
Exploiting MaxSAT for Preference-Based Planning

Farah Juma and Eric I. Hsu and Sheila A. McIlraith
Department of Computer Science

University of Toronto
{fjuma, eihsu, sheila}@cs.toronto.edu

Abstract

In this paper, we explore the application of partial weighted
MaxSAT techniques for preference-based planning (PBP). To
this end, we develop a compact partial weighted MaxSAT
encoding for PBP based on the SAS+ formalism. Our en-
coding extends a SAS+ based encoding for SAT-based plan-
ning, SASE, to allow for the specification of simple pref-
erences. To the best of our knowledge, the SAS+ formalism
has never been exploited in the context of PBP. Our MaxSAT-
based PBP planner, MSPLAN , significantly outperformed a
STRIPS-based MaxSAT approach for PBP with respect to
running time, solving more problems in a few cases. Interest-
ingly, when compared to SGPlan5 and HPLAN -P, two state-
of-the-art heuristic search planners for PBP, MSPLAN consis-
tently generated plans with comparable quality, slightly out-
performing at least one of these two planners in almost every
case. For some problems, MSPLAN was competitive with
HPLAN -P with respect to running time. Our results illustrate
the effectiveness of our SASE based encoding and suggests
that MaxSAT-based PBP is a promising area of research.

1. Introduction
Many real-world planning problems consist of both a set of
mandatory goals and an additional set of desirable plan prop-
erties. The degree of satisfaction of these desirable proper-
ties, or planpreferences, determines the quality of a plan.
Preference-based planning (PBP) (e.g., (Baier and McIlraith
2008)) extends the well-known classical planning problem
in order to generate plans that achieve problem goals while
maximizing the satisfaction of other preferred propertiesof
the plan. In so doing, they allow a planner to generate plans
of high quality, often under situations with conflicting pref-
erences.

PBP has been the subject of substantial research in re-
cent years. The 2006 International Planning Competition
(IPC-2006) initiated a track on this topic which resulted in
the extension of the standardized Planning Domain Descrip-
tion Language (PDDL) to support the specification of pref-
erences (Gerevini et al. 2009). In PDDL3, desirable proper-
ties of a plan are expressed as preference formulae. These
formulae may describe properties of the final state as well
as properties that hold over intermediate states visited dur-
ing plan execution. The relative importance associated with
not violating these preference formulae is reflected in a met-
ric function, a weighted linear combination of preferences

whose violation is minimized by the planner. At IPC-2008,
this family of planning problems was extended to include
action costs. The objective of these so-callednet benefit
problems is to maximize the sum of the utilities of the goals
and preferences that have been achieved, minus total costs.
Action costs can be incorporated into our partial weighted
MaxSAT-based PBP approach and it is something that we
are exploring, but do not address it in this paper.

To date, the most effective techniques for PBP have been
based on heuristic search (e.g.,YochanPS (Benton, Kamb-
hampati, and Do 2006), SGPlan5 (Hsu et al. 2007), and
HPLAN -P (Baier, Bacchus, and McIlraith 2009)). There
have also been several planners that have used SAT, CSP,
or Answer Set solvers (e.g.,SATPLAN(P) (Giunchiglia and
Maratea 2007), PREFPLAN (Brafman and Chernyavsky
2005), CPP (Tu, Son, and Pontelli 2007)). Most recently,
Giunchiglia and Maratea (2010) explored a partial weighted
MaxSAT-based approach to solving PBP problems by modi-
fying a version of SATPLAN (Kautz 2006). For the purposes
of this paper, we refer to this as GM. While all of these lat-
ter systems show promise, performance has generally been
inferior to heuristic search.

In this paper, we characterize the problem of computing
preference-based plans as a partial weighted MaxSAT prob-
lem. A major focus of our work is on how to construct an
effective encoding. To this end, we propose a SAS+ based
(Bäckstr̈om and Nebel 1995) encoding of PBP as MaxSAT
that is both compact and correct. Our encoding builds on
the success of Huang, Chen, and Zhang (2010)’s SASE,
a SAS+ based encoding recently developed for SAT-based
planning. To the best of our knowledge, the SAS+ formal-
ism has never been used in the context of PBP despite its
effectiveness in classical planning. Exploiting our character-
ization of PBP as a partial weighted MaxSAT problem, we
develop a system called MSPLAN that employs our SASE
based encoding.

We experimentally evaluated our system by comparing it
to Giunchiglia and Maratea’s GM onSimple Preferences
problems from IPC-2006. MSPLAN consistently outper-
formed GM with respect to running time, in some cases
by an order of magnitude, solving some problems that GM
could not solve. In all cases, plan quality was comparable.
We also compared the performance of MSPLAN , run with
two different MaxSAT solvers, to state-of-the-art heuris-



tic search planners for PBP. MSPLAN generated plans of
comparable plan quality, sometimes slightly out- or under-
performing the best of the heuristic search planners we em-
ployed. However, consistent with our expectations, MS-
PLAN was not able to solve as many problems as the heuris-
tic search planners. While in some instances, one of the MS-
PLAN systems significantly outperformed HPLAN -P with
respect to running time, the heuristic search planners were
generally faster. Analysis showed that a significant part of
MSPLAN ’s running time was attributed to the incremental
construction of makespans, rather than the search for a so-
lution. Given the consistent quality of MSPLAN solutions,
consistent superior performance to GM, and the variability
in the performance of all of these systems, we deem our
SASE based encoding to be effective compared to a STRIPS
encoding, and the use of MaxSAT and SAS+ encodings for
PBP to be promising areas of research.

2. PBP as Partial Weighted MaxSAT
In this section, we overview the correspondence between
PBP and partial weighted MaxSAT. For the purposes of this
paper, we restrict our attention to simple preferences – pref-
erences over properties of the final state of the plan.
Definition 1 (Planning domain) Let X be a set of state
variables. A planning domain is a tupleD = (S,A, γ),
where S is the set of all possible states; A is the set of ac-
tions; andγ is the transition function. A states ∈ S is a set
of assignments to all of the variables inX. An actiona ∈ A
is described by a tuple(pre(a),eff(a)), which denotes the
action’s preconditions and effects. A transitionγ(s, a) mod-
ifies the values of the state variables mentioned ineff(a).
Definition 2 (Simple PBP problem) A simple PBP prob-
lem is a tupleP = (D, sI , sG,Pref,W ), whereD =
(S,A, γ) is the planning domain;sI ∈ S is the (complete)
initial state;sG represents the goal and is a partial set of as-
signments to the state variables; andPref, the preferences, is
a partial set of assignments to the state variables. Optionally,
each element inPref may have a positive weight associated
with it, W : Pref → R≥0, to capture the relative importance
of preferences.
We now define the partial weighted MaxSAT problem. Letφ
denote a CNF propositional formula over a setV of boolean
variables and let{C1, . . . , Cm} denote the clauses ofφ.
Definition 3 (MaxSAT and (Partial) Weighted MaxSAT)
The MaxSAT problemis to find an assignment of values
for V that maximizes the number of satisfied clauses inφ.
Given a weightwi for each clauseCi in φ, the weighted
MaxSAT problemis to find an assignment of values forV
that maximizes the total weight of the satisfied clauses in
φ. When some clauses inφ are designated ashard clauses
and other clauses inφ are designated assoft clauses and
we are given a weightwi for eachsoft clauseCi in φ, the
partial weighted MaxSAT problemis to find an assignment
of values forV that satisfies all of the designatedhard
clauses inφ and maximizes the total weight of the satisfied
softclauses inφ.

If Pref, the preferences in a simple PBP problem, are en-
coded as soft clauses, andsI , sG, andD are encoded as

hard clauses, and weights drawn fromW are assigned to the
soft clauses to indicate the relative importance of the pref-
erences, then from Definition 3, it follows that finding a so-
lution to the resulting partial weighted MaxSAT problem is
equivalent to finding a plan for the original PBP problem
that achieves all of the hard constraints while maximizing
the weight of the satisfied preferences. How we actually
encode these clauses is a challenge and is one of the contri-
butions of this paper.

3. Preference-Based Planning
3.1 A SAS+ Based Encoding
The SAS+ formalism (B̈ackstr̈om and Nebel 1995) has been
increasingly exploited in the context ofclassicalplanning.
Unlike a STRIPS-based encoding, which consists of actions
and facts and represents a state using a set of facts, a SAS+

based encoding consists of transitions and multi-valued state
variables and represents a state using a set of assignments to
all of the state variables. A transition represents a change
in the value of a state variable. For example, consider a
transportation domain in which trucks can move packages
between locations with certain restrictions. To represent
the possible locations of a truck, a STRIPS-based encod-
ing might include a fact for each such location (e.g.,(at
truck1 loc1), (at truck1 loc2)). On the other hand, a
SAS+ based encoding might include a state variabletruck1
whose domain consists of all of the possible truck locations.
Moving truck1 from loc1 to loc2 would be represented
by an action in a STRIPS-based encoding. However, in a
SAS+ based encoding, this would be represented by a transi-
tion that changes the value of the state variabletruck1 from
loc1 to loc2. In general, an action might result in changes
in the values of multiple state variables. In a SAS+ based
encoding, this would be represented by multiple transitions.
Because the number of transitions in an encoding based on
the SAS+ formalism is normally much less than the number
of actions in a STRIPS-based encoding, the search space in a
transition-based encoding is smaller than the search spacein
an action-based encoding (Huang, Chen, and Zhang 2010).
The compactness of the SAS+ formalism along with the rich
structural information that can be derived from it are the ma-
jor advantages of this formalism. As demonstrated by its use
in (Helmert 2006), many state-of-the-art planners have been
adopting SAS+ based encodings.

The major limitation of previous STRIPS-based SAT en-
codings for classical planning problems has been the large
number of clauses that are produced. The SAS+ formal-
ism was recently used for the first time in the context of a
SAT-based classical planning approach with an impressive
reduction in the size of the SAT encoding (Huang, Chen,
and Zhang 2010). However, to the best of our knowledge,
the SAS+ formalism has never been used in the context of
PBP despite its effectiveness in classical planning. We ex-
plore this here.

Translating PBP Problems to SAS+ We consider PBP
problems from theSimple Preferencestrack of IPC-2006.
STRIPS problems can be compiled into the SAS+ represen-
tation using the parser created for the Fast Downward plan-



ner (Helmert 2006). Since IPC-2006Simple Preferences
problems are non-STRIPS problems, we first need to com-
pile them into STRIPS problems. We do so using the com-
pilation technique developed in (Giunchiglia and Maratea
2010). The compilation proceeds as follows. For each sim-
ple preference, a so-calleddummyaction is created. The
precondition of this dummy action is the simple preference
itself and the effect of this action is adummyliteral that rep-
resents the simple preference. This dummy literal is then
added to the definition of the goal for the problem instance
and the definition of the simple preference is then removed
from the problem. The execution of a dummy action indi-
cates that the corresponding simple preference has been sat-
isfied. For example, consider the following preference that
is expressed in PDDL3:

(preference time
(or (delivered pck1 loc3 t1)

(delivered pck1 loc3 t2)))

Thetime preference specifies thatpck1 should be delivered
to loc3 att1 or t2. The compilation technique replaces this
preference with the following dummy action:

(:action dummy-time
:parameters ()
:precondition (or (delivered pck1 loc3 t1)

(delivered pck1 loc3 t2))
:effect (dummy-goal-time))

The literaldummy-goal-time represents the satisfaction of
thetime preference. After introducing dummy actions for
each simple preference, the resulting problems are compiled
into STRIPS using Gerevini and Serina’s ADL2STRIPS
tool. Note that we must also maintain the information about
which goals in the resulting STRIPS problems correspond
to simple preferences. These STRIPS problems can then be
translated into the SAS+ formalism.

After translating these STRIPS problems into SAS+,
there is a SAS+ goal variable that corresponds to each
dummy literal (i.e., simple preference). We will refer to
these SAS+ variables as preference variables. We will use
sP to denote the set of desired assignments to preference
variables in the final state. As such,sP (x) = p indicates that
in the final state, the desired value of the preference variable
x is p.

Encoding the Clauses To encode a SAS+ based PBP
problem as a partial weighted MaxSAT problem, we mod-
ify the SAS+ based SAT encoding, SASE, first proposed in
(Huang, Chen, and Zhang 2010). SASE is made up of tran-
sition variablesU , action variablesV , and eight classes of
clauses. We show these classes of clauses below. Note that
N denotes the number of time steps in the plan,τ(x) de-
notes the set of possible transitions forx, M(a) denotes the
transition set of actiona, R is the set of all prevailing transi-
tions,δf→f ′ represents a change in the value ofx from f to
f ′, Ux,f,f ′,t is a transition variable that indicates that vari-
ablex changes from the value off to a value off ′ at time
stept, andVa,t is an action variable that indicates that the
actiona is executed at timet.

1. Initial state -(∀x, sI(x) = f):
∨

∀δf→g∈τ(x) Ux,f,g,1

2. Goal -(∀x, sG(x) = g):
∨

∀δf→g∈τ(x) Ux,f,g,N

3. Transition’s progression -(∀δxf→g ∈ τ andt ∈ [2, N ]):
Ux,f,g,t →

∨

∀δx
f′

→f
∈τ(x)

Ux,f ′,f,t−1

4. Transition mutex -(∀δ1∀δ2 such thatδ1 andδ2 are transi-
tion mutex):Uδ1,t → ¬Uδ2,t

5. Existence of transitions -(∀x ∈ X):
∨

∀δ∈τ(x)

Uδ,t

6. Composition of actions -(∀a ∈ O): Va,t →
∧

∀δ∈M(a)

Uδ,t

7. Action’s existence -(∀δ ∈ τ\R): Uδ,t →
∨

∀a,δ∈M(a)

Va,t

8. Non-interference of actions -(∀a1∀a2 such that∃δ, δ ∈
T (a1) ∩ T (a2) andδ 6∈ R) : Va1,t → ¬Va2,t

These clauses encode the initial state, the goal state, the
transitions that are allowed to occur at various time steps,
the relationship between transitions and actions, and the fact
that mutually exclusive actions cannot be executed simulta-
neously. After finding a sequence of transitions that achieves
the goal, from the initial state, a corresponding action plan
is found.

The key challenge is determining how to encode the pref-
erences. We modify SASE to handle preference variables
(i.e., variables that we wouldlike to achieve a certain value
in the final state) in addition to goal variables (i.e., variables
that mustachieve a certain value in the final state). To this
end, we create a new class of clauses that represents the pref-
erences. Specifically, for each preference variablex, we cre-
ate a clause that is the disjunction of all transitions which
result in the desired value forx in the final state. Using the
notation described above, this new class of clauses can be
defined as follows:

Preferences -(∀x, sP (x) = p):
∨

∀δf→p∈τ(x) Ux,f,p,N

It is important to note that once a dummy action is ex-
ecuted, the dummy goal literal it produces persists indefi-
nitely, i.e., no action deletes a dummy goal literal. Because
the execution of a dummy action is meant to indicate that a
simple preference is satisfied in thefinal state of the plan, we
must ensure that once a dummy action has been executed,
no other action that can invalidate the precondition of this
dummy action can occur after it. As such, we restrict the
execution of dummy actions, denoted byOdummy, to the
final time step of the plan by only defining dummy action
variables that correspond to this time step, i.e.,

Dummy action variables -Va,N , ∀a ∈ Odummy

Because preference variables do not necessarily have to
achieve their desired value in the final state, unlike hard goal
variables, we treat all preference clauses as soft clauses.We
treat the clauses that encode the initial state, goal state,and
the planning domain, as hard clauses.

Weighting the Clauses We assign weights to all of the
soft clauses using the PDDL3 metric function. This metric
function is a linear function defined over simple preferences
and is used to determine the quality of a plan. An example of



a PDDL3 metric function over two preferences namedtime
andloc is shown below:

(:metric minimize(+
(* 10 (is-violated time))
(* 5 (is-violated loc))))

Note that theis-violated function returns 1 if the pref-
erence with the given name does not hold in the final state
of the plan and returns 0 otherwise. This metric function
indicates that satisfying thetime preference is twice as im-
portant as satisfying theloc preference. An IPC-2006Sim-
ple Preferencestask can thus be viewed as the problem of
finding a plan that satisfies all of the hard goals while mini-
mizing the total weight of the preferences that are not satis-
fied (i.e., the task is to minimize the metric function). Since
each simple preference is represented by one soft clause in
our encoding, we assign a weight to this soft clause based on
the weight assigned to this preference in the PDDL3 metric
function from the original IPC-2006 problem instance. A
similar approach was used to weight clauses in (Giunchiglia
and Maratea 2010).

3.2 Planning with MaxSAT
With our SAS+ based partial weighted MaxSAT encoding
for PBP in hand, the next step is to determine how to find
a plan using such an encoding. As in SAT-based planning,
an incremental construction of makespans is required, i.e.,
for a specific valuen for the makespan (the number of time
steps in the plan), we must encode a given PBP problem into
our SAS+ based partial weighted MaxSAT encoding with a
makespan ofn, attempt to solve the problem using a partial
weighted MaxSAT solver, and continue on in this manner,
trying increasing values ofn, until a solution is found. How-
ever, determining when a solution is found is not trivial, as
discussed in the next subsection.

Stopping Conditions Because the task of PBP involves
finding a high-quality plan, and not just a plan with the
minimum number of time steps (as in SAT-based planning),
determining when to stop trying increasing values for the
makespan is more difficult. One possibility we consider is
to stop trying increasing values for the makespan after the
first satisfiable partial weighted MaxSAT formula is found.
The solution to this formula corresponds to a plan with op-
timal makespan and optimal plan quality for that particular
makespan. However, this plan is not guaranteed to be glob-
ally optimal. Consequently, there could still be a plan witha
larger number of time steps but with better plan quality. We
also consider the case where a time limit is given and an in-
cremental construction of makespans is carried out until the
allotted time expires, at which point the plan returned is the
plan with the best quality that was found during the given
amount of time. We will refer to this algorithm as the BEST
algorithm.

Properties of the Plan We can show that for any fixed
makespan, our approach is guaranteed to return a solu-
tion with optimal plan quality with respect to that particu-
lar makespan and furthermore, we can show that when re-
stricted to plans with makespan bounded byk, our approach
is guaranteed to return a solution that isk-optimal.

Lemma 1 For any fixed makespann, the solution to the
partial weighted MaxSAT problem encoded with makespan
n yields a plan with optimal quality with respect to the set of
all plans with makespann, if such a plan exists.

Proof: Follows directly from the definition of the partial
weighted MaxSAT problem (Definition 3). �

From Lemma 1, we can conclude that any planP that is
returned by our approach has optimal quality with respect to
the set of all plans with the same makespan asP .

In certain cases, we may want to restrict our attention to
plans with a makespan that is bounded by some value.
Definition 4 (k-Optimality) We can say that a partial
weighted MaxSAT-based PBP algorithm isk-optimal if it is
always able to find a plan that is optimal, in terms of quality,
with respect to the set of all plans with makespani ≤ k.
Theorem 1 If the search is restricted to plans with
makespan bounded byk and theBESTalgorithm is run long
enough for the PBP problem to be encoded into a partial
weighted MaxSAT formula using each makespani ≤ k, then
theBEST algorithm is k-optimal.

Proof: For each makespani ≤ k, the PBP problem will
be encoded into a partial weighted MaxSAT formula with
makespani and if a solution to this formula is found, the
quality of the resulting plan will be determined. From
Lemma 1, each such plan will have optimal quality with re-
spect to the set of all plans with makespani. Now, the result
follows since the BEST algorithm returns the plan with the
best quality among the plans that were found. �

4. Implementation and Evaluation
We implemented our planner, MSPLAN , by extending the
SASE planner. In order to compare the performance of
MSPLAN to GM, we tried two of the partial weighted
MaxSAT solvers which GM was evaluated with, namely,
MiniMaxSAT v1.0 (Heras, Larrosa, and Oliveras 2007) and
SAT4J v2.1 (Berre and Parrain 2010). We also attempted
a comparison using MSUncore (Marques-Silva 2009), an-
other partial weighted MaxSAT solver, but were unable to
get a version of the system from the developers that would
run on our hardware.

Most partial weighted MaxSAT solvers do not allow real-
valued weights to be assigned to clauses but the PDDL3
metric function does allow for real-valued weights to be as-
signed to preferences. Thus, we must multiply real-valued
weights in our encoding by an appropriate power of 10 in
order to remove decimals from the weights. Additionally,
many partial weighted MaxSAT solvers require a special
weight to be specified for hard clauses in addition to weights
for soft clauses. Following the convention used to specify
this special weight, we assign a weight to each hard clause
that exceeds the sum of the weights of all of the soft clauses.

Our evaluation of MSPLAN was motivated by two ob-
jectives. Specifically, we wanted to: (1) compare the per-
formance of our planner to a previous partial weighted
MaxSAT-based approach; and (2) compare our planner to
state-of-the-art heuristic search planners for PBP. In doing
so, we also hoped to gain some insight into the impact of the



underlying MaxSAT partial weighted MaxSAT solver on the
performance of MSPLAN .

To support comparison with GM, the domains we eval-
uated were limited to those used in (Maratea 2010). Four
domains from the IPC-2006Simple Preferencestrack were
used in our evaluation:trucks, storage, pathways, andopen-
stacks. The trucks and openstacks domains contain both
simple preferences and hard goals. However, thepathways
andstorage domains contain only simple preferences and it
is generally not possible to satisfy all of these preferences.
MSPLAN requires STRIPS-encodings of these problem in-
stances as input. Since such encodings were also used in
(Maratea 2010), we were able to obtain the problems from
theSimple Preferencestrack which Giunchiglia and Maratea
have been able to compile into STRIPS. Thetrucks andstor-
age domains consist of 7 problems, thepathways domain
consists of 20 problems, and theopenstacks domain con-
sists of 1 problem.

We compared the performance of MSPLAN to GM. GM
uses a STRIPS-based partial weighted MaxSAT encoding
as opposed to a SAS+ based encoding. We also compared
the performance of MSPLAN to that of the top heuristic
search planners for PBP from IPC-2006, namely, SGPlan5

(Hsu et al. 2007) and HPLAN -P (Baier, Bacchus, and McIl-
raith 2009). SGPlan5 was the winner of all of the IPC-2006
Simple Preferencestracks. HPLAN -P did not formally com-
pete in this track and came in 2nd place in theQualitative
Preferencestrack. Nevertheless, experiments performed in
(Baier, Bacchus, and McIlraith 2009) show that HPLAN -P
would have outperformed all entrants in theSimple Prefer-
encestrack, other than SGPlan5.

All of our experiments were performed on an AMD
Opteron 1GHz processor. The memory usage in our exper-
iments did not exceed 1GB. We ran our experiments with
a timeout of 60 minutes. We were not able to obtain a
copy of GM. As such, the results for these experiments are
taken from (Maratea 2010). Different machines have thus
been used in our comparison. In (Maratea 2010), experi-
ments were performed on a Pentium IV 3.2GHz processor
with 1GB of RAM, a faster machine than ours. Note that
(Maratea 2010) gives only the time required for different
partial weighted MaxSAT solvers to find a solution to the
first satisfiable partial weighted MaxSAT formula. The to-
tal amount of time required to find a solution plan does not
appear in (Maratea 2010).

Table 1 shows the performance of MSPLAN compared to
GM when evaluating the time required for the solver to find
a solution to the first satisfiable partial weighted MaxSAT
formula when using MiniMaxSAT v1.0 and SAT4J v2.1 as
the underlying solvers. The results show that for all prob-
lem instances in thetrucks andstorage domains which could
be solved using both GM and MSPLAN , the time required
to find a solution to the first satisfiable partial weighted
MaxSAT formula was less, by an order of magnitude in
many cases, when using MSPLAN than when using GM,
regardless of the solver used. The value of the plan qual-
ity metric does not appear in (Maratea 2010) and we were
unable to obtain the corresponding quality values from the
authors. However, from a different encoding given to us by

the authors, we were able to generate an upper bound on
the quality values. This information indicated that the plan
quality was comparable in all cases. This information also
indicated that the number of clauses in our encoding was of-
ten significantly smaller, by a large constant factor. While
this comparison is not precise, it is the best that could be
done with the available data and gives an indication of the
positive properties of our approach. There were problems in
both thetrucks andstorage domains which could be solved
by MSPLAN with a particular solver but could not be solved
by GM when using the same solver. In fact, MSPLAN was
able to optimally solve three problems in thetrucks domain
which GM could not solve using any of the partial weighted
MaxSAT solvers evaluated in (Maratea 2010). Neither MS-
PLAN nor GM could generate a plan for the one problem
instance in theopenstacks domain. Finally, we were not
able to do a direct comparison between these two planners
for thepathways domain because we were not able to obtain
information about the running time of GM on these prob-
lems.

MiniMaxSAT SAT4J
Instance GM MSPLAN GM MSPLAN
trucks1 7.7 1.18 359.17 1.95
trucks2 308.92 44.803 - 24.868
trucks3 - 89.15* - 446.578*
trucks4 - 128.904* - -
trucks5 - 652.877* - -
trucks6 - - - -
trucks7 - - - -
storage1 0.21 0.008 0.32 0.171
storage2 0.44 0.032 0.65 0.21
storage3 0.59 0.032 1.45 0.503
storage4 0.71 0.084 2.8 0.667
storage5 58.79 13.721 16.35 1.228
storage6 - 43.059 70.6 2.564
storage7 - - 365.53 6.232

Table 1: Performance of MSPLAN compared to GM. Entries indicate
the time required by MiniMaxSAT and SAT4J to find a solution to the
first satisfiable partial weighted MaxSAT formula, in seconds. Dash
entries indicate that the problem could not be solved during the given
time. Starred entries indicate that the plan generated was optimal in
terms of quality.

Table 2 shows the performance of MSPLAN compared to
the two top heuristic search PBP planners from IPC-2006.
In this set of experiments, we ran MSPLAN with the BEST
algorithm that was described in Section 3.2, i.e., the plan re-
turned by MSPLAN was the highest quality plan found dur-
ing a 60 minute period. We evaluated the total running time
of all three planners and the quality of the plans found. The
results show that for all but one of the problems that all three
planners were able to solve, the quality of the plan generated
by MSPLAN was equal to or was superior to the quality of
the plan returned by at least one of SGPlan5 and HPLAN -
P, regardless of the partial weighted MaxSAT solver that
was used. As expected, SGPlan5 generated plans signifi-
cantly faster than MSPLAN in all cases. However, MSPLAN
solved some problems more quickly than HPLAN -P, while
returning a plan of equal or better quality.

The significance of the SGPlan5 comparison needs to be
evaluated carefully. SGPlan has been shown to have in-



consistent performance on domains, depending on the en-
coding (Haslum 2007). Further, the version of SGPlan
that participated in IPC-2008 was hand-tuned to the IPC
problem encodings1 and it is believed that previous ver-
sions of SGPlan were similarly hand-tuned. If this is the
case, then the comparison between MSPLAN and SGPlan5
is best interpreted as a comparison between a domain-
independent MaxSAT-based preference-based planner and
a manually domain-tuned heuristic search preference-based
planner, and the generally (but not universally) superior
performance of the manually domain-tuned system is to
be expected. As such, a more reliable comparison is be-
tween MSPLAN and HPLAN -P since this heuristic search
preference-based planner outperformed all other IPC-2006
Simple Preferences track competitors (Baier, Bacchus, and
McIlraith 2009). Our comparison shows that MSPLAN
is competitive with HPLAN -P (what we believe to be the
top domain-independent heuristic search preference-based
planner). We are currently undertaking a comparison with
LAMA (Richter, Helmert, and Westphal 2008), a cost-
optimal planner, by exploiting a translation of soft goals into
action costs (Keyder and Geffner 2009).

As in SAT-based planning, a bottleneck in partial
weighted MaxSAT-based planning appears to be the itera-
tion required to determine the makespan for the solution.
In our experiments, we encoded the problem using each
possible makespan until the plan with the best quality was
found. This is clearly a worst-case scenario. Many SAT-
based planners first generate an estimate for the appropriate
makespan and use this as a starting point for incremental
search. As seen in Table 2, the time required for MSPLAN
to generate a plan when given, by an oracle, the makespan
that yields the plan with the best quality was typically much
smaller than the time required by MSPLAN to generate a
plan when this makespan was not knowna priori. If an in-
cremental approach could be created, whereby the partial
weighted MaxSAT encoding of a problem with makespank
is extended, instead of being encoded from scratch, in or-
der to generate the partial weighted MaxSAT encoding with
makespank + 1, the running time of MSPLAN could likely
be improved. A similar incremental approach has recently
been investigated in the context of compiling PDDL plan-
ning problems into answer set programs (Knecht 2009).

Our planner appeared to be sensitive to the underlying
MaxSAT solver. With MiniMaxSAT, MSPLAN was able
to solve 12 of the 20 problems in thepathways domain
but when SAT4J was used instead, 17 of the 20 prob-
lems were solved. Most of thepathways problem instances
which could not be solved by MiniMaxSAT had a relatively
large number of simple preferences (usually between 35 to
50 simple preferences). Since partial weighted MaxSAT
solvers are believed to be very sensitive to the ratio of soft
constraints versus hard constraints (Ansótegui, Bonet, and
Levy 2009), the relatively larger proportion of soft con-

1See for example the functionsearch ops modal in the
file Parser/inst utils.c in the SGPlan code located at
http://ipc.informatik.uni-freiburg.de/Planners
which contains hand-tuning for IPC domains.

straints in these problems might explain the superior perfor-
mance of SAT4J in thepathways domain. In contrast to the
branch-and-bound framework of MiniMaxSAT, SAT4J for-
goes the overhead of attempting to prune the search space
by computing lower bounds. This decision pays off on un-
derconstrained problems where such prunings are unlikely
to trigger.

5. Concluding Remarks

In this paper, we characterized the PBP problem as a partial
weighted MaxSAT problem. We developed a compact en-
coding of PBP as partial weighted MaxSAT by building on
the success of a SAS+ based SAT encoding. To the best of
our knowledge, this is the first time that the SAS+ formalism
has been used in the context of PBP. Our experimental eval-
uation showed that our MSPLAN system (with our SAS+

encoding), consistently outperformed an existing MaxSAT-
based planner (with a STRIPS encoding) with respect to
running time, while generating plans of comparable quality.
Remarkably, when run with two different MaxSAT solvers,
MSPLAN generated plans with comparable quality to those
generated by state-of-the-art heuristic search planners for
PBP. Although the heuristic search planners were generally
faster, there were problem instances for which at least one
of the two MSPLAN systems ran significantly faster than
HPLAN -P. The impressive performance of MSPLAN serves
to illustrate the effectiveness of our SAS+ encoding and sug-
gests that both MaxSAT and SAS+ encodings for PBP are
worthy areas of continued exploration.

In this paper, we focused on simple preferences to sup-
port comparison with GM. Following the compilation tech-
nique described in (Baier and McIlraith 2006), it is possible
to translate the full suite of PDDL3 qualitative preferences,
including temporally extended preferences, into simple pref-
erences. It is also possible to extend our work to net benefit
problems by creating negated unary clauses that represent
that an action is not executed at a particular time step and
associating the satisfaction of these clauses with a weight
corresponding to an action’s cost. These are topics of cur-
rent investigation. A current limitation of MSPLAN is that
it is k-optimal rather than optimal. (SGPlan5 is neither op-
timal nork-optimal whereas HPLAN -P has the capacity to
bek-optimal with respect to plan length and optimal if run
to completion with certain restrictions on metric functions
(Baier and McIlraith 2008).) Optimality may be achievable
with a MaxSAT-based approach by exploiting a translation
of soft goals into action costs (Keyder and Geffner 2009) and
a cost-optimal planner based on partial weighted MaxSAT
(e.g., (Robinson et al. 2010)).

Acknowledgements

We thank Enrico Giunchiglia and Marco Maratea for provid-
ing us with their STRIPS-encodings of the IPC-2006Simple
Preferencesproblems. We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), the Ontario Ministry of Innovation,
and MITACS.



Instance MSPLAN : MiniMaxSAT MSPLAN : SAT4J HPLAN -P SGPlan5
Time (s) Time (s)

Soln Oracle Total M Soln Oracle Total M Time (s) M Time (s) M
trucks1 2.16 5.08 14.01 0 1.78 5.18 21.22 0 5.58 0 0.01 1
trucks2 36.51 41.3 165.91 0 36.04 37.66 173.63 0 92.28 0 0.04 0
trucks3 89.15 111.54 304.1 0 527.21 553.62 861.07 0 660.1 0 0.05 0
trucks4 128.9 426.26 596.18 0 - - - - 563.93 3 0.08 0
trucks5 652.88 675.59 2553.01 0 - - - - 1015.36 0 0.13 0
trucks6 - - - - - - - - - - 0.27 0
trucks7 - - - - - - - - - - 0.63 8
storage1 0.01 1.31 1.66 3 0.17 2.15 2.37 3 0.07 3 0.0 8
storage2 4.9 27.62 34.18 5 4.3 27.15 43.58 5 2.93 5 0.01 16
storage3 708.84 730.15 1192.33 18 1061.36 1083.39 2769.18 7 38.06 6 0.03 41
storage4 23.71 34.51 47.34 38 532.2 637.1 1063.3 24 183.37 9 0.06 49
storage5 70.08 123.29 214.77 107 677.02 705.96 937.9 76 76.57 94 0.13 136
storage6 43.06 71.49 73.19 173 1573.75 1605.23 1978.41 150 459.93 141 0.22 189
storage7 - - - - 127.5 168.81 183.76 277 1280.43 160 0.32 242
pathways1 0.05 1.48 1.6 2 0.18 2.56 3.09 2 3.88 2 0.01 2
pathways2 0.07 0.99 1.29 3 0.46 1.99 3.34 3 186.34 4 0.0 3
pathways3 0.36 3.12 4.95 3 0.59 5.0 7.42 3 115.6 3.7 0.03 3
pathways4 0.36 5.33 5.85 2 0.78 6.25 8.66 2 324.82 2 0.03 2
pathways5 6.47 36.59 45.26 6 2.08 35.39 42.73 6 413.42 9 0.14 6.5
pathways6 434.02 797.73 1468.57 6.4 114.92 103.81 296.1 6.4 0.04 12.9 1.92 7
pathways7 1251.16 1466.24 1710.57 11.5 1378.79 1406.88 2325.46 10.3 0.05 12.5 1.93 10.4
pathways8 201.349 229.51 823.23 18.2 993.28 1020.99 1370.69 18 0.05 20.2 0.92 12.9
pathways9 - - - - 2.33 31.50 32.31 15.7 0.07 15.7 1.4 10.6
pathways10 1182.02 1209.2 1744.95 12.9 775.77 803.84 1692.19 10.1 0.06 16.8 10.94 13.4
pathways11 5.56 32.88 37.85 11.8 1302.28 1332.93 2062.62 9.6 0.0 12.5 2.27 9
pathways12 37.29 47.72 62.02 18.8 2.81 28.77 29.88 18.8 0.04 18.8 14.93 15.4
pathways13 - - - - - - - - 0.03 22 12.6 16
pathways14 55.28 62.81 80.5 20.7 942.9 1008.96 1092.89 20 0.03 20.7 7.15 15.6
pathways15 - - - - - - - - 0.06 20.9 0.57 14.5
pathways16 - - - - 660.60 693.78 1060.91 25.7 0.11 25.7 18.4 18.5
pathways17 - - - - 582.82 603.99 615.12 22.3 0.1 22.3 41.94 20.3
pathways18 - - - - 2.26 30.35 30.75 22.8 0.1 22.8 27.68 20
pathways19 - - - - - - - - 0.05 26.5 41.24 22
pathways20 - - - - 8.31 40.08 41.64 24.7 0.08 24.7 6.53 15
openstacks1 - - - - - - - - 128.14 6 0.13 13

Table 2: Performance of MSPLAN when run with the BEST algorithm compared to the top PBP heuristic search planners from IPC-2006.
LetB be the makespan that results in the plan with the best quality within the time limit. Soln denotes the time required for MiniMaxSAT and
SAT4J to find a solution to the partial weighted MaxSAT formula with makespanB. This includes only the solver time to find the solution to
the formula. Oracle denotes the total running time of MSPLAN when given,a priori, the best makespanB. This time includes the time for
the translation to SAS+, the time for encoding the partial weighted MaxSAT formula with makespanB, and the solver time. Total denotes
the total running time when this best makespanB is not known ahead of time and must be determined through an incremental construction
of makespans. This time includes the time for the translation to SAS+, the time for repeatedly encoding a partial weighted MaxSAT formula
with increasing makespans, and the total solver times. The total running timeof HPLAN -P and SGPlan5 is denoted by Time. M is the value
of the plan metric, the total value of the violated preferences in the plan found. (Low is good.) A dash indicates timeout.

References

Ansótegui, C.; Bonet, M. L.; and Levy, J. 2009. Solving (weighted)
partial MaxSAT through satisfiability testing. InSAT, 427–440.

Bäckstr̈om, C., and Nebel, B. 1995. Complexity results for SAS+

planning.Computational Intelligence11(4):625–655.

Baier, J. A., and McIlraith, S. A. 2006. Planning with first-order
temporally extended goals using heuristic search. InAAAI, 788–
795.

Baier, J. A., and McIlraith, S. A. 2008. Planning with preferences.
AI Magazine29(4):25–36.

Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A heuristic
search approach to planning with temporally extended preferences.
AIJ 173(5-6):593–618.

Benton, J.; Kambhampati, S.; and Do, M. B. 2006. YochanPS:
PDDL3 simple preferences and partial satisfaction planning. In
IPC-2006, 54–57.

Berre, D. L., and Parrain, A. 2010. The SAT4J library, release 2.2.
In Journal on Satisfiability, Boolean Modeling and Computation,
volume 7, 59–64.

Brafman, R., and Chernyavsky, Y. 2005. Planning with goal pref-
erences and constraints. InICAPS, 182–191.

Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Dimopoulos,
Y. 2009. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners.
Artificial Intelligence173(5-6):619–668.

Giunchiglia, E., and Maratea, M. 2007. Planning as satisfiability
with preferences. InAAAI, 987–992.

Giunchiglia, E., and Maratea, M. 2010. A pseudo-boolean ap-
proach for solving planning problems with IPC simple preferences.
In COPLAS, 23–31.

Haslum, P. 2007. Quality of solutions to IPC5 benchmark prob-
lems: Preliminary results. InICAPS.

Helmert, M. 2006. The Fast Downward planning system.JAIR
26:191–246.

Heras, F.; Larrosa, J.; and Oliveras, A. 2007. MiniMaxSAT: a new
weighted Max-SAT solver. InSAT, 41–55.

Hsu, C.-W.; Wah, B.; Huang, R.; and Chen, Y. 2007. Con-
straint partitioning for solving planning problems with trajectory
constraints and goal preferences. InIJCAI, 1924–1929.



Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel transition based
encoding scheme for planning as satisfiability. InAAAI, 89–94.
Kautz, H. A. 2006. Deconstructing planning as satisfiability. In
AAAI, 1524–1526.
Keyder, E., and Geffner, H. 2009. Soft goals can be compiled
away.JAIR36:547–556.
Knecht, M. 2009. Efficient domain-independent planning using
declarative programming. Master’s thesis, Hasso Plattner Institute,
University of Potsdam.
Maratea, M. 2010. An experimental evaluation of Max-SAT and
PB solvers on over-subscription planning problems. InRCRA, vol-
ume 616.
Marques-Silva, J. 2009. The MSUncore MaxSAT solver.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. InAAAI, 975–982.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2010.
Partial weighted MaxSAT for optimal planning. InPRICAI, 231–
243.
Tu, P. H.; Son, T. C.; and Pontelli, E. 2007. CPP: A constraint logic
programming based planner with preferences. InLPNMR, volume
4483 ofLNCS, 290–296. Springer.


