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Why Represent Uncertainty?

 The world is full of uncertainty
— “Is there a person in this image?”
— “What will the weather be like today?”
— “Will I like this movie?”

 We're trying to build systems that u dersta
and (possibly) interact with the real world =

 We often can’t prove something is true, but
we can still ask how likely different outcomes
are or ask for the most likely explanation



Why Use Probability to Represent
Uncertainty?

* Write down simple, reasonable criteria that you'd
want from a system of uncertainty (common
sense stuff), and you always get probability:

— Probability theory is nothing but common sense
reduced to calculation. — Pierre Laplace, 1812

* Cox Axioms (Cox 1946); See Bishop, Section 1.2.3

 We will restrict ourselves to a relatively informal
discussion of probability theory.



Notation

A random variable X represents outcomes or
states of the world.

We will write p(x) to mean Probability(X = x)

Sample space: the space of all possible
outcomes (may be discrete, continuous, or
mixed)

p(x) is the probability mass (density) function
— Assigns a number to each point in sample space
— Non-negative, sums (integrates) to 1

— Intuitively: how often does x occur, how much do
we believe in x.



Joint Probability Distribution

* Prob(X=x, Y=vy)
— “Probability of X=x and Y=y”
_ p(xr y)

Conditional Probability Distribution

* Prob(X=x]|Y=y)
— “Probability of X=x given Y=y”
— p(x|y) = p(x,y)/ply)



The Rules of Probability

* Sum Rule (marginalization/summing out):
p(x) = Ep(x, »)
p(x,) = EE Ep(xl X,

. Product/Cham RuIe

p(x,y)=p(y|x)p(x)
p(xp---»xzv) = p(x,) p(x, |X1)...p(xN |x19"°9xN—1)



Bayes’ Rule

* One of the most important formulas in
probability theory

pylx)p(x)  p(ylx)p(x)
p(» Y p(yIx)px)

* This gives us a way of “reversing” conditional
probabilities

pxly)=



Independence

e Two random variables are said to be
independent iff their joint distribution factors

X 1Y < p(x,y)=pylx)p(x)=pxly)p(y)=px)p(y)

 Two random variables are conditionally

independent given a third if they are
independent after conditioning on the third

X1YIZ< px,ylz)=p(ylx,2)p(xlz)=p(ylz)p(xlz) Vz



Continuous Random Variables

* Qutcomes are real values. Probability density
functions define distributions.

P(x|u,0)= raexp{ : — 2}

e Continuous joint distributions: replace sums
with integrals, and everything holds

— E.g., Marginalization and conditional probability
P(x,2) = [P(x,3,2) = [P(x,] ))P(7)
y y



Summarizing Probability Distributions

* |tis often useful to give summaries of
distributions without defining the whole
distribution (E.g., mean and variance)

* Mean: E[x]=(x) =fx-p(x)dx

+ Variance: var(x) = [(x~ E[x])* - p(x) ds
—E[x* FE[x]

 Nth moment: W, = f(x—c)” p(x) dx



Exponential Family

Family of probability distributions
Many of the standard distributions belong to
this family

— Bernoulli, binomial/multinomial, Poisson, Normal
(Gaussian), beta/Dirichlet,...

Share many important properties

— e.g. They have a conjugate prior (we’ll get to that
later. Important for Bayesian statistics)

First — let’s see some examples



Definition

The exponential family of distributions over x,
given parameter n (eta) is the set of
distributions of the form

p(x[n) = h(x)g(m)exp{n u(x)}
x-scalar/vector, discrete/continuous
n — ‘natural parameters’
u(x) — some function of x (sufficient statistic)
g(n) - normalizer

g [h(x)exp iy u(x)jdx =1



Example 1: Bernoulli

* Binary random variable - Xe{,
* p(heads) = weE[0,1]
* Coin toss

p(x|p)=p (1-0)"



Example 1: Bernoulli

p(x|n) = h(x)g(n)expin’ u(x)}

p(x|u)=u (1-w™ h(x)=1
u(x)=x
=exp{xIlnu+(1-x)In(l1-u)} 1
- ln( ‘ )=u=a<n>= .
~(1- mexp{ln( )x} - L+e
L-u g(n) = o(-n)

p(x|n) = o(-n)exp(nx)




Example 2: Multinomial

* p(value k) = €101 Y =1
=]
* For a single observation — die toss

— Sometimes called Categorical

* For multiple observations M
— integer counts on N trials ;x" =N

— Prob(1 came out 3 times, 2 came out once,...,6
came out 7 times if | tossed a die 20 times)

P(Xp, sy | 1) = Hx ];lﬂ




Example 2: Multinomial (1 observation)

p(x|n) = h(x)g(n)expin’ u(x)}

M
P(X,,....,X,, | 1) = ];[u;;k h(x) =1
y u(x)=x
= eXp{Z x, In g}
=]

Parameters are not independent
due to constraint of summing to 1,
there’s a slightly more involved
notation to address that, see Bishop

p(x| 1) =exp(n’ x) i




Example 3: Normal (Gaussian)
Distribution

e Gaussian (Normal)

1 1 ,
9 — Sy 2 _
X O)= 271—0- cX 20_ X
1.0 T
I p=0, 0?=0.2 —
- p=0, 0?=1.0—
0.8 p=0, 02=5.0 —1]
u=-2, 02=0.5




Example 3: Normal (Gaussian)

Distribution
(| t,0) = ———expl - (x—uy?
P U, \/ﬂO' pi 20_2 U j

* Histhe mean
e o02is the variance

e Can verify these by computing integrals. E.g.,

3 |
X eXPA —
. ;f_ . \2mo p{

1
5o (- /«t)z}dx = u



Example 3: Normal (Gaussian)
Distribution

e Multivariate Gaussian

P(x1wX)=Pay" eXp{—%(x - Y (x - u)}




Example 3: Normal (Gaussian)
Distribution

e Multivariate Gaussian

px| . 3) =3 eXp{—%(x—ﬂ)T z'%x—m}

* XIS NOW a vector
* His the mean vector
e 3 is the covariance matrix



Important Properties of Gaussians

All marginals of a Gaussian are again Gaussian
Any conditional of a Gaussian is Gaussian

The product of two Gaussians is again
Gaussian

Even the sum of two independent Gaussian
RVs is a Gaussian.



Exponential Family Representation
p(x[17) = h(x)g(n) exp{n u(x)}
1 !

X ,O) = CXPL — 9
p(x| u,0) Sy p{k > |
-1
_ | —1 2 +£2X+ 2 ﬂ2}=
2TO 207 o 20
1 ; 2 M _1 . 'x'
= (27) 2(-21,) eXp( Jexpi|— =1l L,
4772 o° 20 ||x
\ J \ T
Y ) L

v
h(x) g(n) n' u(x)



Example: Maximum Likelihood For a
1D Gaussian

e Suppose we are given a data set of samples of
a Gaussian random variable X, D={x%,..., x\}
and told that the variance of the data is o2

x1 x? XN
What is our best guess of u?

*Need to assume data is independent and
identically distributed (i.i.d.)



Example: Maximum Likelihood For a
1D Gaussian

What is our best guess of u?

e We can write down the likelihood function:
1

pd =] [ | o) -] | J%O exp{— - mZ}

 We want to choose the p that maximizes this
expression

— Take log, then basic calculus: differentiate w.r.t. y,
set derivative to O, solve for u to get sample mean

Wi = %E:xi



Example: Maximum Likelihood For a

1D Gaussian
— Oyr—
m
1 2 N
X X HI\/IL". X

Maximum Likelihood



ML estimation of model parameters
for Exponential Family

p(D 1) = p(x;.enxy) = ([T A3 Je ) expin” Y u(x, )}

ap(Dln) _
Jan

...,set to 0, solve for Vg(n)

1 N
—Vin =— 3 u(x
g(M) N; (x,)

* Can in principle be solved to get estimate for eta.

* The solution for the ML estimator depends on the data only through sum
over u, which is therefore called sufficient statistic

* What we need to store in order to estimate parameters.



Bayesian Probabilities
01 dy < Pd10P(O)

(d ‘ ‘9) is the I|keI|hoocf?funct|on

p(0) isthe prior probability of (or our prior
belief over) 6

— our beliefs over what models are likely or not before
seeing any data

p(d)=[p(d|O)P6)dO s the

normalization constant or partition function

p(6|d) is the posterior distribution

— Readjustment of our prior beliefs in the face of data



Example: Bayesian Inference For a 1D
Gaussian

e Suppose we have a prior belief that the mean
of some random variable X is p, and the
variance of our belief is 0,°

 We are then given a data set of samples of X,
d={x1,..., xN} and somehow know that the
variance of the data is o

What is the posterior distribution over (our belief
about the value of) u?



Example: Bayesian Inference For a 1D
Gaussian

x1 x?2 xN



Example: Bayesian Inference For a 1D
Gaussian

Xl X2 . uo XN

Prior belief



Example: Bayesian Inference For a 1D
Gaussian

d) p(d|w)p(u)
p(d)

* Remember from earlier p(u|

e p(d|w)isthe likelihood function
N ' N 1
dlw=\||Px'|uo)=
1w =T [P |100) Hmae"p{ o u)}

« p(u) is the prior probability of (or our prior
belief over) u

Wiy, 0,) = exp) - %
p M MO? 0 \/70'0 S 200

Y




Example: Bayesian Inference For a 1D
Gaussian

p(u| D)o p(D|u)p(w)
p(u|D)=Normal(u|u,,oy)

where Wy = 2 > Wy T 2 > Wt



Example: Bayesian Inference For a 1D
Gaussian

Xl X2 . uo XN

Prior belief



Example: Bayesian Inference For a 1D
Gaussian

— Oy

1 2 N
X X uI\/IL'“ lJ.O X

Prior belief
Maximum Likelihood



Example: Bayesian Inference For a 1D
Gaussian

o’ W
xt x2 N XN
Prior belief

Maximum Likelihood
Posterior Distribution



DID THE SUN JUST EXPLODE?

(ITS NIGHT, S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MEASURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, ITROUS TWO DICE.. |F THEY

BOTH COME UP SIX, ITUES TO US.
OMHERWISE, IT TELLS THE TRUIH.
LETS TRY.
JETECTOR! HAS THE
&»VGWEAOVH’ o

)
I,

FREQUENTIST STRTSTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILITY OF THIS RESULT

HAPPENING BY CHANCE 15 3,=0077. BET YOU $50
GNCE p<0.05, T. CONCLUDE T HANT
TFHTFE&N%B@LDDED )

Ja

Image from xkcd.com



Conjugate Priors

Notice in the Gaussian parameter estimation
example that the functional form of the posterior
was that of the prior (Gaussian)

Priors that lead to that form are called ‘conjugate
oriors’

~or any member of the exponential family there
exists a conjugate prior that can be written like

p@1xv) = fCev)gm)” expivy’ x}
Multiply by likelihood to obtain posterior (up to
normalization) of the form

p(7|D, x.v) = g(m)™" exp{y (E u(x,) +vy0))}

Notice the addition to the sufficient statistic
v is the effective number of pseudo-observations.




Conjugate Priors - Examples

Beta for Bernoulli/binomial

Dirichlet for categorical/multinomial
Normal for mean of Normal

And many more...

— Conjugate Prior Table:
* http://en.wikipedia.org/wiki/Conjugate_prior



