Deep Learning (CNNs) Jumpstart
2018

Chaogi Wang, Amlan Kar

Why study it?

Growing Use of Deep Learning at Google Anchored speech detection

of directories containing model description files Across many B (kL
1200 products/areas: danchor embeaaing
5 i”ﬁ":'d endpaint decision
= p
=] drug discovery
s ' LSTM
= e - : Decode
[m] { ecoder
B / -' L1
I3 1./ e ' [O B B B
% 300 -, & speech features from request
=
‘c_l' h-.t
= __(_',—-(”/ >
3 o ;
NN YNNI play some JaZZ!
L AT A7 A A A L

3ti, Baan King, Rutong Huang, Bjten Hoffmesster. “Anchosd Speech Detection.” INTERSPEECH. 2016.

6

' . EMERYWHERE

TREITRES . C.OITI

To the basics and beyond! 5

Buzz will point to recommended resources

while we fly through at light speed ‘

Building Blocks

We always work with features (represented by real numbers)
Each block transforms features to newer features
Blocks are designed to exploit implicit regularities

Fully Connected Layer

Use all features to compute a new set of features

Linear Transformation - F2 = WTF1 +h

Non-Linearity

Apply a nonlinear function to features

itz >0
{u (exp(z) —1) ifx <0
Sigmoid (Logistic Function) ReLU (Rectified Linear) Leaky RelLU Exponential Linear (eLU)
More: Comprehensive guide to nonlinearities:
- Maxout
SeLU https://towardsdatascience.com/secret-sauce-behind-t
Swish he-beauty-of-deep-learning-beginners-guide-to-activati

And so many more ... on-functions-a8e23a57d046

https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046
https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046
https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-learning-beginners-guide-to-activation-functions-a8e23a57d046

Convolutional Layer

Use a small window of features to compute a new set of features

Comprehensive guide to convolutional layers:
http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Convolutional Layer

Use a small window of features to compute a new set of features

- Lesser parameters than a FC layer

- Exploits the fact that local features
repeat across images

- Exploiting implicit order can be seen
as a form of model regularization

Normal convolution layers look at information in fixed
windows. Deformable ConvNets and Non Local Networks
propose methods to alleviate this issue

Pooling

Aggregate features to form lower dimensional features

Reduce dimensionality of features
Robustness to tiny shifts

Average Pooling Max Pooling

Also see Global Average Pooling (used in the |
recent best performing architectures)

Upsampling Layers

How to generate more features from less?

“Bed of Nails”

Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

http://cs231n.stanford.edu/slides/
2017/cs231n 2017 lecturell.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Upsampling Layers: Subpixel Convolution

Produce a grid of nxn features as n"2 filters in a convolution layer

https://arxiv.org/pdf/1609.05158.pdf

Also read about checkerboard artifacts here:
https://distill.pub/2016/deconv-checkerboard/

https://arxiv.org/pdf/1609.05158.pdf
https://distill.pub/2016/deconv-checkerboard/

Upsampling Layers: Transpose Gonvolution

What features did my current features come from?

wo.0 0 0
woy wep 0
woe woy 0
0 wp.2 0
w0 0 wo.0
w1 Wi Won
w2 w1 Wo2

0 wyo 0

wyo 0wy
Wy Wap Wi
w22 Wil W12
wag 0
0wy
0w
0 wgp
0 0 wa 2

Convolution Matrix Multiplication

http://deeplearning.net/software/theano/tutorial/conv _arithmetic.html#transposed-convolution-arithmetic

Convolutions are sparse matrix
multiplications

Multiplying the transpose of this
matrix to the 4 dimensional input
gives a 16 dimensional vector
This is also how backpropagation
(used to train networks) works for
conv layers!

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic

Learning

Loss Functions
Backpropagation

Loss Functions

What should our training algorithm optimize? (some common ones)

-> Cross Entropy between predicted distribution over classes and ground truth distribution
-> |2 Loss, L1 Loss, Huber (smooth-L1) Loss
-> Expected sum of reward (very often
non-differentiable, use many tricks to compute gradients)

Most other tasks have very carefully selected domain specific loss functions and it is one of the most
important make it or break it for a network

We use different variants of stochastic gradient descent: wt = wt'+a vw

http://www.deeplearningbook.org/contents/optimi
zation.html - See for more on optimization

http://www.deeplearningbook.org/contents/optimization.html
http://www.deeplearningbook.org/contents/optimization.html

BaCkprﬂpagatmn sigmoid
Chain Rule!

1*-1/(1.31)*2 = -0.53

1.00

http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-2/

Task

Do it yourself!

Derive the gradients w.r.t. the input and weights for a single fully connected layer
Derive the same for a convolutional layer

Assume that the gradient from the layers above is known and calculate the
gradients w.r.t. the weights and activations of this layer. You can do it for any non
linearity

In case you’re lazy or you want to check your answer:
FC - https://medium.com/@erikhallstrm/backpropagation-from-the-beginning-77356edf427d
Conv - https://grzegorzgwardys.wordpress.com/2016/04/22/8/

https://medium.com/@erikhallstrm/backpropagation-from-the-beginning-77356edf427d
https://grzegorzgwardys.wordpress.com/2016/04/22/8/

Next Up: A Tour of Star
Command’s latest and
greatest weapons!

Case Study 1: AlexNet-2012

Architecture:
CONV1
MAX POOL1 128 208 2oag \dense
NORM/1 Nh
C o N V2 dense denset L
MAX POOL2 o L
NORM2 Peone Poeine
CONV3
CONV4 ~60M parameters
5 Convolutional layers
CONVS 3 Max pooling layers ' ' min(N —1,i+n/2) P
Max POOL3 2 LRrRN(Local Response Normalization) layers, b;’y =a,,/| k+a Z (a‘;:,y)2
COR (not common anymore) j=max(0,i—n/2)

3 Fully connected layers

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 1: AlexNet-2012

Architecture:
CONV1 ><

204¢ 204s \dense
s dense de"setH

MAX POOL1
NORM1

27

w3
LT
[|
e ;
d
ol
n"‘ 1
w [

CONV2
MAX POOL2
NORM2
CONV3
CONV4 Details:

CONV5 1. Using ReLU for non-linearity
Max POOL3 2. Using dropout(0.5), data augmentation, L2 weight decay(5e-4)

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 1: AlexNet-2012

Architecture:
CONV1
MAX POOL1
NORM1 NN e A=l
CONV2 S |
MAX POOL2 o \
NORM2 81 "
CONV3 CONV3, FC6, FC7, :
Connections with all feature maps in
CONV4 preceding layer, communication
CONV5 1. Using RelLU for non-linearity across GPUs
Max POOL3 2 Using dropout(0.5), data augmentation, L2 weight decay(5e-4)
S 3. Multi-GPU (2 GTX 580 GPUs)
- 4. SGD Momentum 0.9, batch size 128
5. LR reduced by 10 when val acc plateaus

0™

e’

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 1: AlexNet-2012

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

28.2
First CNN-based winner 25.8
152 layers
A \
\\ 16.4
\ 11.7

Y 22 layers [19 layers ‘ I
\ .

6.7 73
3.57 I = 8 layers 8 layers shallow
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 | ILSVRC'12 | ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study 1: AlexNet-2012

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet: Improved 28.2
hyperparameters over 25.8
152 layers AlexNet
| - l
3 11.7

22 Iayers J 19 Iayers l
357 I_* I 8 layers _ 8Iayers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 | ILSVRC'13 | ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study 2: ZF Net - 2013

Z F N et [Zeiler and Fergus, 2013]
image size 224 110 26 13 _ 33 13 . =
filter size 7

u3 13
1 w384 | V1 384 256 M
'\2‘56 \ '\
stride 2 96 3x3max 3x3 max C
3x3 max pool| | contras pool| |contrast pool 4096 4096 class

— e [aexen, stride 2 units| | units| | softmax

3 55 3 L
N o @1 st . 256

Input Image
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

Image From cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdimageNet top 5 error: 16.4% -> 11.7%

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

28.2
. Deeper Networks 25.8
152 layers
A 1
A\
\
\
\
\
\
' 22 layers [19 layers ‘
\\ 6.7 7.3
3.57 I = I 8 layers 8 layers shallow
ILSVRC'15 | ILSVRC'14 ILSVRC'14 | ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study 3: VGGNet - 2014

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) ___
-> 16 - 19 layers (VGG16Net) T

FC 4096
FC 4096
Pool

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

(ZFNet)
-> 7.3% top 5 error in ILSVRC’14 AlexNet

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

11.7% top 5 error in ILSVRC’13

FC 1000

| Softmax | I | FC 4096]
| FC 1000 | I | FC 4096 |
| FC 4096 | 1 Pool 1

FC 4096]
_
| Pool | 1 Pool |
1 Pool | 1 Pool 1
1 Pool | B | Pool |
| Input] 1 Input |

Case Study 3: VGGNet - 2014

Case Study: VGGNet

Softmax | FC 4096 |

[Simonyan and Zisserman, 2014]

| FC 1000 | FC 4096
1 FC 4096 | : Pool II
Q: Why use smaller filters? (3x3 conv) —
Stack of three 3x3 conv (stride 1) layers
- = - CSotmex__]
has same effective receptive field as
one 7x7 conv layer = Wl

Pool

-
o
el
=
—
9|
Q
o

But deeper, more non-linearities

|
[Bool] Pool]
And fewer parameters: 3 * (3°C?) vs.
7°C? for C channels per layer C=— =1
AlexNet VGG16 VGG19

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 3: VGGNet - 2014

-
Case StUdy VGGNet
: ; | Softmax 1 | FC 4096 |
[Simonyan and Zisserman, 2014] s [rciooo 1 [Tcaoe 1
fc7 | FC 4096] | Pool]
fo6
:
Detalls convs-3 |
- ILSVRC’14 2nd in classification, 1st in oo —
localization |
) . o : conva-3
Similar training procedure as Krizhevsky s |
2012 o7 convi-1 |
- No Local Response Normalisation (LRN) o Q. e
- Use VGG16 or VGG19 (VGG19 only convs conva-1
y conv4 1 Pool | Poc |
slightly better, more memory) = _— [
- Use ensembles for best results cond s | |
. Pool Pool Pool
- FCT7 features generalize well to other — S——
convi | convi-1
tasks [input] Input]
AlexNet VGG16 VGG19

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 4: GoogleNet - 2014

Case Study: GoogleNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!
12X less than AlexNet

- ILSVRC’14 classification winner
(6.7% top 5 error)

\/

Previous Layer

Inception module

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”
/ 28.2

152 layers

\
\
\
P2 layers 19 Iayers
' 6.7

3.57 l : I 8layers || 8layers shallow

ILSVRC'15 LSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet oogleNet VGG AlexNet

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 5: ResNet - 2015

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
56-layer

Training error
Test error

[terations [terations

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 5: ResNet - 2015

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned

layers from the shallower model and setting
additional layers to identity mapping.

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 5: ResNet - 2015

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + x | relu
H(x)/) (x) T~ F(x) + x

Use layers to
fit residual

: X F(x) = H(x) - X

relu F) el identity in(st)ead éf)
T H(x) directly
X X
“Plain” layers Residual block

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Case Study 5: ResNet - 2015

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning

- No FC layers at the end
(only FC 1000 to output
classes)

I relu

F(x) + x

F(x)

relu

X
Residual block

X
identity

Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

i —1e— NoFClayers

besides FC
1000 to
output
b classes

Global
average

pooling layer
after last
conv layer

O
3x3 con
m-
3x3 conv, 64

Case Study 5: ResNet - 2015

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xavier/2 initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used

Complexity Comparisons

Inception-v4
801 80 1 .
Inception-v3 § _ ' ResNet-152
ResNet—50° 5 : VGG-16 | VGG-19
75 4 137 ResNet-101 ‘
ResNet-34
§ 70 é 701 ﬂ ResNet-18
a ® GoogLeNet
3 3 E et
S 65 1 % 651
ol ~
2 3 ° BN-NIN i
60+ 604 5M - 35M - 65M - 95M - 125M - 155M
BN-AlexNet
55 4 551 | AlexNet
M \ ® 40 49 ah O Vgl P b & 5 0 15 20 25 30 35 40
2 Dt gt ¥ A ’5 ‘) Q> 4aH¥ _N? N
ple' \;\e‘f“\\ v\\A \‘\ \A ‘\\e 66\360 $e W \\\e‘—'\;\\e"\ ‘\0(\ A0 Operations [G-Ops]
W ?\ Q\eﬁ?\ee Q\eﬁ\(\(’e \ (\CGQ

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Complexity Comparisons

Inception-v4: Resnet + Inception!

J Inception-v4
80 A 80 1 = j
Inception-v3 [ResNet-152
ResNet-50 : VGG-16 | VGG-19
. ResNet-34
£ 70 2 704 ResNet-18
z -
I © GooglLeNet
32 3 ENet
S 65 S 65
%‘ :9 © BN-NIN
F 60+ F 60 5M 35M 65M 95M 125M---155M
. BN-AlexNet
551 551 AlexNet
50 i@t 45, A0 8 o D 3ol ufB. a¥ 50 T T T T v - v .
PRI\ TR IR 0 5 10 15 20 25 30 35 40
e-i-\‘\ e‘N A W \;2‘»"A e“‘x@@x@@x e"’rb e‘b v'\’g '&36- o“'\l- o“'\} Operations [G-Ops]
RGP © RO S S g S g S S
: co° e 7 Q%P oe® ce® cef

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Complexity Comparisons

Top-1 accuracy [%]

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

80 1

751

704

65 1

60 1

551

50~

ne*
nelpeT o
>

Comparing complexity...

et

Top-1 accuracy [%]

A2 X 90 QY A5

80 1

751

70 4

65 1

60 1

554

50

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

VGG: Highest
memory, most

operations
Inception-v4 :
Inception-v3 | ResNet-152 /
ResNet-50 VGG-16 ! VGG-19
ResNet-101 :
° ResNet-34
ResNet-18
°° GooglLeNet
ENet
© BN-NIN
- 5M 35M 65M 95M 125M ---155M
» BN-AlexNet
' AlexNet
5 10 15 20 25 30 35 40

Operations [G-Ops]

Complexity Comparisons

.] GooglLeNet:
Comparing complexity... most efficient
Inception-v4
80 80 1 . _
Inception-v3 W, ‘ ! ResNet-152
ResN et—50° ; VGG-16 VGG-19
751 : ; i 751 ResNet-101
° ResNet-34
£ 70 = 70 ResNet-18
2 N -
o ® GooglLeNet
5 3 ENet
S 65 < 65 1
— —
s a © BN-NIN _
™ 601 " 601 5M 35M---- 65M----95M----125M---155M
. BN-AlexNet
551 551 | AlexNet
S RO\ D A0 AR N o 0 5 10 15 20 25 30 35 40
ﬁe ﬂ\ ﬁ“ &e \."\' 6 ‘\» 6:\' ‘3 ‘:‘) '& C) N ~N
e,* 5 \fe \~\8 i) \\\e e¥ o \0° ot Operations [G-Ops]
P\ ef:' 5$ \A Q’(‘ QK'
gﬁ s

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Complexity Comparisons

Comparing complexity...

AlexNet:
Smaller compute, still memory
heavy, lower accuracy

Inception-v4
80 1 80 4 :
InFeption-v3 | ResNet-152
Res et—50° VGG-16 VGG-19
75 4 751 ResNet-101
° ResNet-34

£ 704 £ 704 ResNet-18
ey) (.}
@ ® GoogleNet
3 3 E t
g 651 9 65 4
] T BN-NIN
@ 8

60 1 60 4 5M 35M 65M 95M------125M---155M

» BN-AlexNet
55 1 551 AlexNet
- RS & D A0 49 Q. o> agt > gk 0 0 5 10 15 20 25 30 35 40
" AN \2 AP\ ,’& 2k = ADF N2 N
\>~\e*$\9j§ W @& 3 $e‘ (, e% i $€;$e‘;§e‘ Q“O(\Q‘\OQ Operations [G-Ops]
eV ¢
%$ Q‘ WL o2 W\

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Complexity Comparisons

) _ ResNet:
Com paring CompIeX|ty. - Moderate efficiency depending on

model, highest accuracy

Inception-v4
801 80 1 -
Inception-v3 | ResNet-152
ResNet-50 ! VGG-16 VGG-19
° ResNet-34
& 70 4 = 70 - ResNet-18
z N -
o © GooglLeNet
3 3 ENet
S 651 Q 65+
= % © BN-NIN
o] (o]
F 60 F 604 5M 35M - 65M----95M - --125M ---155M
b BN-AlexNet
55 1 551 AlexNet
RS W ot D 40 A0 ol O .c0.ed O gb s 5 10 15 20 25 30 35 40
(2 W aet e A0 A0 A 2k oD M ask NP N
‘%\e,‘f‘\Q \\\%'A\k & \X\e‘ q \e \1(36 6&8‘6‘&6" .\\\GV‘\;\QVJ;{\O Q{ 0(‘ Operations [G-Ops]
e e 4
g& Q~ X Q@6 Q\'?f" (\(-e

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Other networks

Improving ResNets...
Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)

[Xie et al. 2016] 256-d out

- Also from creators of
ResNet 256-d out
- Increases width of
residual block through T
multiple parallel
pathways f
(“cardinality”)
- Parallel pathways
similar in spirit to
Inception module
Image From htto://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture9.pdf

256-din

Other networks

Beyond ResNets...

Densely Connected Convolutional Networks
[Huang et al. 2017] t

Softmax

Pool

|
FC |
|
- Dense blocks where each layer is |
connected to every other layer in
feedforward fashion
- Alleviates vanishing gradient,

strengthens feature propagation,
encourages feature reuse

Dense Block 3

| Pool |

| Dense Block 2 |

| Pool |

| Dense Block 1 |

| Input |

Dense Block
Image From http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Tips for training CNN

Know your data, clean your data, and normalize your data.
(A common trick: subtract the mean and divide its std.)

X -= np.mean(X, axis = @) # zero-center
X /= np.std(X, axis = @) # normalize

From http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf

Tips for training CNN

Augment your data:
horizontally flipping, random crops and color jittering.

From http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf

Tips for training CNN

Initialization:

a). Galibrating the variances with 1/sqrt(n)
w = np.random.randn(n) / sqrt(n) # (mean=0, var=1/n)
This ensures that all neurons have approximately the same output
distribution and empirically improves the rate of convergence.

(For neural network with ReLUs, w = np.random.randn(n) * sqrt(2.0/n)
Is recommended)

b). Initializing the bias:
Initialize the biases to be zero.

For ReLU non-linearities, some people like to use small constant value
such as 0.01 for all biases .

References: https://arxiv.org/pdf/1502.01852.pdf (Delving Deep into Rectifiers...)

https://arxiv.org/pdf/1502.01852.pdf

Tips for training CNN

Initialization: Input: Values of z over a mini-batch: B = {z1_,.};
Parameters to be learned: +, 3

¢). Batch Normalization. Output: {y; = BN, s(z:)}
Less sensitive to initialization

1 ™m
U — — Z T; // mini-batch mean
Lo

1 m
g 4 = Z(mz — pug)? // mini-batch variance
=1

Ly — UB
\/ + €

Yi + YZ; + 8 = BN, g(x;) /I scale and shift

T; // normalize

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

References: : iv. abs/1502.03167 Batch Normalization: Accelerating Deep Network Training by Reducing ...

https://arxiv.org/abs/1502.03167

Tips for training CNN

Regularization:
L1 : for sparsity
L2 : penalties peaky weight vectors, and prefers diffuse weight vectors.
Dropout:

(b) After applying dropout.

From http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf

Tips for training CNN

Setting hyperparameters:
Learning Rate / Momentum (Awt* = Awt + mAwt-1)
Decrease learning rate while training
Setting momentum to 0.8 - 0.9

Batch Size:
For large dataset: set to whatever fits your memory
For smaller dataset: find a tradeoff between instance randomness and
gradient smoothness

From http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf

Tips for training CNN

Monitoring your training (e.g. tensorboard):
Optimize your hyperparameter on val and evaluate on test
Keep track of training and validation loss during training
Do early stopping if training and validation loss diverge
Loss doesn’t tell you all. Try precision, class-wise precision, and more

From http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf

That’s it!

You're now ready for field
experience at the deep end of Star
Command!

Remember: You can only learn
while doing it yourself!

Acknowledgements/Other Resources

Yukun Zhu’s tutorial from CSC2523 (2015):
http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf,

CS231n CNN Architectures (Stanford):
http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture9.pdf

UIUC Advanced Deep Learning Course (201/):
http://slazebni.cs.illinois.edu/spring11/lec04 advanced cnn.pdf

http://www.cs.toronto.edu/~fidler/teaching/2015/slides/CSC2523/CNN-tutorial.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf
http://slazebni.cs.illinois.edu/spring17/lec04_advanced_cnn.pdf

