
XPlainer: Visual Explanations of XPath Queries

Mariano P. Consens John W. S. Liu Flavio Rizzolo

University of Toronto
{consens,wliu,flavio}@cs.toronto.edu

Abstract

The popularity of XML has motivated the development
of novel XML processing tools many of which embed the
XPath language for XML querying, transformation, con-
straint specification, etc. XPath developers (as well as less
technical users) have access to commercial tools to help
them use the language effectively. Example tools include
debuggers that return the result of XPath subexpressions vi-
sualized in the context of the input XML document.

This paper introduces XPlainer, a language that provides
explanations of why XPath expressions return a specific an-
swer. An explanation returns precisely the nodes in the input
XML document that contribute to the answer. We provide a
complete formalization for explanation queries based on the
semantics of XPath. This enables the use of XPath engines
for the evaluation of explanation queries.

We describe a tool that uses XPlainer queries to provide
visual explanations. The XPlainer-Eclipse tool is built on
an extensible development environment that includes edi-
tors for visualizing both XML documents and XPath expres-
sions as trees together with the explanation of the answers.

1 Introduction

The widespread adoption of XML has motivated the
development of new languages and tools geared toward
XML processing. XPath [26], the most ubiquitous of
XML-related languages, is used as a sub-language for tasks
like XML querying, transformation, constraint specifica-
tion, web service composition, etc.

The use of XPath expressions in a large variety of com-
puter languages (such as XSLT, XQuery, XForms, BPEL,
Schema, XJ, SQL extensions, etc.) motivates the interest
of a large population of developers in learning how to use
the language. Providing explanations of why XPath expres-
sions return specific answers is a compelling approach to
facilitate understanding and debugging XPath applications.

A large number of software tools have been developed to
try to help XPath users understand the evaluation of query

expressions in the language. These initiatives include open
source projects such as LOGILab XPath Visualizer [19],
XPE XPath Explorer [6] and Visual XPath [17] and com-
mercial products such as Altova XMLSpy XPath Analyzer
[5], Top XML XPath Visualizer [4], WSAD XPath Expres-
sion [14] and Oxygen XML Editor [3].

This paper introduces the concept of explanation queries.
Given an XPath expression, we define a new language,
XPlainer, that relies on visual explanations to describe why
the given XPath expression returns a sequence of selected
nodes from an input XML document. The explanation pro-
vided displays all the intermediate nodes that contribute to
the result of the XPath expression. While this is an intuitive
notion, we show that providing explanations for arbitrarily
complex expressions while supporting all the constructs in
the XPath language is a non-trivial task. This difficulty jus-
tifies defining a new language (XPlainer) with the same syn-
tax as the original target language (XPath) being explained,
but whose semantics state what additional information is re-
turned to explain a query result in the target language.

General motivation for our visualization approach origi-
nates in the work of Edward Tufte [24], who states:

Visual explanations is about pictures of verbs, the
representation of mechanism and motion, of pro-
cess and dynamics, of causes and effects, of ex-
planation and narrative.

We describe a visual explanation tool based on the
XPlainer language that assists XML developers to learn,
understand, use, and debug XPath expressions. The ex-
planations tell what nodes in an input XML document are
matched by the sub-expressions, providing a representation
of the basic mechanism at play during XPath processing.

The XPlainer tool is capable of invoking an arbitrary
XPath processor to implement the semantics of the XPlainer
language. Using this approach, the tool can provide ex-
planations that are faithful to the XPath processor invoked
while supporting all the language constructs and func-
tions in the XPath processor. We also address successfully
the challenge of reproducing the behavior of implementa-
tion dependent features. In debugging scenarios, this ability

to invoke the original XPath engine is a crucial requirement.
Programming language debuggers support stepping

through the state of an execution while inspecting variable
values. When dealing with XPath (or any other declara-
tive/functional query language), stepping through an exe-
cution is only acceptable for debugging the internal imple-
mentation of the execution engine. Any other debugging of
XPath expressions should not depend on the execution path
chosen by the engine’s optimizer, instead it should help un-
derstanding the semantics of the expression at a logical level
(and, to the extent that is possible, regardless of the engine
used). Existing debugging tools achieve this by providing
the result of an expression with no additional information.
XPlainer goes much further by giving all the intermediate
information (still at the logical level).

There is a fine line between debugging a declarative lan-
guage by giving all the logical intermediate information (in-
cluding implementation dependent intermediate results!),
and debugging the engine of such a language by stepping
through the actual execution path. XPlainer fully supports
declarative debugging of an arbitrary XPath engine without
crossing that line.

1.1 Related Work

There is a rich literature in graphical query languages,
starting with QBE [29] in 1977. A research effort over 10
years old refers to the existence of more than fifty different
visual languages for databases [25]. A more recent pro-
posal that specifically targets visual XML queries appears
in [8]. Combining data visualization with visual queries has
been pursued by [18, 21]. Beyond visual queries, XVIZ
[20] displays the structure of XPath expressions extracted
from an XQuery workload, relating expression to each other
and identifying common subexpressions .

The work we propose does not attempt to introduce a
new visual query language, instead it utilizes visualizations
as a mechanism to provide explanations for the semantics
of an existing textual query language (XPath). The visu-
alization of answers and intermediate results supported by
XPlainer can certainly be used as a data visualization mech-
anism, but that is not the goal addressed in this paper.

The explanation mechanism introduced in this paper has
been inspired in earlier work on graph-based data visual-
ization [10]. The Hy+ system employed the concept of
GraphLog filter queries that return all the intermediate tu-
ples obtained by a Datalog logic program, and they can be
(loosely) seen as the analogous of an explanation query for
a Datalog program. The Hy+ system did not use filters to
explain the answers to Datalog queries, they were used in-
stead to create graph-based visualizations of database facts.
We can apply the XPlainer language concepts described in
this work to a rule based language (and not just to a func-

tional language like XPath).
Explanations are also closely related to work in data

provenance that characterizes those tuples in a database D
that “contribute” to the answer of a query over D [28, 12, 9].
Research in data provenance highlights that while the notion
of finding tuples that “contribute” to an answer is intuitively
appealing, actually formalizing this notion for a broad class
of queries is quite challenging. The definition of explana-
tions in this paper provides a novel answer to this challenge
for the complete XPath language.

The XPath debugging tools mentioned earlier limit
themselves to showing the nodes selected by a query (i.e.,
the result of the evaluation) either in a separate view
[5, 17, 4, 19], or in the context of an existing XML edi-
tor [14, 3, 19]. They simply display the result of the query
without the intermediate nodes that contribute to the re-
sult. Therefore, they do not provide information about rela-
tionships among subexpressions, contexts and/or selected
nodes. These are all novel capabilities provided by the
XPlainer language introduced in this paper and that current
tools do not posses.

Finally, we note that the application of the XPlainer
language as a tool to select the subset of an XML doc-
ument that contributes to an XPath answer is similar to
the XSquirrel [22] subtree queries. These type of queries
have been shown useful for defining document views, in ac-
cess control applications, and in actively distributing XML
documents [7]. XPlainer queries provide much more con-
trol over the nodes that are retained compared to subtree
queries. XSquirrel queries retain the nodes selected by the
original XPath expression together with all their ancestors
and descendants, while XPlainer explanation queries retain
all those intermediate nodes that contribute to the original
XPath result (these can include nodes that are not ancestors
nor descendants of the answer).

1.2 Contributions

The following are the key contributions of our work:

• We introduce the novel concept of explanation queries
and describe XPlainer, an explanation query language
for XPath.

• We provide a formal definition for the semantics of
XPlainer that in turn builds upon the semantics of
XPath expressions (which is a very desirable property
in debugging applications).

• We describe a tool, XPlainer-Eclipse1, that implements
visual explanations.

1Available at http://www.cs.toronto.edu/∼consens/xplainer/

Figure 1. Explanation of query q1

While XPlainer specifically targets XPath, the concept
of explanation queries that can assist developers in learning,
understanding, using, and debugging query expressions has
general validity (beyond the specific case of XPath). Also,
explanation queries are a convenient mechanism to extract
the subset of a database that contributes to a query expres-
sion, and as such it can be used as a powerful and concise
sub-document filtering mechanism.

1.3 Organization

The paper is structured as follows. In the next sec-
tion we introduce the concept of explaining query expres-
sions and provide examples to motivate explanations. Sec-
tion 3 describes the formal foundations of the XPlainer lan-
guage: XPlainer trees and the visual explanation function.
In Section 4 we provide an overview of a tool based on the
XPlainer language (together with a description of its imple-
mentation). We conclude in Section 5.

2 Visual Explanations

This section provides a glimpse of the capabilities of our
approach to visual explanations. We assume that the reader
has a basic understanding of the XPath query language con-

structs (a succinct formal description of the semantics of the
XPath language is provided in Section 3).

Given an XPath query and an input XML document, an
explanation of the query gives as answer all the XPath re-
sult nodes together with intermediate nodes. The interme-
diate nodes are those nodes resulting from the partial evalu-
ation of the subexpressions of the original XPath query that
contribute to the answer. Obtaining the explanation of a
complex XPath query can be challenging, as shown in the
following example.

Example 2.1 Consider the query

q1 = /book/section/section[title = “Audience”]
/following :: section/figure

which returns the figures in sections that appear after a sec-
tion with title = “Audience” within a section of book.

An explanation of q1 is depicted in Figure 1, a screenshot
of XPlainer-Eclipse. The first view in the top left corner of
the figure, XPathView, is an XPath expression editor with
two input fields and one message field, where the user can
enter an XPath expression (query q1 in the example). The
second input field in the XPathView indicates that the con-
text is the root of the XML document (/, but in general this
could be any other XPath expression). The message field
displays the number of nodes in the result of the expression.

The second view on the left (just below XPathView)
is XPlainerTreeView and displays a specific parse tree
representation of the XPath expression that appears in
XPathView. While the formal definition of this parse tree is
provided in Section 3 (see Definition 3.5), it should appear
as an intuitive representation of the structure of the XPath
expression. In particular, the steps in the XPath expression
are represented as separate nodes and they are labeled with
a sequence number (〈1〉, 〈2〉, 〈3〉, 〈5〉, and 〈6〉 in the figure).

The XPlainerTreeView is paired with the XML editor
view on the right side of the image in Figure 1 that dis-
plays a book document. Nodes in the XML editor and their
corresponding leaf step in the XPlainerTreeView have the
same step number labels and the same colours: orange for
the nodes in the answer and blue for the intermediate nodes.

Since current XPath query evaluation tools do not pro-
vide explanations, the only available debugging techniques
involve either partial evaluation of subexpressions or eval-
uating reversed axis. A partial evaluation cannot see be-
yond the current evaluation step, so it has no way of filtering
out nodes that will have no effect in the final answer. For
instance, a partial evaluation of the /book/section subex-
pression would return the two top-level sections of the doc-
ument, which includes one that is not an intermediate node
(the second one). The same happens with a partial eval-
uation of following :: section, which also returns a su-
perset of the intermediate nodes: all sections after section
〈3〉, including those that do not contain figures. In contrast,
an explanation of the query would include only those sec-
tions that satisfy the rest of the query, which is the one la-
beled by 〈2〉 for /book/section and those labeled by 〈5〉 for
following :: section. Although a partial evaluation some-
times does provide exactly the intermediate nodes (like the
partial evaluation of section[title = “Audience”]), in gen-
eral it just returns a superset of the intermediate nodes.

An evaluation that reverses the axis will not necessarily
give us exactly the intermediate nodes either. For instance,
evaluating the last reversed subexpression entails obtaining
the parent of all figure nodes in the answer. (Remember
that figure is child :: figure in the unabbreviated syn-
tax, and its reverse axis is parent). This evaluation gives us
correctly the three intermediate section 〈5〉 nodes that ap-
pear in the Figure. However, the reversed evaluation of the
next subexpression, following :: section will return all
the preceding sections, when in fact the only intermediate
node at that point is section 〈3〉.

We have shown with the previous example that we can-
not rely on either partial evaluation or in evaluations that
simply reverse the axes to obtain the intermediate nodes and
explain why an XPath expression returns a specific answer.

Example 2.2 Consider the expression

/Order/OrderLine/preceding − sibling :: ∗[1]

This example query selects the first preceding sibling of
each OrderLine child of an Order (one DeliveryTerms and
two OrderLine elements) in a Universal Business Language
XML document describing a business transaction. The
XPlainerTreeView is shown on the top left side of Figure 2
and the answer on the center.

Now consider a similar expression which contains paren-
theses

(/Order/OrderLine/preceding − sibling :: ∗)[1]

The explanation of the evaluation of the latter expression
on the UBL XML document appears in the right side of
Figure 2, while the XPlainerTreeView is shown on the bot-
tom left. The parenthesis impacts whether document order
or axis order (reverse document order in this case) applies
to the result of the parenthesized expression, and before the
position predicate is applied. This modified example selects
just one node, the first of the preceding siblings (the ID ele-
ment).

The increasing difficulty of providing these explanations
for arbitrary XPath queries motivated us to formally de-
fine the semantics of explanations. The following example
shows a more complex expression with parenthesis, predi-
cates and a disjunction.

Example 2.3 Consider the query

q2 = /book/((section[1]/section)[2] |
(section[3]/section)[4]/figure))[5]/title

In queries like this, obtaining the intermediate nodes
without such semantics becomes extremely challenging.
We will come back to this query in Section 3 when we in-
troduce the XPlainer language.

XPlainer is the proposed new language for addressing
the problem discussed above: an explanation of a given
XPath query is computed as the result of an XPlainer query.
XPlainer query answers are structured into XPlainer trees
whose nodes correspond to subexpressions and are associ-
ated with precisely the intermediate nodes that contribute to
the answer of the query being explained.

3 The XPlainer Language

This section introduces the XPlainer query language. We
start with some preliminary definitions (XML trees, axis
order and context). The second subsection introduces the
XPlainer expressions and the concept of an XPlainer tree (a
very specific parse tree for an XPath expression). The next
subsection defines the semantics of explanations using a vi-
sual explanation function that associates intermediate nodes
in an XPath expression evaluation with the corresponding
nodes in the explanation tree. The fourth subsection men-
tions properties of the evaluation of explanations.

Figure 2. Explaining the impact of parenthesis

3.1 Preliminaries

An XML document is viewed as a unranked, ordered,
and labeled tree in which elements are tree nodes. The
structure of the tree is given by the nesting of the elements
and their relative order in the document. In order to intro-
duce XPlainer we will formalize next the notion of an XML
tree.

Definition 3.1 (XML Tree) Given an XML document D,
we define the XML tree of D as an ordered tree T =
(Inst , firstchild, nextsibling, Label, λ) where

• Inst is a finite set of nodes;

• firstchild ∈ Inst × Inst represents the relationship
between each non-leaf node and its first child;

• nextsibling ∈ Inst × Inst represents the relationship
between two consecutive children of a non-leaf node;

• Label is a finite set of node names;

• λ is a labelling function that assigns labels to nodes in
Inst by mapping Inst → Label;

For navigating the XML tree, the mechanism used
by XPlainer are the XPath axes, which are defined
in terms of firstchild and nextsibling, together
with their inverses and their transitive closures.
For instance, child := firstchild.nextsibling∗,
and following := ancestor-or-self .nextsibling.
nextsibling∗.descendant-or-self . All other axes are
defined similarly.

Since XML documents are ordered, we need to de-
fine the document order ≺doc as a total order relation
given by descendant

⋃
following, where descendant

and following are the axes. Based on this order relation
and its inverse (ancestor

⋃
preceding) we define next axis

order and axis position.

Definition 3.2 We define the binary axis order relation
≺axis in Inst × Inst as descendant

⋃
following if

axis ∈ {self , child, descendant, descendant-or-
self , following, following-sibling} and as ancestor

⋃
preceding otherwise. Given a node set S ⊆ Inst∗ and
v ∈ S, the position of v in S w.r.t. ≺axis is denoted by
posaxis(v, S)).

Since XPath was designed to be embedded in other lan-
guages it has an interface that contains information about
the context in which an expression will be evaluated. Given
that XPath manipulates node sets, in addition to the node
from which to start the evaluation the context has to con-
tain the node’s position relative to a node set and the node
set size. This node set could be the result of the evalua-
tion of another XPath expression or a construct of the host
language.

Definition 3.3 (Context) Let S ⊆ Inst∗ and v ∈ S. The
context of v in S with respect to axis is defined as the tuple
c = 〈v, posaxis(v, S), |S|〉. We say that v is the context
node, posaxis(v, S) the context position, and |S| the context
size.

3.2 XPlainer Expressions and Trees

In this subsection we introduce the syntax of the
XPlainer query language. We begin by defining XPlainer
expressions, which are (as expected) syntactically identical
to the XPath expressions under explanation.

Definition 3.4 (XPlainer Grammar)
e := disj | op(e1, . . . , em)

disj := locpath (‘ |’ locpath)∗

locpath := par | step | abs
par := ‘ (’ disj ‘)’ (pred)∗ (‘/’ locpath)?
step := axis ‘ :: ’ l (pred)∗ (‘/’ locpath)?
abs := ‘/’ locpath

pred := ‘ [’ e ‘]’
where e, e1 . . . em are called expressions, locpath,
locpath1,. . . ,locpathm are called location paths, l is

a node name from the label alphabet Label (Defini-
tion 3.1), axis is an XPath axis, and op is a place
holder for any XPath function and operators such as
+,−, ∗, div,=, 6=,≤, <,≥, >, and intersect, as well as
for context accessing functions position() and last().

Note that the previous definition captures all the XPath
constructs. For a detailed coverage of the XPath functions
and operators the reader is referred to [27].

Next we introduce the notion of XPlainer tree, a
parse tree specifically designed for the expressions in the
XPlainer grammar defined above.

Definition 3.5 (XPlainer Tree) Given an XPath expres-
sion query e, we define the XPlainer tree of e as an un-
ordered tree Xe = (SubExpr, Edge, up, here, par, down)
where

• (SubExpr, Edge) is the parse tree for e according to
the grammar in Definition 3.4;

• up, here, par and down are labeling functions that
assign XPath expressions to nodes in SubExpr;

• the root of Xe is x0 ∈ SubExpr.

The labeling functions up(x), here(x), par(x), and
down(x) are defined for each x ∈ SubExpr by introducing
a recursive function T (Figures 3, 4, and 5) as follows.

Function up(x0) is empty and up(x) is defined for all
x 6= x0 as follows:

up(x) = here(x′1)/ . . . /here(x′m)

where x′1, . . . , x
′
m are the ancestor nodes of x in Xe.

Function here(x) is defined for all x 6= x0 in each of T ’s
derivation rules (Figures 3, 4, and 5), whereas here(x0) =
Context.

In addition, par(x) is explicitly defined for all x created
by the parenthesis derivation rule of Figure 4. For all other
nodes x 6= x0, par(x) is the same as par(x′), where x′ is
the parent of x in Xe, whereas par(x0) is empty.

Finally, down(x0) = e and down(x) is defined for all
x 6= x0 as follows:

down(x) =
{

rlocpath, if par(x′) is empty
intersect(rlocpath, par(x′)), otherwise

where x′ is the parent of x in Xe, and intersect is an
op(e1, e2), as in rule e in Definition 3.4, that returns the
intersection of the two nodesets produced by e1 and e2.

TheXe is constructed by starting from x0 and recursively
applying the derivation rules of T defined in Figures 3, 4,
and 5 to Context : e.

Note that rlocpath can be empty, in which case
T (rlocpath) does not get invoked hence terminating the

Figure 3. Location Step Derivation Rule

Figure 4. Parenthesis Derivation Rule

Figure 5. Disjunction Derivation Rule

construction of Xe. Predicates [ei] can be empty as well.
There is a node in Xe for each application of the grammar
rules other than locpath.

Let us walk through an example to see how the XPlainer
tree is constructed.

Example 3.6 Consider again query q1 from Example 2.1
evaluated in Context = / whose XPlainer tree Xq1 is
shown in Figure 1. We begin the XPlainer tree construction
by applying the context rule to the expression Context : q1.
This rule initializes Xq1 by creating the root node x0 with
here(x0) = Context, down(x0) = q1 and up(x0) =
∅. The construction continues by applying T (q1), which
will invoke T derivation rules recursively until rlocpath

is empty in all possible branches. The first rule that ap-
plies is that of location step (Figure 3) with no predicates.
The reason for that is that the entire expression matches
the head of the rule T (axis :: l[e1] . . . [em]/rlocpath),
with book matching axis :: l (Remember that book
is child :: book in the unabbreviated syntax) and
section/section[title = “Audience”]/following ::
section/figure matching rlocpath. Its application creates
then a new node 〈1〉 and sets its labeling functions as fol-
lows: up(〈1〉) = ∅, here(〈1〉) = book, and down(〈1〉) =
section/section[title = “Audience”]/following ::
section/figure.

The construction continues by calling T (rlocpath),
and the next rule that applies is again location step
with no predicates, this time matching section against
axis :: l and section[title = “Audience”]/following ::
section/figure against rlocpath. Its application cre-
ates a new node 〈2〉 with the following labeling func-
tions: up(〈2〉) = book, here(〈2〉) = section, and
down(〈2〉) = section[title = “Audience”]/following ::
section/figure.

Next, function T (rlocpath) is called again and the next
rule that applies is location step with predicate [title =
“Audience”]. At this point rlocpath = following ::
section/figure and a new expression node 〈3〉 is created
together with one predicate node 〈4〉 (its label is not shown
in Figure 1). Thus, the labeling functions for 〈3〉 and 〈4〉
are set as follows: up(〈3〉) = book/section, here(〈3〉) =
section[title = “Audience”], down(〈3〉) = following ::
section/figure, and here(〈4〉) = [title = “Audience”].

The construction continues for two more steps until
rlocpath is empty. At that point we get the complete
XPlainer tree as shown in the XPathTreeView of Figure 1.

The following example shows the XPlainer tree for a
more complex expression with nested parenthesized subex-
pressions.

Example 3.7 Let us consider now query q2 from Exam-
ple 2.3. For simplicity, we will replace the tag names
by their initials and we obtain the XPath expression
b/((s[1]/s)[2]|(s[3]/s)[4]/f])[5]/t. The XPlainer tree Xq2

of q2 is shown in Figure 6, where the edges in the Figure
are the edges in Edges and SubExpr = {x0, . . . , x15}.
In addition, the labels next to each node in the Fig-
ure (in colour and in black) are the definitions of the
here() function for each node: for instance, here(x2) =
((s[1]/s)[2]|(s[3]/s)[4]/f)[5] and here(x3) = [5].

3.3 The Semantics of Explanations

In this subsection we present the semantics of XPlainer,
which relies on the semantics of XPath. Our presentation is

Figure 6. XPlainer tree for expression q2

similar to the formalization given in [13]. The original for-
mulation of the denotational semantic functions has been
modified to better capture all the relevant constructs in the
standard. A significant addition to the rules is the proper
treatment of the interaction of parenthesis followed by pred-
icates (a language feature that was not formalized in [13]).

The semantics of XPlainer expressions are defined by
semantics functions E and L in Figure 7 and 8. Function
E defines the semantics of XPath expressions on a context
whereas function L defines the semantics of locations paths
on a node. The distinction between context-based and node-
based evaluation comes from the fact that some functions
like position() and last() need to be evaluated on a context
(they return the context position and the context size respec-
tively). The evaluation of location paths, on the other hand,
requires only the context node. The link between these two
semantics functions are rules (1), (9) and (6).

With functions E and L we are able to define a new func-
tion that provides the semantics of XPlainer expressions.
This visual explanation function returns precisely the inter-
mediate nodes corresponding to each step in the evaluation.

Definition 3.8 (Visual Explanation Function) Given an
XML tree T that is the input to an XPath expression query
e with XPlainer tree Xe evaluated on a context c, we define
a visual explanation function VT,c : SubExpr → 2Inst as

VT,c(x) := E [[up(x)/here(x)[down(x)]]](c)

In other words, the function VT,c(x) highlights the in-
termediate nodes in T (or the answer nodes of e when
down(x) is not defined) that correspond to x in Xe.

D[[locpath1| . . . |locpathm]](v) :=
⋃m

i=1 L[[locpathi]](v) (5)
L[[(locpath)[e1] . . . [em]]](v) := {w |w ∈ S ∧ S = D[[locpath]](v)

∧m
i=1(E [[ei]](w, posdoc(w,S), |S|) = true)} (6)

L[[locpath1/locpath2]](v) :=
⋃

w∈L[[locpath1]](v) L[[locpath2]](w) (7)

L[[/locpath]](v) := L[[locpath]](v0) (8)
L[[axis :: l[e1] . . . [em]]](v) := {w|w ∈ S ∧ S = {v′|〈v, v′〉 ∈ axis ∧ λ(v′) = l}∧m

i=1(E [[ei]](w, posaxis(w,S), |S|) = true)} (9)

Figure 8. Semantics of Location Paths

E [[locpath]](〈v, k, n〉) := D[[locpath]](v) (1)
E [[position()]](〈v, k, n〉) := k (2)
E [[last()]](〈v, k, n〉) := n (3)

E [[Op(e1, . . . , em)]](〈v, k, n〉) :=
F [[Op]](E [[e1]](〈v, k, n〉), . . . , E [[em]](〈v, k, n〉)) (4)

Figure 7. Semantics of XPath Expressions

It is important to note that the semantics given by the vi-
sual explanation function is not the only one we can define.
For instance, we may decide to return not just the interme-
diate nodes but also the entire subtrees rooted at them. This
is the alternative semantics provided by the visual* expla-
nation function defined next.

Definition 3.9 (Visual* Explanation Function) Given an
XML tree T that is the input to an XPath expression query e
with XPlainer tree Xe evaluated on a context c, we define a
visual * explanation function V ∗

T,c : SubExpr → 2Inst as

V ∗
T,c(x) :=

⋃
y∈SubTree

E [[up(y)/here(y)[down(y)]]](c)

where SubTree := {y | y belongs to the subtree of Xe

rooted at x }

The function V ∗
T,c(x) highlights the intermediate nodes

in T (or the answer nodes of e when down(x) is not de-
fined) that correspond to x and all nodes below x in Xe.
This is the semantics we use for explaining predicates (see
the nodes highlighted in green in the far right side of Figure
2).

Other semantics for XPlainer expressions are also possi-
ble. For instance, we may want to define a sub-document
explanation function which would return the sub-document
that contains all those intermediate nodes that contribute
to the original XPath result together with their ancestors.
This semantics is similar to that of XSquirrel [22] subtree

queries, with the difference that XPlainer includes nodes
that are not necessarily ancestors nor descendants of the an-
swer. For instance, consider again the explanation of query
q1 (Figure 1). The highlighted section with number 〈3〉 is
neither ancestor or descendant of the answer and therefore
would not be included in a subtree query by XSquirrel, but
it will appear in an XPlainer sub-document explanation.

3.4 Properties

Since there is one XPath expression per node in any
given XPlainer Tree, the number of expressions we need to
evaluate is |Q|, where |Q| is the size of the XPath query.
Gottlob et al. propose a polynomial-time algorithm for
XPath evaluation [13],which runs in time O(|D|5 × |Q|2),
where |D| denotes the size of the XML data. Therefore,
we obtain a bound on the complexity of obtaining the vi-
sual explanations proposed above that is also polynomial
(O(|D|5 × |Q|3) if it utilizes the polynomial-time XPath
evaluation algorithm in [13].

At this point it is important to step back and observe that
the notion of associating a node set with the syntactic ele-
ments of the XPath query contributes to the low complex-
ity. This approach is not necessarily the only way to at-
tempt to provide an explanation of the intermediate results
in an XPath expression. In fact, an initial prototype of the
XPlainer system simply collected the intermediate nodes in
nested sequences. This initial prototype suffered from eval-
uation time O(|D||Q|), since we could potentially have |Q|
nested node sets to carry around. Even the simple query on
the right-hand side of Figure 2 (where the OrderLine node
labeled by 〈2.1〉 and 〈3.2〉 matches multiple XPath subex-
pressions) is an example query that will cause this run time
behaviour. The semantics that we described earlier in this
section avoids this complexity blowup.

4 An XPlainer-based Tool

The goal of an XPlainer-based tool is to provide a con-
crete implementation for the visual explanation approach

described in the previous sections. The visual informa-
tion presented by the XPlainer language describes the cor-
respondence from the (parse) tree display of a query to the
query’s output and its explanation layered on a (document)
tree display of the input. This approach can be supported by
another quote from Edward Tufte’s work [23]:

Amongst the most powerful devices for reduc-
ing noise and enriching the content of displays is
the technique of layering and separation, visually
stratifying various aspects of the data.

Our XPlainer-based tool layers on top of the input XML
document annotations that explain the semantics of eval-
uating a given XPath query on the document. There is a
conscious decision to limit the highlighting to a minimal
use of color labels to distinguish the context, the selected
nodes (the result of the query), and the intermediate nodes
(the ones providing the explanation of the query result). In
addition, numerical labels describe the association between
XPath subexpressions and the intermediate nodes selected
by them.

The XPlainer-Eclipse tool (see also [16]) that we have
developed extends the XML and XPath development facili-
ties available in the Eclipse environment [1] with the ability
to support explanation queries. Eclipse is an open source
platform built by an open community of tool providers. A
large variety of both commercial and open source develop-
ment tools have been integrated within this environment.

While the most prominent programming language sup-
ported by Eclipse is Java (and indeed the framework itself
is implemented as an extensive Java library), tools have
been developed to support a variety of programming en-
vironments. Of interest to XPlainer-Eclipse are tools that
support XML-related development, since most of them sup-
port XPath as an embedded language. Several of these tools
have been incorporated within Eclipse, most notably around
the Web Tools Platform project (WTP) [2].

In particular, there is an XML editor in Eclipse WTP that
displays text and tree views of XML documents. XPlainer-
Eclipse is an Eclipse plugin that uses the WTP XML editor
to highlight the XPath path nodes and the XPath selected
nodes directly in the XML tree.

XPlainer-Eclipse has a number of additional interactive
features not covered through the examples in the paper (an
earlier version of the tool was presented at [11]). XPlainer-
Eclipse can explain how a predicate expression chooses a
particular set of XML nodes. When the user clicks on a
predicate node in the XPathTreeView, the XML nodes that
make the predicate expression true will be selected and col-
ored in green, as shown in the answer displayed in the far
right side of Figure 2. The same example also shows that
XPlainer-Eclipse selectively expands those nodes that are
highlighted in the XML editor, while leaving other nodes

collapsed. This effectively filters those portions of the
XML document that are irrelevant to the visual explana-
tion. XPlainer-Eclipse users can selectively collapse (sim-
ply by clicking) portions of the XPath expression to elimi-
nate constraints. This is useful when there are no answers to
a complete query, but then after collapsing subexpressions
(removing constrains) the modified query can be satisfied.

The XPlainer-Eclipse tool is implemented in Java. There
are two major components in the system, Core and UI, each
one of them consisting of several packages with over 50
Java classes in total.

The Core component is a Java application that can be
made available as a package independently of the Eclipse
environment. The Core component of XPlainer-Eclipse
consists of classes implementing the Xe tree data structure,
an XPath parser, the implementation of the visual explana-
tion function, and an XPath evaluator module. The Core
component supports two key functions. First, it provides
an implementation of the Xe tree and the VT,c function de-
scribed in the preceding section. Second, it manages the
invocation of an external XPath processor.

A very important property of XPlainer-Eclipse is that it
is not tied to a particular XPath implementation. Instead an
arbitrary XPath evaluator can be invoked through a standard
interface and used to evaluate the VT,c visual explanation
function. This is a critical engineering decision that allows
the XPlainer-Eclipse framework to be used to provide ex-
planations for different XPath engines. Beyond differences
in the capabilities of the implementations, the XPath lan-
guage itself has several areas where the semantics are im-
plementation defined. This effectively means that only the
original XPath engine can explain one of its own implemen-
tation defined features.

The main XPath engine utilized by XPlainer-Eclipse is
the default XPath engine used in the Java API for XML
Processing (JAXP) 1.3 [15], which is already included into
J2SE 5.0 (i.e., the Java standard edition). Also, note the
XPlainer-Eclipse Core components communicates with the
XPath engine using the DOM as the XML data model. This
module is fairly generic and can be extended to implement
other internal representations of the XML data model. The
UI component is developed as an Eclipse plugin.

5 Conclusions

This paper provides a description of XPlainer, a language
defined with the novel goal of assisting users to understand
and develop XPath expressions. XPlainer relies on visual
explanations that describe why an XPath expression returns
a sequence of selected nodes from an input XML docu-
ment. The explanation provided displays all the interme-
diate nodes that contribute to the result of the expression.

The main novelty and contribution of our proposal is the

formal definition of the semantics of the XPlainer language.
XPlainer uses visualizations as a mechanism to provide ex-
planations for the semantics of an existing query language.
While XPlainer specifically targets XPath (a significant and
increasingly popular query language), the concept of expla-
nation queries that assist developers to learn, understand,
use, and debug query expressions has validity beyond a spe-
cific target language.

The paper also describes an Eclipse-based tool imple-
menting XPlainer. The users of XPlainer-Eclipse can inter-
act with tree views of XPath expressions and input XML
documents. In the XML editor view, intermediate expres-
sion results are selectively highlighted, connecting these
nodes with the associated steps in the XPath expression.

A very important property of the XPlainer-Eclipse im-
plementation is that it does not re-implement an XPath-like
query processor. The tool relies on the semantic definition
of the XPlainer language in terms of XPath itself to evaluate
XPlainer queries by invoking an arbitrary (already existing)
XPath processor. While this approach to evaluate XPlainer
queries incurs obvious overhead, it has the crucial advan-
tage of been able to explain faithfully the evaluation of all
the features of any XPath processor invoked.

Finally, we bring attention to the fact that the visual-
ization of answers and intermediate results supported by
XPlainer can be used as a powerful sub-document filter-
ing mechanism. The semantics of the visual explanation
function provides an effective and concise filtering mech-
anism. A large subset of the nodes in the input document
can be identified by one compact XPath expression when
interpreted as an XPlainer expression (i.e., one that returns
a sub-document with not just the selected nodes, but all of
the intermediate nodes as well). When using the language
as a filter mechanism there is a clear motivation for devel-
oping XPlainer-specific optimization techniques.

Acknowledgments

Portions of this work were carried in collaboration with Dr. Bill
O’Farrell and Julie Waterhouse at the IBM Center For Advanced
Studies. We would also like to thank Dr. Arthur Ryman, Craig
Salter and Ella Belisario from the Eclipse WTP working group for
their technical support and invaluable suggestions, and the review-
ers for feedback. Financial support was provided by an Eclipse
Innovation Award, an IBM Center for Advanced Studies (CAS)
Fellowship, and the Natural Sciences and Engineering Research
Council (NSERC).

References

[1] Eclipse. http://www.eclipse.org/.
[2] Eclipse Web Tools Platform (WTP) Project.

http://www.eclipse.org/webtools/.
[3] Oxygen XML Editor. http://www.oxygenxml.com/.

[4] TopXML. http://www.topxml.com/xpathvisualizer.
[5] XML Spy. http://www.altova.com/.
[6] XPE. http://www.purpletech.com/xpe/index.jsp.
[7] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and

T. Milo. Dynamic XML documents with distribution and
replication. In SIGMOD ’03, pages 527–538, 2003.

[8] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By Exam-
ple): A visual interface to the standard XML query language.
ACM TODS, 30(2):398–443, 2005.

[9] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In ICDT ’2001, pages
316–330, 2001.

[10] M. Consens and A. Mendelzon. Hy+: a Hygraph-based
query and visualization system. In SIGMOD ’93, pages 511–
516, 1993.

[11] M. P. Consens, J. W. Liu, and B. O’Farrell. XPlainer:
An XPath debugging framework (demo), 2006.
http://icde06.cc.gatech.edu/prog-demo.html.

[12] Y. Cui and J. Widom. Practical lineage tracing in data ware-
houses. In ICDE ’2000, pages 367–378, 2000.

[13] G. Gottlob, C. Koch, and R. Pichler. XPath processing in a
nutshell. SIGMOD Record, 32(1):12–19, 2003.

[14] IBM. WebSphere Studio Application Developer
(WSAD) 5.1 XPath Expression. http://www-
306.ibm.com/software/awdtools/studioappdev/.

[15] JAXP. Java API for XML Processing (JAXP) 1.3.
http://java.sun.com/webservices/jaxp/index.jsp.

[16] F. R. John W. S. Liu, Mariano P. Consens. XPlainer: Explain-
ing XPath with Eclipse. In Eclipse Technology eXchange
(ETX) Workshop, 2006.

[17] N. Leghari. Visual XPath.
http://weblogs.asp.net/nleghari/articles/27951.aspx.

[18] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Don-
jerkovic, S. Lawande, J. Myllymaki, and K. Wenger. DE-
Vise: integrated querying and visual exploration of large
datasets. In SIGMOD ’97, pages 301–312, 1997.

[19] Logilab.org. Logilab - XPath Visualizer 1.0.
http://www.logilab.org/projects/xpathvis/1.0.

[20] G. Miklau and D. Suciu. XViz: A tool for visualizing XPath
expressions. In XSym 2003, pages 479–490, 2003.

[21] C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac,
M. Lin, M. Spalding, and M. Stonebraker. DataSplash. In
SIGMOD ’98, pages 550–552, 1998.

[22] A. Sahuguet and B. Alexe. Sub-document queries over XML
with XSQuirrel. In WWW ’05, pages 268–277, 2005.

[23] E. R. Tufte. Envisioning information. Graphics Press, CT,
USA, 1990.

[24] E. R. Tufte. Visual explanations: images and quantities, ev-
idence and narrative. Graphics Press, CT, USA, 1997.

[25] K. Vadaparty, Y. A. Aslandogan, and G. Ozsoyoglu. Towards
a unified visual database access. In SIGMOD ’93, pages
357–366, 1993.

[26] W3C. XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20, 2005.

[27] W3C. XQuery 1.0 and XPath 2.0 Functions and Operators,
2005. http://www.w3.org/TR/xpath-functions/.

[28] A. Woodruff and M. Stonebraker. Supporting fine-grained
data lineage in a database visualization environment. In
ICDE ’97, pages 91–102, 1997.

[29] M. Zloof. Query-by-example: A data base language. IBM
Syst. J., 16(4):324–343, 1977.

