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Abstract. In this paper, we explore the application of partial weighted
MaxSAT techniques for preference-based planning (PBP). To this end,
we develop a compact partial weighted MaxSAT encoding for PBP based
on the popular SAS+ planning formalism. Our encoding extends a SAS+

based encoding for SAT-based planning, SASE, to allow for the speci-
fication of simple preferences. To the best of our knowledge, the SAS+

formalism has never been exploited in the context of PBP. Our MaxSAT-
based PBP planner, MSPlan, significantly outperformed the state-of-
the-art STRIPS-based MaxSAT approach for PBP with respect to run-
ning time, solving more problems in a few cases. Interestingly, when
compared to three state-of-the-art heuristic search planners for PBP,
MSPlan consistently generated plans with comparable quality, slightly
outperforming at least one of these three planners in almost every case.
Our results illustrate the effectiveness of our SASE based encoding and
suggests that MaxSAT-based PBP is a promising area of research.

1 Introduction

Many real-world planning problems consist of both a set of mandatory goals
and an additional set of desirable plan properties. The degree of satisfaction
of these desirable properties, or plan preferences, determines the quality of a
plan. Preference-based planning (PBP) extends the well-known classical plan-
ning problem in order to generate plans that achieve problem goals while max-
imizing the satisfaction of other preferred properties of the plan. In so doing,
they allow a planner to generate plans of high quality, often under situations
with conflicting preferences.

PBP has been the subject of substantial research in recent years. The 2006
International Planning Competition (IPC-2006) created a track on this topic
which resulted in the extension of the standardized Planning Domain Descrip-
tion Language (PDDL) to support the specification of preferences [6]. In PDDL3,
desirable properties of a plan are expressed as preference formulae. These formu-
lae may describe properties of the final state as well as properties that hold over
intermediate states visited during plan execution. The relative importance asso-
ciated with not violating these preference formulae is reflected in a metric func-
tion, a weighted linear combination of preferences whose violation is minimized
by the planner. At IPC-2008, this family of planning problems was extended
to include action costs. The objective of these so-called net benefit problems
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is to maximize the sum of the utilities of the goals and preferences that have
been achieved, minus total costs. Action costs can be incorporated into our par-
tial weighted MaxSAT-based PBP approach and it is something that we have
explored, but do not address it in this paper.

To date, the most effective techniques for PBP have been based on heuristic
search (e.g., YochanPS , SGPlan5, HPlan-P, and most recently LPRPG-P).
There have also been planners that have used SAT, CSP, or Answer Set solvers
(e.g., satplan(P), PrefPlan, CPP) [3]. Recently, Giunchiglia and Maratea
explored a partial weighted MaxSAT-based approach to solving PBP problems,
which we refer to here as GM [7]. While all of these latter systems show promise,
performance has generally been inferior to heuristic search.

In this paper, we characterize the problem of PBP as a partial weighted
MaxSAT problem. A major focus of our work is on how to construct an effective
encoding. To this end, we propose a SAS+ based (e.g., [8]) encoding of PBP
as MaxSAT that is compact and correct. Our encoding builds on the success of
SASE, a SAS+ based encoding recently developed for SAT-based planning [11].
To the best of our knowledge, the popular SAS+ formalism has never been used
in the context of PBP despite its effectiveness in classical planning. Exploiting
our characterization of PBP as a partial weighted MaxSAT problem, we develop
a system, MSPlan, that employs our SASE based encoding.

We experimentally evaluated our system by comparing it to GM on Sim-
ple Preferences problems from IPC-2006. MSPlan consistently outperformed
GM with respect to running time, in some cases by an order of magnitude. In
all cases, plan quality was comparable. We also compared the performance of
MSPlan, run with two different MaxSAT solvers, to state-of-the-art heuristic
search planners for PBP. MSPlan generated plans of comparable plan qual-
ity, sometimes slightly out- or under-performing the best of the heuristic search
planners we employed. However, as expected, MSPlan was not able to solve as
many problems as the heuristic search planners. While in some instances, one of
the MSPlan systems significantly outperformed HPlan-P with respect to run-
ning time, the heuristic search planners were generally faster. Analysis showed
that a significant part of MSPlan’s running time was attributed to the incre-
mental construction of makespans, rather than the search for a solution. Given
the consistent quality of MSPlan solutions, consistent superior performance to
GM, and the variability in the performance of all of these systems, we deem our
SASE based encoding to be effective compared to a STRIPS encoding, and the
use of MaxSAT and SAS+ encodings for PBP to be promising areas of research.

2 PBP as Partial Weighted MaxSAT

In this section, we overview the correspondence between PBP and partial weighted
MaxSAT. For the purposes of this paper, we restrict our attention to simple pref-
erences – preferences over properties of the final state of the plan.

Definition 1 (Planning domain). Let X be a set of state variables. A plan-
ning domain is a tuple D = (S,A, γ), where S is the set of all possible states; A
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is the set of actions; and γ is the transition function. A state s ∈ S is a set of
assignments to all of the variables in X. An action a ∈ A is described by a tuple
(pre(a), eff(a)), which denotes the action’s preconditions and effects. A transition
γ(s, a) modifies the values of the state variables mentioned in eff(a).

Definition 2 (Simple PBP problem). A simple PBP problem is a tuple P =
(D, sI , sG,Pref,W ), where D = (S,A, γ) is the planning domain; sI ∈ S is the
initial state; sG represents the goal and is a partial set of assignments to the state
variables; and Pref, the preferences, is a partial set of assignments to the state
variables. Optionally, each element in Pref may have a positive weight associated
with it, W : Pref→ R≥0, to capture the relative importance of preferences.

Let φ denote a CNF propositional formula over a set V of boolean variables and
let {C1, . . . , Cm} denote the clauses of φ.

Definition 3 (MaxSAT and (Partial) Weighted MaxSAT). The MaxSAT
problem is to find an assignment of values for V that maximizes the number of
satisfied clauses in φ. Given a weight wi for each clause Ci in φ, the weighted
MaxSAT problem is to find an assignment of values for V that maximizes the
total weight of the satisfied clauses in φ. When some clauses in φ are designated
as hard clauses and other clauses in φ are designated as soft clauses and we
are given a weight wi for each soft clause Ci in φ, the partial weighted MaxSAT
problem is to find an assignment of values for V that satisfies all designated hard
clauses in φ and maximizes the total weight of the satisfied soft clauses in φ.

If Pref, the preferences in a simple PBP problem, are encoded as soft clauses,
and sI , sG, and D are encoded as hard clauses, and weights drawn from W are
assigned to the soft clauses to indicate the relative importance of the preferences,
then from Definition 3, it follows that finding a solution to the resulting partial
weighted MaxSAT problem is equivalent to finding a plan for the original PBP
problem that achieves all of the hard constraints while maximizing the weight
of the satisfied preferences. How we actually encode these clauses is a challenge
and is one of the contributions of this paper.

3 Preference-Based Planning

3.1 A SAS+ Based Encoding

The SAS+ formalism (e.g., [8]) has been increasingly exploited in the context of
classical planning. Unlike a STRIPS-based encoding, which consists of actions
and facts and represents a state using a set of facts, a SAS+ based encoding
consists of transitions and multi-valued state variables and represents a state
using a set of assignments to all of the state variables. A transition represents
a change in the value of a state variable. Consider a transportation domain
in which trucks can move packages between locations with certain restrictions.
To represent the possible locations of a truck, a STRIPS-based encoding might
include a fact for each such location (e.g., (at truck1 loc1), (at truck1 loc2)). In
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contrast, a SAS+ based encoding might include a state variable truck1 whose
domain consists of all of the possible truck locations. Moving truck1 from loc1 to
loc2 would be represented by an action in a STRIPS-based encoding. In a SAS+

based encoding, this would be represented by a transition that changes the value
of the state variable truck1 from loc1 to loc2. In general, an action might result in
changes in the values of multiple state variables. In a SAS+ based encoding, this
would be represented by multiple transitions. Because the number of transitions
in an encoding based on the SAS+ formalism is normally much less than the
number of actions in a STRIPS-based encoding, the search space in a transition-
based encoding is smaller than the search space in an action-based encoding [11].
The compactness of the SAS+ formalism and the rich structural information
that can be derived from it are the major advantages of this formalism. Many
state-of-the-art planners have been adopting SAS+ based encodings (e.g., [8]).

The major limitation of previous STRIPS-based SAT encodings for classical
planning has been the large number of clauses. The SAS+ formalism was recently
used for the first time in the context of a SAT-based classical planning approach
with an impressive reduction in the size of the SAT encoding [11]. To the best of
our knowledge, the SAS+ formalism has never been used in the context of PBP
despite its effectiveness in classical planning. We explore this here.
Translating PBP Problems to SAS+. We consider PBP problems from the
Simple Preferences track of IPC-2006. STRIPS problems can be compiled into
the SAS+ representation using the parser created for the Fast Downward planner
[8]. Since IPC-2006 Simple Preferences problems are not represented in STRIPS,
we first need to compile them into STRIPS using the compilation technique
developed in [7]. The compilation proceeds as follows. For each simple preference,
a so-called dummy action is created. The precondition of this dummy action is the
simple preference property itself and the effect is a dummy literal that represents
the simple preference. This dummy literal is then added to the definition of the
goal for the problem instance and the definition of the simple preference is then
removed from the problem. The execution of a dummy action indicates that the
corresponding simple preference has been satisfied. For example, consider the
following preference that is expressed in PDDL3:

(preference time (or (delivered pck1 loc3 t1) (delivered pck1 loc3 t2)))

The time preference specifies that pck1 should be delivered to loc3 at t1 or t2.
The compilation technique replaces this preference with a dummy action:

(:action dummy-time
:parameters ()
:precondition (or (delivered pck1 loc3 t1) (delivered pck1 loc3 t2))
:effect (dummy-goal-time))

The literal dummy-goal-time represents the satisfaction of the time preference. After
introducing dummy actions for each simple preference, the resulting problems
are compiled into STRIPS using Gerevini and Serina’s ADL2STRIPS tool. Note
that we must also maintain the information about which goals in the resulting
STRIPS problems correspond to simple preferences.
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After translating these problems into SAS+, there is a SAS+ goal variable
that corresponds to each dummy literal (i.e., simple preference). We will refer to
these SAS+ variables as preference variables. We will use sP to denote the set of
desired assignments to preference variables in the final state. As such, sP (x) = p
indicates that in the final state, the desired value of preference variable x is p.
Encoding the Clauses. To encode a SAS+ based PBP problem as a partial
weighted MaxSAT problem, we modify the SAS+ based SAT encoding, SASE,
first proposed in [11]. SASE is made up of transition variables U , action variables
V , and eight classes of clauses. We show these classes below. Note that N is the
number of time steps in the plan, τ(x) is the set of possible transitions for x,
O is the set of actions, M(a) is the transition set of action a ∈ O, R is the set
of all prevailing transitions, δxf→f ′ represents a change in the value of x from f
to f ′, Ux,f,f ′,t (or Uδ,t, where δ is defined as δxf→f ′) is a transition variable that
indicates that variable x changes from the value of f to f ′ at time step t, and
Va,t is an action variable that indicates that the action a is executed at time t.

1. Initial state - (∀x, sI(x) = f):
∨
∀δf→g∈τ(x) Ux,f,g,1

2. Goal - (∀x, sG(x) = g):
∨
∀δf→g∈τ(x) Ux,f,g,N

3. Transition’s progression - (∀δxf→g ∈ τ and t ∈ [2, N ]):
Ux,f,g,t →

∨
∀δx

f′→f
∈τ(x)

Ux,f ′,f,t−1

4. Transition mutex - (∀δ1∀δ2 such that δ1 and δ2 are transition mutex):
Uδ1,t → ¬Uδ2,t

5. Existence of transitions - (∀x ∈ X):
∨

∀δ∈τ(x)
Uδ,t

6. Composition of actions - (∀a ∈ O): Va,t →
∧

∀δ∈M(a)

Uδ,t

7. Action’s existence - (∀δ ∈ τ\R): Uδ,t →
∨

∀a,δ∈M(a)

Va,t

8. Non-interference of actions - (∀a1∀a2 such that ∃δ, δ ∈ T (a1) ∩ T (a2) and
δ 6∈ R) : Va1,t → ¬Va2,t

These clauses encode the initial state, the goal state, the transitions that are
allowed to occur at various time steps, the relationship between transitions and
actions, and mutually exclusive actions. After finding a sequence of transitions
that achieves the goal, a corresponding action plan is found.

The key challenge is determining how to encode the preferences. We modify
SASE to handle preference variables (i.e., variables that we would like to achieve
a certain value in the final state) in addition to goal variables (i.e., variables that
must achieve a certain value in the final state). To this end, we create a new
class of clauses that represents the preferences. Specifically, for each preference
variable x, we create a clause that is the disjunction of all transitions which
result in the desired value for x in the final state. We define this as follows:

Preferences - (∀x, sP (x) = p):
∨
∀δf→p∈τ(x) Ux,f,p,N

It is important to note that once a dummy action is executed, the dummy
goal literal it produces persists indefinitely, i.e., no action deletes a dummy goal
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literal. Because the execution of a dummy action is meant to indicate that a
simple preference is satisfied in the final state of the plan, we must ensure that
once a dummy action has been executed, no other action that can invalidate
the precondition of this dummy action can occur after it. Thus, we restrict the
execution of dummy actions, Odummy, to the final time step of the plan by only
defining dummy action variables that correspond to this time step, i.e.,

Dummy action variables - Va,N ,∀a ∈ Odummy

Because preference variables do not necessarily have to achieve their desired
value, we treat all preference clauses as soft clauses. We treat the clauses that
encode the initial state, goal state, and the planning domain, as hard clauses.
Weighting the Clauses. We assign weights to all of the soft clauses using the
PDDL3 metric function. This function is a linear function defined over simple
preferences and is used to determine the quality of a plan. An example of a
PDDL3 metric function over two preferences named time and loc is shown below:

(:metric minimize(+ (* 10 (is-violated time)) (* 5 (is-violated loc))))

Note that the is-violated function returns 1 if the preference with the given
name does not hold in the final state of the plan and returns 0 otherwise. This
metric function indicates that satisfying the time preference is twice as important
as satisfying the loc preference. An IPC-2006 Simple Preferences task can thus
be viewed as the problem of finding a plan that satisfies all of the hard goals while
minimizing the total weight of the preferences that are not satisfied. Since each
simple preference is represented by one soft clause in our encoding, we assign a
weight to this soft clause based on the weight assigned to this preference in the
PDDL3 metric function from the original IPC-2006 problem instance.

3.2 Planning with MaxSAT

With our SAS+ based partial weighted MaxSAT encoding for PBP in hand,
the next step is to determine how to find a plan using such an encoding. As in
SAT-based planning, an incremental construction of makespans is required, i.e.,
for a specific value n for the makespan (the number of time steps in the plan),
we must encode a given PBP problem into our SAS+ based partial weighted
MaxSAT encoding with a makespan of n, attempt to solve the problem using
a partial weighted MaxSAT solver, and continue on in this manner, trying in-
creasing values of n, until a solution is found.
Stopping Conditions. Because the task of PBP involves finding a high-quality
plan, and not just a plan with the minimum number of time steps (as in SAT-
based planning), determining when to stop trying increasing values for the
makespan is more difficult. One possibility we consider is to stop trying increas-
ing values for the makespan after the first satisfiable partial weighted MaxSAT
formula is found. The solution to this formula corresponds to a plan with optimal
makespan and optimal plan quality for that particular makespan. However, this
plan is not guaranteed to be globally optimal. We also consider the case where a
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time limit is given and an incremental construction of makespans is carried out
until the allotted time expires, at which point the plan returned is the plan with
the best quality that was found during the given amount of time. We will refer
to this algorithm as the Best algorithm.
Properties of the Plan. We can show that for any fixed makespan, our ap-
proach will always return a solution with optimal plan quality with respect
to that particular makespan and that when restricted to plans with makespan
bounded by k, our approach will always return a solution that is k-optimal.

Lemma 1. For any fixed makespan n, the solution to the PBP problem, encoded as a
partial weighted MaxSAT problem with makespan n, yields a plan with optimal quality
with respect to the set of all plans with makespan n, if such a plan exists.

From Lemma 1, which follows directly from Definition 3, we can conclude
that any plan P returned by our approach has optimal quality with respect to
the set of all plans with the same makespan as P . In certain cases, we may want
to restrict our attention to plans with a makespan bounded by some value.

Definition 4 (k-Optimality). We can say that a partial weighted MaxSAT-
based PBP algorithm is k-optimal if it is always able to find a plan that is optimal,
in terms of quality, with respect to the set of all plans with makespan i ≤ k.

Theorem 1. If the search is restricted to plans with makespan bounded by k and the
Best algorithm is run long enough for the PBP problem to be encoded into a partial
weighted MaxSAT formula using each makespan i ≤ k, then the Best algorithm is
k-optimal.

Proof. For each makespan i ≤ k, the PBP problem is encoded into a partial weighted
MaxSAT formula with makespan i. If a solution is found, the quality of the plan is
optimal w.r.t. the set of all plans with makespan i (by Lemma 1). The result follows
since the Best algorithm returns the plan with the best quality among those found.

4 Implementation and Evaluation

To implement our planner, MSPlan, we augmented the SASE planner to oper-
ate with our PBP encoding and various partial weighted MaxSAT solvers. We
employed both MiniMaxSAT v1.0 [9] and SAT4J v2.1 [4]. We attempted to use
MSUncore [15] but the developers were unable to provide a system that ran on
our hardware. We also modified the PDDL3 metric functions used to specify
PBP problems so that all weights were positive integers, as required by partial
weighted MaxSAT solvers. This was done via a uniform order of magnitude in-
crease of all weights in a function until weights were integer rather than real.
Finally, many partial weighted MaxSAT solvers require a special weight to be
specified for hard clauses in addition to weights for soft clauses. Following the
convention used to specify this special weight, we assigned a weight to each hard
clause that exceeded the sum of the weights of all of the soft clauses.

Our evaluation of MSPlan was motivated by two objectives. We wanted to:
(1) compare the performance of our planner to the only previous, and therefore
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state-of-the-art, partial weighted MaxSAT-based approach, GM; and (2) com-
pare our planner to state-of-the-art heuristic search planners for PBP. In doing
so, we also hoped to gain some insight into the impact of the underlying MaxSAT
solver on the performance of MSPlan.

To support comparison with GM, the domains we evaluated were limited to
those used in [14]. Four domains from the IPC-2006 Simple Preferences track
were used in our evaluation: trucks, storage, pathways, and openstacks. The trucks

and openstacks domains contain both simple preferences and hard goals. How-
ever, the pathways and storage domains contain only simple preferences and it
is generally not possible to satisfy all of these preferences. MSPlan requires
STRIPS-encodings of these problem instances as input. Since such encodings
were also used in [14], we were able to obtain the problems from the Simple
Preferences track which Giunchiglia and Maratea have been able to compile
into STRIPS. The trucks and storage domains consist of 7 problems, the pathways

domain consists of 20 problems, and the openstacks domain consists of 1 problem.
We compared the performance of MSPlan to GM. GM uses a STRIPS-

based partial weighted MaxSAT encoding as opposed to a SAS+ based encod-
ing. We also compared the performance of MSPlan to SGPlan-W [5], HPlan-P
[2], and LPRPG-P [5]. SGPlan-W is a recent re-implementation of SGPlan5 [10],
winner of the IPC-2006 Simple Preferences track. HPlan-P did not compete in
this track and came in 2nd to SGPlan5 in the Qualitative Preferences track. Nev-
ertheless, experiments from [2] show that HPlan-P would have outperformed all
entrants in the Simple Preferences track, other than SGPlan5. Finally, LPRPG-P
is a recently developed heuristic search planner, shown to outperform HPlan-P.

Our experiments were performed on an AMD Opteron 1GHz processor with a
timeout of 60 minutes. The memory usage did not exceed 1GB. We were not able
to obtain a copy of GM. The results for these experiments are taken from [14].
Different machines have thus been used in our comparison. In [14], experiments
were performed on a Pentium IV 3.2GHz processor with 1GB of RAM, a faster
machine than ours. Note that [14] gives only the time required for solvers to find
a solution to the first satisfiable partial weighted MaxSAT formula. The total
amount of time required to find a plan does not appear in [14].

Table 1 shows the performance of MSPlan compared to GM when evalu-
ating the time required for the solver to find a solution to the first satisfiable
partial weighted MaxSAT formula when using MiniMaxSAT v1.0 and SAT4J
v2.1 as the underlying solvers. The results show that for all problem instances in
the trucks and storage domains which could be solved using both GM and MS-
Plan, the time required to find a solution to the first satisfiable partial weighted
MaxSAT formula was less, by an order of magnitude in many cases, when using
MSPlan than when using GM, regardless of the solver used. The value of the
plan quality metric does not appear in [14] and we were unable to obtain the
corresponding quality values from the authors. However, from a different encod-
ing given to us by the authors, we were able to generate an upper bound on the
quality values. This information indicated that the plan quality was comparable
in all cases. This information also indicated that the number of clauses in our
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encoding was often significantly smaller, by a large constant factor. While this
comparison is not precise, it is the best that could be done with the available
data and gives an indication of the positive properties of our approach. There
were problems in both the trucks and storage domains which could be solved by
MSPlan with a particular solver but could not be solved by GM when using
the same solver. In fact, MSPlan was able to optimally solve three problems
in the trucks domain that GM could not solve using any of the partial weighted
MaxSAT solvers evaluated in [14]. Neither MSPlan nor GM could generate a
plan for the one problem instance in the openstacks domain. Finally, we were not
able to do a direct comparison of our results for the pathways domain because
the running time of GM on these problems was unavailable.

Table 1. Performance of MSPlan compared to GM. Entries indicate the time required
by MiniMaxSAT and SAT4J to find a solution to the first satisfiable partial weighted
MaxSAT formula, in seconds. Dashes indicate timeout. Stars indicate optimal quality.

MiniMaxSAT SAT4J
Instance GM MSPlan GM MSPlan
trucks1 7.7 1.18 359.17 1.95
trucks2 308.92 44.803 - 24.868
trucks3 - 89.15* - 446.578*
trucks4 - 128.904* - -
trucks5 - 652.877* - -
trucks6 - - - -
trucks7 - - - -
storage1 0.21 0.008 0.32 0.171
storage2 0.44 0.032 0.65 0.21
storage3 0.59 0.032 1.45 0.503
storage4 0.71 0.084 2.8 0.667
storage5 58.79 13.721 16.35 1.228
storage6 - 43.059 70.6 2.564
storage7 - - 365.53 6.232

Table 2 shows the performance of MSPlan compared to the recent LPRPG-
P planner and to the two top heuristic search PBP planners from IPC-2006, the
last IPC with a PBP track. In this set of experiments, we ran MSPlan with the
Best algorithm from Sect. 3.2, i.e., MSPlan returned the highest quality plan
it found during a 60 minute period. We evaluated the total running time of all
four planners and the quality of the plans found. The results show that for all
problems that all planners were able to solve, the quality of the plan generated
by MSPlan was equal or superior to the quality of the plan returned by at least
one of SGPlan-W, HPlan-P, and LPRPG-P, regardless of the partial weighted
MaxSAT solver that was used. As expected, SGPlan-W and LPRPG-P gener-
ated plans significantly faster than MSPlan in all cases. This is consistent with
current findings for classical planning, given the superior performance of heuris-
tic search classical planners relative to their SAT-based counterparts. However,
MSPlan solved some problems more quickly than HPlan-P, while returning a
plan of equal or better quality. There were problems in the storage and pathways

domains that could be solved by MSPlan but not by SGPlan-W.
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As in SAT-based planning, a bottleneck in partial weighted MaxSAT-based
planning seems to be the iteration required to determine the makespan for the so-
lution. In our experiments, we encoded the problem using each possible makespan
until the plan with the best quality was found. This is clearly a worst-case sce-
nario. Many SAT-based planners first generate an estimate for the appropriate
makespan and use this as a starting point for incremental search. As seen in
Table 2, the time required for MSPlan to generate a plan when given, by an
oracle, the makespan that yields the plan with the best quality was typically
much smaller than the time required by MSPlan to generate a plan when this
makespan was not known a priori. If an incremental approach could be created,
whereby the partial weighted MaxSAT encoding of a problem with makespan
k is extended, instead of being encoded from scratch, to generate the partial
weighted MaxSAT encoding with makespan k+1, the running time of MSPlan
could likely be improved. A similar incremental approach has recently been in-
vestigated for compiling PDDL planning problems into answer set programs [13].

Our planner appeared to be sensitive to the underlying MaxSAT solver. With
MiniMaxSAT, MSPlan was able to solve 12 of the 20 problems in the pathways

domain but when SAT4J was used instead, 17 of the 20 problems were solved.
Most of the pathways problem instances which could not be solved by Mini-
MaxSAT had a relatively large number of simple preferences (usually between
35 to 50 simple preferences). Since partial weighted MaxSAT solvers are believed
to be very sensitive to the ratio of soft constraints versus hard constraints [1], the
relatively larger proportion of soft constraints in these problems might explain
the superior performance of SAT4J in the pathways domain.

5 Concluding Remarks

In this paper, we characterized the PBP problem as a partial weighted MaxSAT
problem. We developed a compact encoding of PBP as partial weighted MaxSAT
by building on the success of a SAS+ based SAT encoding. To the best of our
knowledge, this is the first time that the SAS+ formalism has been used in the
context of PBP. Our experimental evaluation showed that our MSPlan sys-
tem (with our SAS+ encoding), consistently outperformed an existing MaxSAT-
based planner (with a STRIPS encoding) with respect to running time, while
generating plans of comparable quality. Remarkably, when run with two dif-
ferent MaxSAT solvers, MSPlan generated plans with comparable quality to
those generated by state-of-the-art heuristic search planners for PBP. Although
the heuristic search planners were generally faster, there were problem instances
for which at least one of the two MSPlan systems ran significantly faster than
HPlan-P. There were also problem instances that could be solved by MSPlan
but not by SGPlan-W. While the horse race between heuristic search planners
and SAT-based planners ever continues, the strong performance of MSPlan
serves to illustrate the effectiveness of our SAS+ encoding and suggests that both
MaxSAT and SAS+ encodings for PBP are worthy of continued exploration.
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Table 2. Performance of MSPlan when run with the Best algorithm compared to the
recent LPRPG-P planner and to the top PBP heuristic search planners from IPC-2006.
Inst denotes the problem instance: t stands for trucks, s stands for storage, p stands for
pathways, o stands for openstacks. Let B be the makespan that results in the plan with
the best quality within the time limit. Soln denotes the time required for MiniMaxSAT
and SAT4J to find a solution to the partial weighted MaxSAT formula with makespan
B. This includes only the solver time to find the solution to the formula. Oracle denotes
the total running time of MSPlan when given, a priori, the best makespan B. This
time includes the time for the translation to SAS+, the time for encoding the partial
weighted MaxSAT formula with makespan B, and the solver time. Total denotes the
total running time when this best makespan B is not known ahead of time and must be
determined through an incremental construction of makespans. This time includes the
time for the translation to SAS+, the time for repeatedly encoding a partial weighted
MaxSAT formula with increasing makespans, and the total solver times. The total
running time of HPlan-P, SGPlan-W, and LPRPG-P is denoted by Time. M is the
value of the plan metric, the total value of the violated preferences in the plan found.
(Low is good.) A dash indicates timeout or a crash.

Inst MSPlan: MiniMaxSAT MSPlan: SAT4J HPlan-P SGPlan-W LPRPG-P
Time (s) Time (s)

Soln Oracle Total M Soln Oracle Total M Time (s) M Time (s) M Time (s) M
t1 2.16 5.08 14.01 0 1.78 5.18 21.22 0 5.58 0 0.03 1 0.03 0
t2 36.51 41.3 165.91 0 36.04 37.66 173.63 0 92.28 0 0.07 3 0.04 0
t3 89.15 111.54 304.1 0 527.21 553.62 861.07 0 660.1 0 0.09 6 0.12 0
t4 128.9 426.26 596.18 0 - - - - 563.93 3 0.16 0 0.22 0
t5 652.88 675.59 2553.01 0 - - - - 1015.36 0 0.27 1 0.16 0
t6 - - - - - - - - - - 0.84 0 1.64 0
t7 - - - - - - - - - - 1.38 59 2.56 0
s1 0.01 1.31 1.66 3 0.17 2.15 2.37 3 0.07 3 0.02 5 0.0 0
s2 4.9 27.62 34.18 5 4.3 27.15 43.58 5 2.93 5 2.26 11 0.01 1
s3 708.84 730.15 1192.33 18 1061.36 1083.39 2769.18 7 38.06 6 552.68 38 0.04 0
s4 23.71 34.51 47.34 38 532.2 637.1 1063.3 24 183.37 9 - - 0.09 3
s5 70.08 123.29 214.77 107 677.02 705.96 937.9 76 76.57 94 - - 0.23 0
s6 43.06 71.49 73.19 173 1573.75 1605.23 1978.41 150 459.93 141 - - 30.7 59
s7 - - - - 127.5 168.81 183.76 277 1280.43 160 - - 0.41 203
p1 0.05 1.48 1.6 2 0.18 2.56 3.09 2 3.88 2 - - 0.02 5
p2 0.07 0.99 1.29 3 0.46 1.99 3.34 3 186.34 4 - - 0.01 6
p3 0.36 3.12 4.95 3 0.59 5.0 7.42 3 115.6 3.7 - - 0.01 5.7
p4 0.36 5.33 5.85 2 0.78 6.25 8.66 2 324.82 2 - - 0.02 6.7
p5 6.47 36.59 45.26 6 2.08 35.39 42.73 6 413.42 9 - - 0.02 10.2
p6 434.02 797.73 1468.57 6.4 114.92 103.81 296.1 6.4 0.04 12.9 - - 0.04 12.9
p7 1251.16 1466.24 1710.57 11.5 1378.79 1406.88 2325.46 10.3 0.05 12.5 - - 0.04 12.5
p8 201.349 229.51 823.23 18.2 993.28 1020.99 1370.69 18 0.05 20.2 - - 0.05 20.2
p9 - - - - 2.33 31.50 32.31 15.7 0.07 15.7 - - 0.06 15.7
p10 1182.02 1209.2 1744.95 12.9 775.77 803.84 1692.19 10.1 0.06 16.8 - - 0.05 16.8
p11 5.56 32.88 37.85 11.8 1302.28 1332.93 2062.62 9.6 0.0 12.5 - - 0.05 12.5
p12 37.29 47.72 62.02 18.8 2.81 28.77 29.88 18.8 0.04 18.8 - - 0.07 18.8
p13 - - - - - - - - 0.03 22 - - 0.07 22
p14 55.28 62.81 80.5 20.7 942.9 1008.96 1092.89 20 0.03 20.7 - - 0.07 20.7
p15 - - - - - - - - 0.06 20.9 - - 0.07 20.9
p16 - - - - 660.60 693.78 1060.91 25.7 0.11 25.7 - - 0.12 25.7
p17 - - - - 582.82 603.99 615.12 22.3 0.1 22.3 - - 0.13 22.3
p18 - - - - 2.26 30.35 30.75 22.8 0.1 22.8 - - 0.08 22.8
p19 - - - - - - - - 0.05 26.5 - - 0.13 26.5
p20 - - - - 8.31 40.08 41.64 24.7 0.08 24.7 - - 0.1 24.7
o1 - - - - - - - - 128.14 6 0.03 70 N/A N/A

In this paper, we focused on simple preferences to support comparison with
GM. Our approach is extendable to temporally extended preferences following
the compilation technique described in [2]. Our approach is also extendable to
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net benefit problems by a simple extension to the encoding. These are topics of
current investigation. A current limitation of MSPlan is that it is k-optimal
rather than optimal. (SGPlan5 is neither optimal nor k-optimal whereas HPlan-
P has the capacity to be k-optimal with respect to plan length and optimal if
run to completion with certain restrictions on metric functions [3].) Optimality
may be achievable with a MaxSAT-based approach by exploiting a translation
of soft goals into action costs [12] and a cost-optimal planner based on partial
weighted MaxSAT (e.g., [16]).
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