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Why Reduce Memory Usage?

* Modern computer vision recognition models use deep
neural networks to extract features

* Depth/width of networks ~ GPU memory requirements

* Semantic segmentation: may even only do just a single crop
per GPU during training due to suboptimal memory
management

* More efficient memory usage during training lets you:

* Train larger models
* Use bigger batch size / image resolutions

* This paper focuses on increasing memory efficiency of
the training process of deep network architectures at
the expense of small additional computation time



Approaches to Reducing Memory

Increasing
Computation
Time

Reducing
Precision
(& Accuracy)

Reduce Memory by...
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Related Works:
Reducing Precision

BinaryConnect

(M. Courbariaux et

al. 2015)

Binarized neural
networks

(I. Hubara et al.
2016)

Quantized neural
networks (I.
Hubara et al)

Mixed precision
training

(P. Micikevicius et
al. 2017)

Binary Full Precision

Binary Binary

Quantized 2,4,6 Quantized 2,4,6
bits bits

Half Precision Half Precision

(fwd/bw) &
Full Precision
(master weights)

Full Precision

Full Precision

Full Precision

Half Precision



Related Works:
Reducing Precision

* ldea: During training, lower the precision (up to
binary) of the weights / activations / gradients

Reduce memory requirement and Often decrease in accuracy
size of the model performance (newer work attempts
to address this)

Less power: efficient forward pass

Faster: 1-bit XNOR-count vs. 32-bit
floating point multiply



Related Works:
Computation Time

* Checkpointing: trade off memory with
computation time

* ldea: During backpropagation, store a subset of
activations (“checkpoints”) and recompute the
remaining activations as needed

* Depending on the architecture, we can use
different strategies to figure out which subsets of
activations to store



Related Works:
Computation Time

e Let L be the number of identical feed-forward

layers:

_ Spatial Complexity Computation Complexity
Naive O(L) O(L)
Checkpointing (Martens 0(L) O(L)
and Sutskever, 2012)

Recursive Checkpointing O(log L) O(Llogl)
(T. Chen et al., 2016)
Reversible Networks 0(1) O(L)

(Gomez et al., 2017)

Table adapted from Gomez et al., 2017. “The Reversible Residual Network: Backpropagation Without Storing
Activations”. ArXiv Link



Related Works: Computation Time
Reversible ResNet (Gomez et al.,

2017)

©=

Residual Block

Basic Residual
Function

y1 = x1 + F(z2) T2 = Y2 — G(y1)
Y2 = T2+ G(y1) T = y1 — F(x2)
RevNet (Forward) RevNet (Backward)

Idea: Reversible Residual module allows the current layer’s
activation to be reconstructed exactly from the next layer’s.
No need to store any activations for backpropagation!

Gomez et al., 2017. “The Reversible Residual Network: Backpropagation Without Storing Activations”. ArXiv Link




Related Works: Computation Time
Reversible ResNet (Gomez et al.,
2017)

&% | * No noticeable loss in performance Table 3: Classification error on CIFAR

© . o~

£ | ¢ Gains in network depth: ~600 vs | CIFAR-10 [15] CIFAR-100 [15]

© ~100 Architecture

% _ _ . ResNet RevNet ResNet  RevNet

< | * 4xincrease in batch size (128 vs 32) 32 38) 714%  7.24% 70.95%  28.96%
110 574%  5.76% 26.44%  25.40%
164 5.24%  5.17% 23.37%  23.69%

* Runtime cost: 1.5x of normal
training (sometimes less in
practice)

Restrict reversible blocks to have a
stride of 1 to not discard
information (i.e. no bottleneck
layer)

Table 4: Top-1 classification error on ImageNet (single crop)

ResNet-101 RevNet-104
23.01% 23.10%

Disadvantage

Gomez et al., 2017. “The Reversible Residual Network: Backpropagation
Without Storing Activations”. ArXiv Link
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Review: Batch Normalization (BN)

* Apply BN on current
features (x;) across the
mini-batch

* Helps reduce internal
covariate shift &
accelerate training
process

e Less sensitive to
initialization

Input: Values of = over a mini-batch: B = {x1._m};
Parameters to be learned: v, 3
Output: {y; = BN, g(x;)}

1 m
B — — €T // mini-batch mean
HB m ZZ_‘; ’
1 m
2 2 .. .
Op — — T — L // mini-batch variance
B m ;( i — F B)
~ Ty — ,
T — — o // normalize
\/ 0223 + €
yi < vTi + B = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Credit: loffe & Szegedy, 2015. ArXiv link




Memory Optimization Strategies

* Let’s compare the various strategies for BN+Act:
1. Standard

Checkpointing (baseline)

Checkpointing (proposed)

In-Place Activated Batch Normalization |

In-Place Activated Batch Normalization Il

Al



1: Standard BN Implementation
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(a) Standard building block (memory-inefficient)



Gradients for Batch Normalization
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Credit: loffe & Szegedy, 2015. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift”. ArXiv link



2: Checkpointing (baseline)

backward

o ¢

(b) Checkpointing [4,

OL
0z

]

ConNvV

CoONV



3: Checkpointing (Proposed)

o
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: z BNy ¥y 9 z  CoNV
L2
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z
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] bz BN%B oy d) 0z Conv

/ (c) Checwed version)
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In-Place ABN

e Fuse batch norm and

activation layer to enable
) . . BN INPLACE
in-place computation, using Act ABN
.
only a single memory CONVix1 CONVix1
buffer to store results. BN INPLACE
. . AcT - ABN
* Encapsulation makes it easy
1
to implement and deploy BN .
AcT ABN
* Implemented INPLACE
CONV1x1 CONV1x1

ABN-I layer in PyTorch as a
new module



4: In-Place ABN | (Proposed)
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(d) In-Place Activated Batch Normalization I (proposed method)



Leaky RelLU is Invertible

pA— (Ly y — .

Figure 3. LEAKY RELU with slope a (left) and its inverse (right).



5:In-Place ABN Il (Proposed)
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Strategies Comparisons

Standard X,Z,05, Up -
Checkpointing X, 03, Uz BN, g, ¢
Checkpointing X, 03 Ty g, ¢
(proposed)

In-Place ABN | Z,0g ¢~ m %
(proposed)

In-Place ABN II Z,03 ¢d~1

(proposed)



In-Place ABN (Proposed)

Algorithm 1 INPLACE-ABN Forward

Require: =, 7, 3

I: y,08 <+ BN, g(x)
2+ ¢(y)
save for backward z, o
return 2

b ww

Algorithm 2 INPLACE-ABN Backward

Require: 9L ~, 8

I: z,0B < saved tensors during forward

)I 0L
(OU < Pbackw: 1rd(~s (a.,

y ¢ (z)
if INPLACE-ABN I (see Fig. 2(d)) then
T Wflj(y)
5 90 95 < BN (3, 5. 08)
else if INPLACE-ABN II (see 1*1 2(e)) then

oL 9L ()L T
Dz O~ ! — BNq .j(y$ ayaoB)

oL or oL
return 5, 55, 53

AN G B

o




In-Place ABN (Proposed)

Reduce memory requirement by half  Requires invertible activation
compared to standard; same savings  function
as check pointing

Empirically faster than naive ...but still slower than standard
checkpointing (memory hungry) implementation.

Encapsulating BN & Activation
together makes it easy to implement
and deploy (plug & play)
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Experiments: Overview

* 3 Major types:

* Performance on: (1) Image Classification, (2) Semantic
Segmentation

* (3) Timing Analysis compared to standard /
checkpointing
* Experiment Setup:
* NVIDIA Titan Xp (12 GB RAM/GPU)
e PyTorch
* Leaky RelU activation



Experiments: Image Classification
T et 101/ResNekt152 | WideRestet3s

Dataset ImageNet-1k ImageNet-1k

Description Bottleneck residual units are  More feature channels but
replaced with a multi-branch  shallower
version = “cardinality” of 64

Data Scale smallest side = 256 (Same as ResNeXt-101/152)
Augmentation pixels then randomly crop

224 x 224, per-channel mean

and variance normalization

Optimizer e SGD with Nesterov (Same as ResNeXt)
Updates 90 Epoch, linearly
* Initial learning rate=0.1 decreasing from 0.1 to 10®
* weight decay=10*
* momentum=0.9
* 90 Epoch, reduce by
factor of 10 per 30 epoch



Experiments: Leaky ReLU impact

activation 224? center 2242 10-crops 3207 center
Network
training validation top-1 top-5 top-1 top-5 top-l top-5
ResNeXt-101 RELU RELU 7774 9386 79.21 94.67 79.17 94.67
ResNeXt-101 RELU LEAKY RELU 76.88 9342 78.74 9446 7837 94.25
ResNeXt-101 LEAKY RELU LEAKY RELU 77.04 9350 78.72 9447 7792 94.28
ResNexXt-101 LEAKY RELU RELU 76.81 9353 7846 9438 77.84 94.20

Table 1. Imagenet validation set results using ResNeXt—-101 and RELU/LEAKY RELU exchanged activation functions during training
and validation.

* Using Leaky RelLU performs slightly worse than with RelLU
* Within ~1% , except for 3202 center crop—authours argued it was due
to non-deterministic training behaviour
* Weaknesses
* Showing an average + standard deviation can be more convincing
of the improvements.



Experiments: Exploiting Memory
Saving

224? center

224 10-crops

320? center

1) Larger Batch Size  resnext-101. INPLACE-ABN

2) Deeper Network  ResNext-152, INPLACE-ABN

3) Larger Network

4) Sync BN

Network
batch size  top-1  top-5 top-1 top-5 top-1 top-5
Baseline ResNext-101, STD-BN 256 77.04 9350 78.72 9447 7792 94.28
512 78.08 9379 79.52 94.66 7938 94.67
256 7828 94.04 79.73 9482 79.56 94.67
WideResNet-38, INPLACE-ABN 256 79.72 9478 81.03 9543 80.69 95.27
ResNeXt-101, INPLACE-ABN™"* 256 7770 93.78 79.18 94.60 78.98 94.56

Table 2. Imagenet validation set results using different architectures and training batch sizes.

Performance increase for 1-3

Similar performance with larger batch size vs deeper model (1 vs 2)
Synchronized INPLACE-ABN did not increase the performance that

much
Notes on synchronized BN: http://hangzh.com/PyTorch-

Encoding/notes/syncbn.html




Experiments: Semantic Segmentation

* Semantic Segmentation: Assign categorical labels
to each pixel in an image

* Datasets
° CitySCapes
* Mapillary Vistas §

Figure Credit: https://www.cityscapes-dataset.com/examples/




Experiments: Semantic Segmentation

* Architecture contains 2 parts that are jointly fine-tuned
on segmentation data:

e Body: Classification models pre-trained on ImageNet
* Head: Segmentation specific architectures

* Authours used DeeplLabV3* as the head

» Cascaded atrous (dilated) convolutions for capturing
contextual info

* Crop-level features encoding global context

* Maximize GPU Usage by:

 (FIXED CROP) fixing the training crop size and therefore
pushing the amount of crops per minibatch to the limit

» (FIXED BATCH) fixing the number of crops per minibatch and
maximizing the training crop resolutions

*L. Chen, G. Papandreou, F. Schroff, and H. Adam. “Rethinking atrous convolution for semantic image segmentation.” ArXiv
Link



Experiments: Semantic Segmentation

ResNeXt-101
BATCHNORM

WideResNet—-38

Cityscapes COCO-Stuff Cityscapes COCO-Stuff
STD-BN + LEAKY RELU 16 x 5122 7442 16 x 4802 2030 20 x 5122 75.82 20 x 4962 22.44
INPLACE-ABN, FIXED CROP 28 x 5122 [+75%] 75.80 24 x 4807 [+50%] 22.63 28 x 5122 [+40%] 7T7.75 28 x 4967 [+40%] 22.96
INPLACE-ABN, FIXED BATCH 16 x 6722 [+72%] 77.04 16 x 600% [+56%] 23.35 20 x 640° [+56%] 78.31 20 x 5762 [+35%] 24.10
INPLACE-ABN®" FIXED BATCH 16 X 6722 [+72%] 77.58 16 x 6002 [+56%] 24.91 20 x 640? [+56%] 78.06 20 x 5762 [+35%] 25.11

Table 3. Validation data results (single scale test) for semantic segmentation experiments on Cityscapes

and COCO-Stuff, using

ResNeXt-101 and WideResNet—-38 network bodies and different batch normalization settings (see text). All result numbers in [%].

* More training data (FIXED CROP) helps a little bit

* Higher input resolution (FIXED BATCH) helps even more than adding

more Crops

* No qualitative result: probably visually similar to DeepLabV3



Experiments: Semantic Segmentation
Fine-Tuned on CityScapes and Mapillary
Vistas

ResNeXt-152 WideResNet-38

Cityscapes
INPLACE-ABN®"™ 12 x 680°  78.49 -
INPLACE-ABN - 16 x 712*  78.45
INPLACE-ABN®" - 16 x 712*  79.02
INPLACE-ABN™"® - 12 x 8722 79.16
INPLACE-ABN®" + CLASS-UNIFORM SAMPLING - 12 x 8722 79.40
Mapillary Vistas
INPLACE-ABN*" + CLASS-UNIFORM SAMPLING - 12 x 776>  53.12
LSUN 2017 winner [35] (based on PSPNet) ResNet-101
PSPNet + auxiliary loss 16 x 7132 49.76

+ Hybrid dilated convolutions [29] 16 x 7132 50.28

+ Inverse frequency label reweighting 16 x 7132 51.50

+ Cityscapes pretraining 16 x 7132 51.59

Table 4. Validation data results (single scale test, no horizontal flipping) for semantic segmentation experiments on Cityscapes and Vistas,
using ResNeXt-152 and WideResNet-38 bodies with different settings for #crops per minibatch and crop sizes. All results in [%].

 Combination of INPLACE-ABN sync with larger crop sizes improves by =
0.9% over the best performing setting in Table 3

* Class- Uniform sampling: Class-uniformly sampled from eligible image
candidates, making sure to take training crops from areas containing
the class of interest.



Experiments: Semantic Segmentation

e Currently state of the art for CityScapes for loU class
and iloU (instance) Class
* iloU: Weighting the contribution of each pixel by the ratio of

the class’ average instance size to the size of the respective
ground truth instance.

16- iloU loU iloU Runtime
name fine coarse depth video sub s s s + code
bit class category category [s]
Mapillary Research: In-Place Activated yes yes no no no no 82.0 65.9 91.2 81.7 n/a yes
BatchNorm
> SR-AIC yes yes no no no no 819 60.7 91.3 79.6 n/a
> iFLYTEK-CV yes yes no no no no 814 60.9 91.0 79.5 n/a
> DeepMotion yes no no no no no 814 58.6 90.7 78.1 n/a no

> Deeplabv3 yes yes no no no no 813 62.1 91.6 81.7 n/a no



Experiments: Timing Analyses

* They isolated a single

B N+ACT+CO NV bIOCk & BN+AcT+Conv forward and backward
evaluate the o JESTANDARD
. . 50| 0% 1.8% I0INPLACE-ABN 1
Computatlonal times o 0 CHECKPOINTING
required for a forward e 0% 0.8%12%
and backward pass g a0 -
T:‘ 0% 2% 3. 7%
* Result: Narrowed the gap |3
between standard vs 30 oz 1%L
checkpointing by half
. . Convl CoNV2 Conv3 Conv4
° Ensu red falr Compa rison ResNeXt-101 modules

by re-implementing
checkpointing in PyTorch
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Future Directions:

* Apply INPLACE-ABN in other...

* Architectures: DenseNet, Squeeze-Excitation Networks,
Deformable Convolutional Networks

* Problem Domains: Object detection, instance-specific
segmentation, 3D data learning

* Combine INPLACE-ABN with other memory
reduction techniques, ex: Mixed precision training

* Apply same InPlace idea on 'newer’ Batch Norm,
ex: Batch Renormalization®

*S. loffe. “Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models.” ArXiv Link



Links and References

e INPLACE-ABN Paper: https://arxiv.org/pdf/1712.02616.pdf

» Official Github code (PyTorch):
https://github.com/mapillary/inplace abn

* CityScapes Dataset: https://www.cityscapes-
dataset.com/benchmarks/#scene-labeling-task

* Reduced Precision:
* BinaryConnect: https://arxiv.org/abs/1511.00363
* Binarized Networks: https://arxiv.org/abs/1602.02830
* Mixed Precision Training: https://arxiv.org/abs/1710.03740

* Trade off with Computation Time

* Checkpointing:
https://www.cs.utoronto.ca/~jmartens/docs/HF book chapter.pdf

» Recursive Checkpointing: https://arxiv.org/abs/1604.06174
e Reversible Networks: https://arxiv.org/abs/1707.04585




