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Introduction

Layers in CNNs for image classification have various modules that control the
output volume of subsequent layers (Image Credit: Stanford C321n):
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Introduction

Layers in CNNs for image classification have various modules that control the
output volume of subsequent layers (Image Credit: Stanford C321n):

ELU RELU RELU RELU RELU RELU
@ Convolution Layers CoNvlcoNV coNvlCONvl
o Filter Size
o Stride
o Padding

@ Pooling Layers Ly

airplane

o Activation Layers ' ‘ < mlr y"®

horse

o FC Layers

Conventional modules (e.g., pooling/stride) reduce network resolution/coverage
between layers and make it challenging to carry out applications that require
dense predictions.
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@ Semantic segmentation: multi-scale contextual reasoning with full-resolution
output

Semantic Segmentation of Satellite Imagery (Image Credit: ETH Zurich)
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@ Semantic segmentation: multi-scale contextual reasoning with full-resolution
output

Semantic Segmentation of Satellite Imagery (Image Credit: ETH Zurich)

@ Many state-of-the-art models for dense predictions are based on adaptations
of CNNs for image classification

@ Not all of aspects of image classification are useful for this application
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Resolution vs. Coverage

4 3 2 4

@ Resolution: image pixel density R g @
. . 719

@ Pooling: loss of resolution i

6 7 4 5
@ Coverage: Overlap between adjacent feature maps .y
@ Large Stride: loss of coverage
@ Recover resolution loss: upsample
@ Compensate for coverage loss: use smaller stride
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Resolution vs. Coverage

@ Resolution: image pixel density

@ Pooling: loss of resolution

@ Coverage: Overlap between adjacent feature maps

@ Large Stride: loss of coverage

@ Recover resolution loss: upsample
@ Compensate for coverage loss: use smaller stride

@ Both increase number of layers/parameters and
computation/memory
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Image Credit:
github.com/vdumoulin/conv_arithmetic/tree/master/gif
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Fully Convolutional Network (FCN)

@ Conventional semantic segmentation network that uses pooling, stride, upsampling

@ Derived from classification architectures that take fixed-size inputs and produce
non-spatial outputs

@ FC layers considered as convolutions with kernels acting on the entire input region

“tabby cat”

(',onvohmou alization

¢ tabby cat heatmap
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Fully Convolutional Network (Long et al. (2015))

@ In-network upsampling and addtional layers to FC output allow pixelwise prediction
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Dilated Convolutions

@ High resolution operations throughout the network facilitated by dilated convolution
@ Sparse filters formed by skipping pixels at regular intervals

- @

) 2-Stride (b) 2-Dilated

@ Convention (dark blue squares = non-zero):
e n-Dilated: n — 1 pixels skipped
e 1-Dilated: O pixels skipped
o 2-Dilated: 1 pixels skipped
e 4-Dilated: 3 pixels skipped
@ 2-Dilated 3 x 3 Filter = 5 x 5 Filter (9 non-zero weights)
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Dilated Convolutions

e F. Yu, V. Koltun, “Multi-Scale Context Aggregation By Dilated
Convolutions”
@ Receptive field of an element x in layer k 4 1 is the set of elements in layer k

that influence it

(a) (b) ©)

Consecutive 1-Dilated (left), 2-Dilated (middle), 4-Dilated (right) 3 x 3 Convolution

@ Resulting receptive field of 2/-Dilated feature map is size (2/+2 — 1)2
@ Receptive field grows exponentially while number of parameters is constant
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Multi-Scale Context Aggregation Context Module

o Context module (7 layers) with progressively increasing receptive field
without losing resolution

@ Has same form of input/output: takes C feature maps in and produces C
feature maps out

[ Layer [ 1T [ 2 ] 3 ] 4 5 6 7 3
Convolution 3x3 | 3x3 | 3x3 3x3 3x3 3x3 3x3 1x1
Dilation 1 1 2 4 8 16 1 1
Truncation Yes Yes Yes Yes Yes Yes Yes No
Receptive field | 3x3 | 5x5 | 9x9 | 17x17 | 33x33 | 65x65 | 67x67 | 67x67
Output channels
Basic [ C ] C ] C T C C C C C
Large | 2C | 2C | 4C | 8C 16C 32C 32C C

Context Module Using Multi-Layered Dilated Convolutions

@ Module can be combined readily with existing dense prediction architectures
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Front-End Module

@ Simplified image classification
CNNs (Simonyan & Zisserman
(2015)) by removing layers
that are counterproductive for
dense prediction

e Final pooling and
striding layers

e Padding in intermediate
feature maps

@ Inputs are padded images and
outputs are C = 21 feature
maps at 64 x 64 resolution

@ Training (VOC-2012)
Iterations (n) = 60K
Mini-batch size (p): 14
Learning rate (a): 1073
Momentum (3): 0.9

(a) Image (b) FCN-8s () DecpLab (d) Our frontend  (e) Ground truth

@ Test accuracy comparison vs.
FCN-8s and DeeplLab+
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Experimentation Results

@ Front-end module is both simpler and +5% (mean loU) more accurate
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FCN-8s 76.8{34.2168.9149.4(60.3(75.3{74.7(77.6|21.4|62.5|46.8|71.8(63.9(76.5{73.9(45.2|72.4|37.4|70.9|55.1||62.2
DeepLab 72 | 31 |71.2|53.760.5| 77 |71.9]73.1|25.2]62.6]49.1|68.7(63.3|73.9|73.6(50.8|72.3[42.1|67.9(52.6||62.1
DeepLab-Msc|[74.9(34.1{72.6/52.9(61.0{77.9|73.0|73.7|26.4|62.2{49.3|68.4|64.1|74.0|75.0|51.7|72.7 |42.5|67.2|55.7||62.9
Our front end ||82.2|37.4|72.7(57.1|62.7|82.8(77.8|78.9| 28 | 70 |51.6|73.1|72.8|81.5(79.1|56.6|77.1(49.9|75.3|60.9 || 67.6
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Experimentation Results

@ Front-end module is both simpler and +5% (mean loU) more accurate
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Our front end ||82.2|37.4|72.7|57.1|62.7|82.8|77.8|78.9| 28 | 70 |51.6]|73.1]|72.8|81.5|79.1|56.6|77.1|49.9|75.3]60.9||67.6

VOC-2012 Test Set Accuracy

@ In anticipation of comparison with high performing systems, two-stage testing done
on the front-end module
e Coarse Tuning: VOC-2012, Microsoft COCO
e n = 100K, a =103
o n=40K, o =107*
e Fine Tuning: VOC-2012 only
e n=50K a=10"°
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Experimentation Results

@ Front-end module is both simpler and +5% (mean loU) more accurate
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VOC-2012 Test Set Accuracy

@ In anticipation of comparison with high performing systems, two-stage testing done
on the front-end module
e Coarse Tuning: VOC-2012, Microsoft COCO
o n=100K, a =103
e n=40K, a =10"%
e Fine Tuning: VOC-2012 only
e n=50K a=10"°
@ Mean loU accuracy of front-end on VOC-2012
o Test: 71.3%
o Validation: 69.8%
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Experimentation Results

@ Front-end module is both simpler and +5% (mean loU) more accurate
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VOC-2012 Test Set Accuracy

@ In anticipation of comparison with high performing systems, two-stage testing done
on the front-end module
e Coarse Tuning: VOC-2012, Microsoft COCO
o n=100K, a =103
e n=40K, a =10"%
e Fine Tuning: VOC-2012 only
e n=50K a=10"°
@ Mean loU accuracy of front-end on VOC-2012
o Test: 71.3%
o Validation: 69.8%

@ Controlled experiments performed by inserting Context Module after front-end
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Experimentation Results

@ Context modules (Basic and Large) added to front-end and then to two
different semantic segmentation architectures
@ CRF (Chen et al. (2015))

@ CRF-RNN (Zheng et al. (2015))
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Front + Large 87.3/39.2|80.3|65.6|66.4|90.2|82.6|85.8|34.8(81.9|51.7| 79 |84.1/80.9|83.2|51.2|83.2|44.7|83.4|65.6||72.1
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Front + Large + CRF ||89.6|39.9|82.7|66.7|67.5|91.1(83.3|87.4| 36 |83.3|52.5(80.7|85.7|81.8|84.4|52.6|84.4|45.3(83.7|66.7||73.3
Front end + RNN 88.8(38.1{80.8(69.1{65.6(89.9(79.6(85.7(36.3(83.6(57.3|77.9|83.2| 77 |84.6|54.7|82.1|46.9(80.9 66.7(|72.5
Front + Basic + RNN || 89 [38.4]82.3/67.9(65.2/91.5(/80.4|87.2|38.4|82.1|57.7|79.9| 85 |79.6|84.5(53.5| 84 | 45 |82.8(66.2||73.1
Front + Large + RNN|(|89.3/39.2(83.6|67.2| 69 [92.1(83.1| 88 |38.4|84.8|55.3|81.2|86.7|81.3|84.3|53.6|84.4|45.8|83.8| 67 ||73.9

VOC-2012 Validation Set Accuracy
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Experimentation Results

@ Context modules (Basic and Large) added to front-end and then to two
different semantic segmentation architectures
@ CRF (Chen et al. (2015))

@ CRF-RNN (Zheng et al. (2015))
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VOC-2012 Validation Set Accuracy

@ Addition of Context Module improves accuracy by +0.6% (mean loU) in all
three architectures
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Experimentation Results

@ Context module (Large) and front-end module compared against other high
performing systems
@ Deeplab variants (Long et al. (2015))
@ CRF-RNN (Zheng et al. (2015))
© Front-end/Context module combinations with CRF-RNN
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DeepLab++ 80.1/38.3[88.1/63.3]69.787.1[83.1| 85 [29.3[76.5]56.5[79.8|77.9|85.8|82.4]57.4|84.3]54.9/80.5|64.1[[72.7
DeepLab-MSc++ 89.2146.7|88.563.568.4|87.0|81.2|86.3|32.6|80.7|62.4|81.0|81.3|84.3|82.1/56.284.658.3|76.2|67.2||73.9
CRF-RNN 90.4|55.3|88.7|68.4|69.8 |88.382.4|85.1/32.6|78.5|64.4|79.6|81.9|86.4 |81.8|58.6|82.4|53.5|77.4|70.1||74.7
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Context + CRF 91.3139.9|88.9|64.3/169.8 88.9182.6(89.7|34.7|82.7/59.5| 83 |88.4|84.2| 85 |55.3|86.7|54.4|81.9|63.6||74.7
Context + CRF-RNN ||191.7|39.6|87.8|63.1|71.889.7|82.989.8|37.2| 84 | 63 |83.3| 89 |83.8|85.1|56.8|87.6| 56 |80.2164.7||75.3

VOC-2012 Test Set Accuracy
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Experimentation Results

@ Context module (Large) and front-end module compared against other high
performing systems
@ Deeplab variants (Long et al. (2015))
@ CRF-RNN (Zheng et al. (2015))
© Front-end/Context module combinations with CRF-RNN
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VOC-2012 Test Set Accuracy

Context module has +2.2% mean loU accuracy compared to front end alone
Context module alone outperforms DeeplLab++

Context module with dense CRF performs on par with CRF-RNN

Context module combined with CRF-RNN outperforms' CRF-RNN by 0.6%
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Future Work

@ Accuracies and failure cases leave significant room for future advances

Our result Ground truth

Failure Cases
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Our result Ground truth
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@ Promising results observed for:

o Dedicated dense prediction architectures without image classification artifacts
e Removing pre-training by leveraging dilation convolutions and performing
end-to-end dense prediction
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Future Work

@ Accuracies and failure cases leave significant room for future advances

Our result Ground truth

Failure Cases

@ Promising results observed for:
o Dedicated dense prediction architectures without image classification artifacts
e Removing pre-training by leveraging dilation convolutions and performing
end-to-end dense prediction
e Simplifying and unifying architectures to take inputs and produce outputs at

full resolution
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Conclusions

@ Simplification of adapted image classification systems for semantic
segmentation can improve accuracy

@ Dilated convolutions support exponential expansion of the receptive field
without loss of resolution or coverage

@ CNN module with dilated convolutions systematically aggregate multi-scale
contextual information without resolution loss

@ Context Module increases the accuracy of current state-of-the-art semantic
segmentation architectures

For more information:

@ F. Yu, V. Koltun, “Multi-Scale Context Aggregation By Dilated
Convolutions”, ICLR, 2016

@ J. Long, E. Shelhamer, T. Darrell, “Fully Convolutional Network for Semantic
Segmentation”, CPVR, 2015

@ S. Zheng et al., “Conditional Random Fields as Recurrent Neural Networks",
ICCV, 2015
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Thank you.
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