations to describewhya given XPath expression returns a se-
quence of nodes from an input XML document. The explanation
provided displays all the intermediate nodes that contribute to the
result of the XPath expression. While this is an intuitive notion, we
show that providing explanations for arbitrarily complex expres-
sions while supporting all the constructs in the XPath language is a
non-trivial task.

Based on this idea, we implement XPlainer-Eclipse, a novel kind
of query understanding and debugging tool that provides visual ex-
planations to assist XML developers to learn, understand, use, and
debug XPath expressions. The explanations tell what nodes in an
input XML document arematchedby the subexpressions, provid-
ing a representation of the basic mechanism at play during XPath
processing.

XPlainer-Eclipse is implemented on top of the Eclipse Web Tools
Platform (WTP) Project [2] 1.5, and combines editors for visu-
alizing both XML documents and XPath expressions as trees to-
gether with the explanation of the answers. The XPlainer-Eclipse
tool extends the XML and XPath development facilities available



in the Eclipse environment [1] with the ability to support explana-
tion queries. Eclipse is an open source platform built by an open
community of tool providers. A large variety of both commercial
and open source development tools have been integrated within this
environment.

1.1 Related Work
There is a rich literature in graphical query languages, starting

with QBE [20] in 1977. A 1993 research effort notes the existence
of more than 50 visual languages for databases [18]. A more recent
proposal that specifically targets visual XML queries appears in
[8]. The idea of combining data visualization with visual queries
has been pursued by [15, 17].

The explanation mechanism introduced in this paper was inspired
by earlier work on graph-based data visualization [9]. The Hy+ sys-
tem employed the concept ofGraphLog filter queriesthat return all
the intermediate tuples obtained by a Datalog logic program; these
tuples can be seen as loosely analogous to an explanation query
for a Datalog program. The Hy+ system did not use filters to ex-
plain the answers to Datalog queries; they were used instead to
create graph-based visualizations of database facts. The XPlainer
language concepts described in this work can also be applied to a
rule-based language (not just to a functional language like XPath).

The current XPath debugging tools limit themselves to showing
the result nodes of an XPath expression (i.e., the result of the eval-
uation) either in a separate view, or in the context of an existing
XML editor. These art toolsdo not display the intermediate nodes
selected by the subexpressions that contribute to the answer. There-
fore, they do not provide information about relationships among
subexpressions, contexts, and/or selected nodes. These are all novel
capabilities provided by the XPlainer language introduced in this
paper.

1.2 Contributions
The key contributions of our work are as follows:

• We introduce a novel approach toexplanation queriesand
describe XPlainer, an explanation query language for XPath.

• We describe a tool XPlainer-Eclipse that implements visual
explanations based on Eclipse WTP 1.5.

While XPlainer specifically targets XPath, the concept of expla-
nation queries that can assist developers in learning, understand-
ing, using, and debugging query expressions has general validity
beyond the specific case of XPath. Also, explanation queries are
a convenient mechanism to extract the subset of a database that
contributes to a query expression, and as such it can be used as a
powerful and concise subdocument filtering mechanism.

1.3 Organization
The paper is structured as follows. In the next section we intro-

duce the concept of explaining query expressions. We provide ex-
amples to motivate explanations and highlight the differences from
a simple partial evaluation of subexpressions. In Section 3 we pro-
vide an overview of a tool based on the XPlainer language together
with a description of its implementation. We present conclusions
in Section 4.

2. VISUAL EXPLANATIONS
This section provides a glimpse of the capabilities of our ap-

proach to visual explanations. We assume that the reader has a
basic understanding of the XPath query language constructs.

Given an XPath query and an input XML document, an explana-
tion of the query provides all the XPath result nodes together with
intermediate nodes. The intermediate nodes are those nodes result-
ing from the partial evaluation of the subexpressions of the original
XPath query that contribute to the answer. Obtaining the explana-
tion of a complex XPath query can be challenging, as shown in the
following example.

EXAMPLE 2.1. Consider the query

q1 = /books/book/metadata[price > 100]

//subject[. = ”Introduction”]/following :: subject

which returns the subjects following the “Introduction” subject in
a book whose price is greater than 100. An explanation ofq1 is
depicted in Figure 1.

Since current XPath query evaluation tools do not provide explana-
tions, the only available debugging techniques involve either partial
evaluation of subexpressions or evaluating reversed axes. A partial
evaluation cannot see beyond the current evaluation step, so it has
no way of filtering out nodes that will have no effect on the final an-
swer. For instance, a partial evaluation of the/books/book subex-
pression would return all books under the books element, which
includes two books that are not intermediate nodes forq1.

An evaluation that reverses the axes will not necessarily give us
exactly the intermediate nodes either. For instance, the intermediate
nodes of the second last step can be evaluated by a query reversing
the axisfollowing to preceding: the XPath query is given byq2.

q2 = /books/book/metadata[price > 100]

//subject[. = ”Introduction”]/following :: subject

/preceding :: subject[. = ”Introduction”] (1)

This evaluation will return all thepreceding subjects that are
equal to “Introduction”, which include a subject that is not an in-
termediate node forq1 (the one under the first book node).

The previous example shows that to obtain the intermediate nodes
and explainwhyan XPath expression returns a specific answer, we
cannot rely on either partial evaluations or evaluations that simply
reverse the axes.

XPlainer is the proposed new language for addressing the prob-
lem discussed above: an explanation of a given XPath query is
computed as the result of an XPlainer query. XPlainer query an-
swers are structured intoXPlainer treeswhose nodes correspond to
subexpressions and are associated with precisely the intermediate
nodes that contribute to the answer of the query being explained.

3. XPLAINER-ECLIPSE TOOL
The goal of an XPlainer-Eclipse tool is to provide a concrete

implementation for the visual explanation approach described in
the previous sections. The visual information presented by the
XPlainer language describes the correspondence from the (parse)
tree display of a query to the query’s output and its explanation
layered on a (document) tree display of the input.

Our XPlainer-based tool layers on top of the input XML docu-
ment annotations that explain the semantics of evaluating a given
XPath query on the document. There is a conscious decision to
limit the highlighting to a minimal use of colorlabels to distin-
guish the context, the selected nodes (the result of the query), and
the intermediate nodes (the ones providing the explanation of the
query result). In addition, numerical labels describe the association
between XPath subexpressions and the intermediate nodes selected
by them.



Figure 1: Explanation of query q1

The XPlainer-Eclipse tool that we have developed extends the
XML and XPath development facilities available in the Eclipse en-
vironment [1] with the ability to support explanation queries. While
the most prominent programming language supported by Eclipse is
JavaTM (and indeed the framework itself is implemented as an exten-
sive Java library), tools have been developed to support a variety of
programming environments. Of interest to XPlainer- Eclipse are
tools that support XML-related development, since most of them
support XPath as an embedded language. Several of these tools
have been incorporated within Eclipse, most notably around the
Web Tools Platform project (WTP) [2].

In particular, the XPlainer-Eclipse perspective (a perspective in
Eclipse is a set of views in the workbench) shown in Figure 1 con-
sists of the four views described below.

The first view in the top left corner, XPathView, is an XPath ex-
pression editor with two input fields and one message field, where
the user can enter an XPath expression. The first input field has the
expression of queryq1 from Example 2.1.

The second input field in the XPathView indicates that the con-
text is the root of the XML document (/, but in general this could
be any other XPath expression). The message field displays the
number of nodes in the selected nodeset (the result of the expres-
sion), or the actual result when it is not a nodeset (i.e., the result
consists of string values from the XML document).

The second view on the left (just below XPathView) is XPathTree-
View and displays a specific parse tree representation of the XPath
expression that appears in XPathView. In particular, the steps in
the XPath expression are represented as separate nodes and they
are labeled with a sequence number (in the example in the figure
the sequence of steps is labeled〈1〉, 〈2〉, and〈3〉, etc.).

The XPathTreeView is paired with the XML editor view on the
right side of the image in Figure 1 that displays a specific instance
of the books document. These two views are displayed shoulder-
to-shoulder, so the user can better visualize the connection between
the steps in the XPath expression and the highlighted nodes in the
XML editor view. XPlainer-Eclipse uses the same color (orange)
to label the selected nodes in the XML editor and the correspond-
ing leaf step in the XPathTreeView (labeledfollowing :: subject
in the example), in addition to having the same sequence number
label 〈8〉. XPlainer-Eclipse also uses the same color (blue) to la-
bel the intermediate nodes that contribute to the final answer in the
XML editor and the corresponding steps in the XPathTreeView, in
addition to having the same sequence number labels〈1〉, 〈2〉, and
〈3〉, etc.). There is another way to make the connection between
the XPath steps and their associated XML nodes. We mark every
XML node that is associated with an XPath step with a small icon
on its image tag. We differentiate the selected nodes from the in-
termediate nodes with different icons.

Let us illustrate the XPlainer-Eclipse visual capabilities with an
additional example. Consider the expression

book/section[2]/section/preceding-sibling :: section[1]

This example query selects the first preceding sibling section of
each child section of the second section from an XML document
describing a book.

Now consider a similar expression that contains parentheses:

(book/section[2]/section/preceding-sibling :: section)[1]

The explanation of the evaluation of the latter expression on the
book XML document appears in Figure 2 (right side) with the ex-



planation of the former (left side). The parentheses impact whether
document order or axis order (reverse document order in this case)
applies to the result of the parenthesized expression before the po-
sition predicate is applied.

Figure 2: Explaining the impact of parentheses

XPlainer-Eclipse can explain how a predicate expression chooses
a particular set of XML nodes. When the user clicks on a predicate
node in the XPathTreeView, the XML nodes that make the predi-
cate expression true will be selected and colored in green (a careful
reader may also notice that the icon for predicate nodes is a small
question mark). In this example we can also observe that XPlainer-
Eclipse selectively expands those nodes that are highlighted in the
XML editor, while leaving other nodes collapsed. This effectively
filters those portions of the XML document that are irrelevant to the
visual explanation. XPlainer-Eclipse has a number of additional in-
teractive features not covered here that are part of our prototype1

(presented also as a demo [10]). As an example, XPlainer-Eclipse
users can selectively collapse (simply by clicking) portions of the
XPath expression to eliminate constraints. This is useful when
there are no answers to a query but the collapsed subexpression
can be satisfied).

Throughout this section we have illustrated how XPlainer-Eclipse
helps XPath developers understand, debug and correct the expres-
sions that they are interested in evaluating against an example XML
document. The tool supports this goal by highlighting on the input
XML document the context, the selected nodes, and the interme-
diate nodes that contribute to the final result (as specified in the
semantics of the XPlainer language).

3.1 Implementation
The XPlainer-Eclipse tool is implemented in Java. There are

two major components in the system, Core and UI, each one of
them consisting of several packages with over 50 Java classes in
total[13].

The Core component is a Java application that can be made avail-
able as a package independently of the Eclipse environment. The
Core component of XPlainer-Eclipse consists of classes implement-
ing theXe tree data structure, an XPath parser, the implementation
of the visual explanation function, and an XPath evaluator module.
The Core component supports two key functions. First, it provides
an implementation of theXe tree, a XPlainer tree and theVT,c, a
visual explanation function. Second, it manages the invocation of
an external XPath processor.
1available at http://www.cs.toronto.edu/∼consens/xplainer/

The overall XPlainer architecture is shown in Figure 3. The
XPath input view is the interface to input the XPath expression
to evaluate. The input XPath is in String format and will be first
parsed into a JXPath [3] parsing tree, a data structure to model
XPath for evaluation. Then the XTT factory (aXe tree factory) will
transform the XPath in the JXPath parsing tree model intoXe tree
model. Meanwhile the XML file is modeled as DOM and stored in
the main memory by the Eclipse WTP [2]. The XML DOM is in-
put into the XPath evaluator, then the XPath evaluator will evaluate
the XPath expression inXe tree to obtain the final selected nodes
and all intermediate step nodes. The result will be stored in theXe

tree. Finally the XML DOM andXe tree is displayed in the XML
tree view and XPath tree view after highlighting the final selected
results nodes and all intermediate step nodes.

The XPath tree view is also interactive when the user clicks
on the predicate expression or the user collapses and expands the
XPath tree view. The XPath tree view can also manipulate the
Xe tree and evaluate the new XPath traversing expressions by the
XPath evaluator and then send the new highlighted nodes to the
XML tree view and XPath tree view.

Figure 3: XPlainer-Eclipse Architecture

The XPlainer-Eclipse tool is capable of invoking an arbitrary
XPath processor to implement the semantics of the XPlainer lan-
guage. A very important property of XPlainer-Eclipse is that it
is not tied to a particular XPath implementation. Instead an arbi-
trary XPath evaluator can be invoked through a standard interface
and used to evaluate theVT,c visual explanation function. Using
this approach, the tool can provide explanations that are faithful
to the invoked XPath processor whilesupporting all the language
constructs and functions in the XPath processor. This is a critical
engineering decision that allows the XPlainer-Eclipse framework
to be used to provide explanations for different XPath engines.
This is important because, beyond differences in the capabilities
of the implementations, the XPath language itself has several areas



where the semantics are implementation-defined. This effectively
means that only the original XPath engine can explain one of its
own implementation-defined features.

We also address successfully the challenge of reproducing the
behavior of implementation-dependent features. In debugging sce-
narios, this ability to invoke the original XPath engine is a crucial
requirement.

The main XPath engine utilized by XPlainer-Eclipse is the de-
fault XPath engine used in the Java API for XML Processing (JAXP)
1.3 [12], which is already included in J2SE 5.0 (i.e., the Java stan-
dard edition). Note also that the XPlainer-Eclipse Core component
communicates with the XPath engine using the DOM as the XML
data model. This module is fairly generic and can be extended to
implement other internal representations of the XML data model.
The UI component is developed as an Eclipse plug-in.

4. CONCLUSIONS
The paper describes an Eclipse-based tool implementing XPlainer,

a language defined with the novel goal of assisting users to under-
stand and develop XPath expressions. The XPlainer-Eclipse tool
provides a visual explanation to display all the intermediate nodes
that contribute to the result of the XPath expression and extends
the XML and XPath development facilities available in the Eclipse
environment [1]. The users of XPlainer-Eclipse can interact with
tree views of XPath expressions and input XML documents. In the
XML editor view, intermediate XPath expression results are selec-
tively highlighted, connecting these nodes with the associated steps
in the XPath expression.

A very important property of the XPlainer-Eclipse implementa-
tion is that it does not re-implement an XPath-like query processor.
The tool relies on the semantic definition of the XPlainer language
in terms of the XPath language itself to evaluate XPlainer queries
by invoking an arbitrary (already existing) XPath processor. While
this approach to evaluate XPlainer queries incurs obvious overhead,
it has the crucial advantage of being able toexplain faithfully the
evaluation ofall the features of any XPath processorinvoked.

Finally, we bring attention to the fact that the visualization of an-
swers and intermediate results supported by XPlainer can be used
as a powerful subdocument filtering mechanism. The semantics
of the visual explanation function provide an effective and concise
filtering mechanism. A large subset of the nodes in the input doc-
ument can be identified by one compact XPath expression when
interpreted as an XPlainer expression (i.e., one that returns a sub-
document with not just the selected nodes, but all of the intermedi-
ate nodes as well). When using the language as a filter mechanism
there is a clear motivation for developing XPlainer-specific opti-
mization techniques.

Acknowledgments
Portions of this work were carried out in collaboration with Dr. Bill
O’Farrell and Julie Waterhouse at the IBM Centre for Advanced
Studies. We would also like to thank Dr. Arthur Ryman, Craig
Salter and Ella Belisario from the Eclipse WTP working group for
their technical support and invaluable suggestions.

Financial support was provided by an Eclipse Innovation Award,
an IBM Centre for Advanced Studies (CAS) Fellowship, and the
Natural Sciences and Engineering Research Council (NSERC).

5. REFERENCES
[1] Eclipse. http://www.eclipse.org/.
[2] Eclipse Web Tools Platform (WTP) Project.

http://www.eclipse.org/webtools/.

[3] JXPath. http://jakarta.apache.org/commons/jxpath.
[4] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By

Example): A visual interface to the standard XML query
language.ACM TODS, 30(2):398–443, 2005.

[5] M. Consens and A. Mendelzon. Hy+: a Hygraph-based
query and visualization system. InSIGMOD ’93, pages
511–516, 1993.

[6] M. P. Consens, J. W. Liu, and B. O’Farrell. XPlainer: An
XPath debugging framework (demo), 2006.
http://icde06.cc.gatech.edu/prog-demo.html.

[7] M. P. Consens, J. W. Liu, and F. Rizzolo. XPlainer: Visual
explanations of XPath queries. InProceedings of the 23rd
International Conference on Data Engineering (ICDE 2007)
Istanbul, Turkey. IEEE Computer Society, 2007.

[8] JAXP. Java API for XML Processing (JAXP) 1.3.
http://java.sun.com/webservices/jaxp/index.jsp.

[9] John W.S. Liu. XPlainer: A Visual XPath Debugging
Framework. Master’s thesis.
http://www.cs.toronto.edu/DCS/Grad/Theses/05-
06MSc.html.

[10] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen,
D. Donjerkovic, S. Lawande, J. Myllymaki, and K. Wenger.
DEVise: integrated querying and visual exploration of large
datasets. InSIGMOD ’97, pages 301–312, 1997.

[11] C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac,
M. Lin, M. Spalding, and M. Stonebraker. DataSplash. In
SIGMOD ’98, pages 550–552, 1998.

[12] K. Vadaparty, Y. A. Aslandogan, and G. Ozsoyoglu. Towards
a unified visual database access. InSIGMOD ’93, pages
357–366, 1993.

[13] W3C. XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20, 2005.

[14] M. Zloof. Query-by-example: A data base language.IBM
Syst. J., 16(4):324–343, 1977.

Eclipse is a trademark of Eclipse Foundation, Inc. Java and all Java-based trade-
marks are trademarks of Sun Microsystems, Inc. in the United States, other countries,
or both.

Any references in this information to non-IBM Web sites are provided for conve-
nience only and do not in any manner serve as an endorsement of those Web sites. Use
of those Web sites is at your own risk.


