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1 Introduction

This note describes some recent advances that improve the performance of the object detection
system described in [2]. Some of the improvements included here comprised the UoC-TTI LSVM-
MDPM entry in the PASCAL VOC 2009 comp3 challenge [1] and others were developed subse-
quently. Complete source code for the latest version of the object detection system can be found
at http://people.cs.uchicago.edu/~pff/latent/.

2 Models

Figure 1 shows some of the models trained by the current version of the system.
In [2] each object class was represented by a two component mixture of deformable part mod-

els, where each component is bilaterally symmetric. We now use a richer class of models, where
each object class is represented by a three component mixture of asymmetric models. Bilateral
asymmetry allows each component to specialize at the task of detecting left or right object poses.
During detection each component is matched to the image in both left and right orientations. This
means that in effect we have a mixture model with six components, with the extra constraint that
components are grouped into left-right symmetric pairs. The left-right pose distinction is automat-
ically learned by our system in an unsupervised fashion without the use of additional pose labels
(we ignore the incomplete pose labels given by the PASCAL annotations).

2.1 Left-Right Pose Clustering

The input data is a set of images containing instances of an object class. The location and extent of
each instance is specified by a bounding box. As in [2] we use the aspect ratio of the bounding boxes
to separate the instances into different clusters. But now we further break down these clusters to
separate left and right facing examples.

We crop the image region under each bounding box and resize it to a fixed width and height.
Each cropped and resized region, along with its vertically flipped counterpart, is mapped into a
feature space (we use a variant of HOG features described in [2]) where clustering takes place.

The clustering algorithm is a variant of online k-means with the following constraint: no example
and its flipped counterpart may be placed into the same cluster. The algorithm begins by selecting
(uniformly at random) an example and its flipped counterpart. These feature vectors seed the two
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Figure 1: Fully trained car and person models using the PASCAL VOC 2007 train+val data. Here
we display 3 components for each class. In practice each component also has a left-right flipped
counterpart for a total of 6 components per class.

(a) (b) (c)

Figure 2: Examples of root filters trained on left-right pose clustered data from the classes (a)
bicycle, (b) horse, and (c) person.

clusters. In each iteration a new example is drawn from the pool of remaining examples. The
chosen example is assigned to the cluster with minimum Euclidean distance between the cluster
center and the example. The example’s flipped counterpart is then assigned to the other cluster.

After all examples have been assigned we use a local search method to improve the clustering.
We repeatedly pick an example and its counterpart, and check if swapping their cluster labels can
reduce the total sum of squared distances (SSD) from examples to their assigned cluster’s center.

The clustering process is repeated several times using different initial seed examples to avoid bad
local minima. The clustering with the best SSD objective function value is selected. Empirically
we have found that this process is very effective at clustering most object classes into two clusters
corresponding to left and right facing examples. See Figure 2 for some examples. Naturally there
are some exceptions (e.g., bottle) where the left-right distinction does not make sense.

2.2 Part Initialization

Given a root filter, we initialize k d×d part filters at twice the spatial resolution of the root by
selecting part locations and cropping out sub-arrays from a higher resolution version of the root
filter. The default configuration of the system uses k = 8 and d = 6. That is, we have 8 6×6 parts
in each deformable model.
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Part locations are selected using a two phase procedure. The first phase uses a greedy method
and the second phase refines the initialization.

To initialize part locations, the root filter is interpolated to twice its original resolution and an
“energy” map of the interpolated filter is computed. The energy map records the squared norm of
the positive filter weights in each filter cell. The k parts are sequentially placed in the position that
covers the largest amount of remaining energy. Cells that have already been covered have their
energy set to zero.

After greedily selecting initial part locations, we use local search to move the parts, one at a time
in random order, to maximize the amount of energy that is covered. When a better covering cannot
be found, this phase is restarted from the initial part configuration to see if more energy can be
covered by repositioning the parts in a different order. After several restarts the part configuration
that covers the most energy is selected.

2.3 Image Boundary Occlusion

The PASCAL dataset contains many examples of objects that are truncated by the image boundary.
To detect partially visible objects we pad each image’s feature map with a boundary region.

In [2] feature vectors in the boundary region are set to the zero vector. This leads to a fixed score
of zero for any filter placed entirely outside the image, which may be inappropriately calibrated
with respect to filter responses inside the image. To compensate for this effect, we now augment
feature vectors with an additional feature that takes the value 0 if the feature is inside the image
and 1 if the feature is in the boundary region. This boundary occlusion feature enables the learning
of a bias parameter for each filter cell that is added to the filter response if that filter cell is placed
in the boundary region.

This 0/1 occlusion feature is the same as the one proposed in [3], however there are two differ-
ences in our implementation. The implementation described in [3] uses a single occlusion feature
per filter (not per filter cell) that counts the number of filter cells that are placed in the boundary
region. The second difference is in our training data requirements. The training procedure in [3]
requires manually extending the PASCAL bounding boxes to indicate how far each bounding box,
that is truncated by the image boundary, ought to extend into the boundary region. Our approach
does not require any change to the PASCAL annotations. Instead, during the latent variable com-
pletion stage of our training procedure, we measure overlap of the putative detection window with
the ground-truth bounding box after first clipping the detection window to the image boundary.

3 Regularization

In [2] we trained model parameters β by optimizing the latent SVM objective function

1
2
||β||2 + C

N∑
i=1

max(0, 1− yifβ(xi)), (1)

where fβ(x) = maxz∈Z(x) β · Φ(x, z).
For a mixture model with k components, the vector of model parameters β can be written as

the concatenation of k vectors, one per component, β = (β1, . . . , βk). Empirically we have found
that a regularizer that only penalizes the component vector with the largest norm leads to better
results (as measured by average precision on test data).
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The max-regularized objective function is given by

1
2

max
i=1,...,k

||βi||2 + C
N∑
i=1

max(0, 1− yifβ(xi)). (2)

For non-separable data this objective function will typically lead to component vectors with
equal norm. This happens because in practice there is no regularization on a component vector βi
whose norm is below the maximum one. This seems to make the margin requirements for different
examples more compatible.

4 Results

The tables below summarize the current results in the PASCAL 2006, 2007, and 2009 datasets
following the comp3 protocol.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

without context 39.5 48.2 11.4 12.3 28.6 42.3 40.4 25.0 17.4 20.5 15.3 14.5 42.1 44.4 41.9 12.7 24.3 16.5 43.3 32.2 28.6

with context 43.6 50.8 15.1 14.1 30.2 45.6 41.8 27.3 18.9 22.1 15.8 18.2 45.7 47.3 43.8 14.3 26.4 18.2 46.8 33.7 31.0

Table 1: PASCAL VOC 2009 comp3

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

without context 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

with context 31.2 61.5 11.9 17.4 27.0 49.1 59.6 23.1 23.0 26.3 24.9 12.9 60.1 51.0 43.2 13.4 18.8 36.2 49.1 43.0 34.1

Table 2: PASCAL VOC 2007 comp3

bike bus car cat cow dog horse mbike person sheep mean

without context 67.1 65.8 70.7 26.8 47.7 15.8 48.3 66.0 41.0 45.6 49.5

with context 69.2 67.6 71.5 29.0 51.4 19.4 54.0 70.0 44.3 47.4 52.4

Table 3: PASCAL VOC 2006 comp3

We also trained and tested a model on the INRIA Person dataset. We scored the model using
the PASCAL evaluation methodology in the complete test dataset, including images without people.

INRIA Person average precision: 88.2
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