CSC 411: Lecture 19: Reinforcement Learning

Class based on Raquel Urtasun & Rich Zemel's lectures

Sanja Fidler

University of Toronto

April 3, 2016

Today

- Learn to play games
- Reinforcement Learning

[pic from: Peter Abbeel]

Playing Games: Atari

https://www.youtube.com/watch?v=V1eYniJORnk

Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_14U9A

Making Pancakes!

https://www.youtube.com/watch?v=W_gxLKSsSIE

Reinforcement Learning Resources

- RL tutorial on course website
- Reinforcement Learning: An Introduction, Sutton & Barto Book (1998)

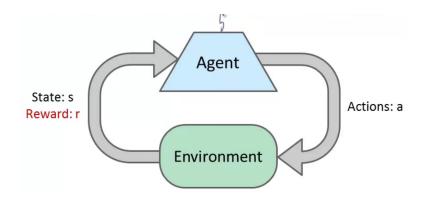
What is Reinforcement Learning?

[pic from: Peter Abbeel]

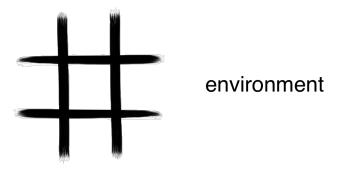
Reinforcement Learning

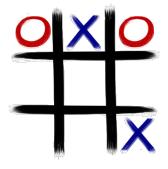
- Learning algorithms differ in the information available to learner
 - ► Supervised: correct outputs
 - Unsupervised: no feedback, must construct measure of good output
 - ► Reinforcement learning
- More realistic learning scenario:
 - Continuous stream of input information, and actions
 - Effects of action depend on state of the world
 - Obtain reward that depends on world state and actions
 - not correct response, just some feedback

Reinforcement Learning

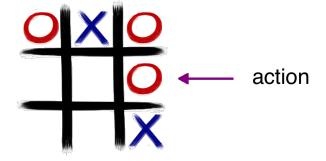


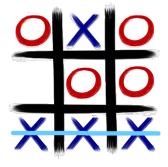
[pic from: Peter Abbeel]





(current) state





reward (here: -1)

Formulating Reinforcement Learning

- World described by a discrete, finite set of states and actions
- At every time step t, we are in a state s_t , and we:
 - ightharpoonup Take an action a_t (possibly null action)
 - ightharpoonup Receive some reward r_{t+1}
 - Move into a new state s_{t+1}
- An RL agent may include one or more of these components:
 - Policy π : agents behaviour function
 - ▶ Value function: how good is each state and/or action
 - Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour.
- It's a selection of which action to take, based on the current state
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = P[a_t = a|s_t = s]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- Our aim will be to maximize the value function (the total reward we receive over time): find the policy with the highest expected reward
- By following a policy π , the value function is defined as:

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

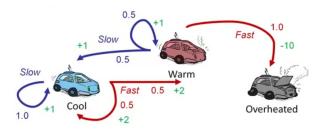
- γ is called a discount rate, and it is always $0 \le \gamma \le 1$
- \bullet If γ close to 1, rewards further in the future count more, and we say that the agent is "farsighted"
- ullet γ is less than 1 because there is usually a time limit to the sequence of actions needed to solve a task (we prefer rewards sooner rather than later)

Model

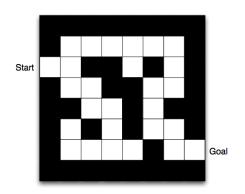
 The model describes the environment by a distribution over rewards and state transitions:

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

 We assume the Markov property: the future depends on the past only through the current state

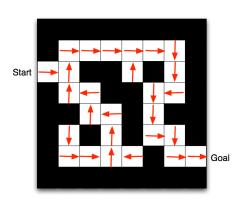


Maze Example



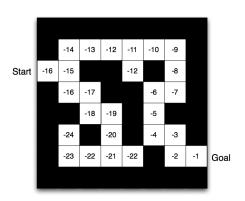
- ullet Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example



• Arrows represent policy $\pi(s)$ for each state s

Maze Example



• Numbers represent value $V^{\pi}(s)$ of each state s

Example: Tic-Tac-Toe

- Consider the game tic-tac-toe:
 - reward: win/lose/tie the game (+1/-1/0) [only at final move in given game]
 - state: positions of X's and O's on the board
 - policy: mapping from states to actions
 - based on rules of game: choice of one open position
 - value function: prediction of reward in future, based on current state
- In tic-tac-toe, since state space is tractable, can use a table to represent value function

RL & Tic-Tac-Toe

• Each board position (taking into account symmetry) has some probability

State	Probability of a win (Computer plays "o")
* O	0.5
00 x	0.5
* 0 * 0	1.0
* O * O	0.0
0 ×	0.5
etc	

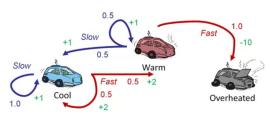
- Simple learning process:
 - start with all values = 0.5
 - policy: choose move with highest probability of winning given current legal moves from current state
 - update entries in table based on outcome of each game
 - After many games value function will represent true probability of winning from each state
- Can try alternative policy: sometimes select moves randomly (exploration)

Basic Problems

• Markov Decision Problem (MDP): tuple (S, A, P, γ) where P is

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

- Standard MDP problems:
 - 1. Planning: given complete Markov decision problem as input, compute policy with optimal expected return



[Pic: P. Abbeel]

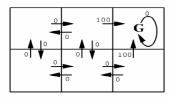
Basic Problems

• Markov Decision Problem (MDP): tuple (S, A, P, γ) where P is

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

- Standard MDP problems:
 - 1. Planning: given complete Markov decision problem as input, compute policy with optimal expected return
 - 2. Learning: We don't know which states are good or what the actions do. We must try out the actions and states to learn what to do

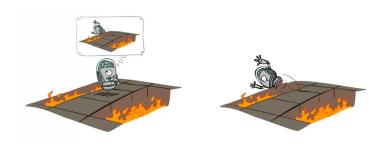
Example of Standard MDP Problem



r(s, a) (immediate reward)

- 1. Planning: given complete Markov decision problem as input, compute policy with optimal expected return
- Learning: Only have access to experience in the MDP, learn a near-optimal strategy

Example of Standard MDP Problem



- 1. Planning: given complete Markov decision problem as input, compute policy with optimal expected return
- 2. Learning: Only have access to experience in the MDP, learn a near-optimal strategy

We will focus on learning, but discuss planning along the way

Exploration vs. Exploitation

- If we knew how the world works (embodied in P), then the policy should be deterministic
 - just select optimal action in each state
- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy from its experiences of the environment
- Without losing too much reward along the way
- Since we do not have complete knowledge of the world, taking what appears to be the optimal action may prevent us from finding better states/actions
- Interesting trade-off:
 - ► immediate reward (exploitation) vs. gaining knowledge that might enable higher future reward (exploration)

Examples

- Restaurant Selection
 - Exploitation: Go to your favourite restaurant
 - Exploration: Try a new restaurant
- Online Banner Advertisements
 - Exploitation: Show the most successful advert
 - Exploration: Show a different advert
- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

MDP Formulation

• Goal: find policy π that maximizes expected accumulated future rewards $V^{\pi}(s_t)$, obtained by following π from state s_t :

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

- Game show example:
 - assume series of questions, increasingly difficult, but increasing payoff
 - choice: accept accumulated earnings and quit; or continue and risk losing everything
- Notice that:

$$V^{\pi}(s_t) = r_t + \gamma V^{\pi}(s_{t+1})$$

What to Learn

• We might try to learn the function V (which we write as V^*)

$$V^*(s) = \max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

- Here $\delta(s,a)$ gives the next state, if we perform action a in current state s
- We could then do a lookahead search to choose best action from any state s:

$$\pi^*(s) = arg \max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

- But there's a problem:
 - ▶ This works well if we know $\delta()$ and r()
 - ▶ But when we don't, we cannot choose actions this way

Q Learning

• Define a new function very similar to V^*

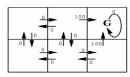
$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

• If we learn Q, we can choose the optimal action even without knowing $\delta!$

$$\pi^*(s) = \arg\max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

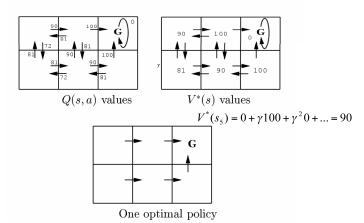
= $\arg\max_{a} Q(s, a)$

• Q is then the evaluation function we will learn



 $\gamma = 0.9$

r(s, a) (immediate reward) values



Training Rule to Learn Q

• Q and V^* are closely related:

$$V^*(s) = \max_a Q(s,a)$$

• So we can write Q recursively:

$$Q(s_{t}, a_{t}) = r(s_{t}, a_{t}) + \gamma V^{*}(\delta(s_{t}, a_{t}))$$

= $r(s_{t}, a_{t}) + \gamma \max_{a'} Q(s_{t+1}, a')$

- ullet Let \hat{Q} denote the learner's current approximation to Q
- Consider training rule

$$\hat{Q}(s,a) \leftarrow r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')$$

where s' is state resulting from applying action a in state s

Q Learning for Deterministic World

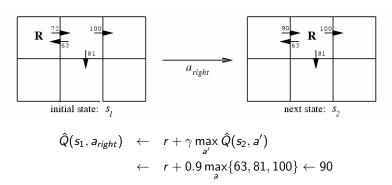
- ullet For each s,a initialize table entry $\hat{Q}(s,a) \leftarrow 0$
- Start in some initial state s
- Do forever:
 - Select an action a and execute it
 - Receive immediate reward r
 - Observe the new state s'
 - ▶ Update the table entry for $\hat{Q}(s, a)$ using Q learning rule:

$$\hat{Q}(s,a) \leftarrow r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')$$

- \triangleright $s \leftarrow s'$
- If we get to absorbing state, restart to initial state, and run thru "Do forever" loop until reach absorbing state

Updating Estimated Q

• Assume the robot is in state s_1 ; some of its current estimates of Q are as shown; executes rightward move



- Important observation: at each time step (making an action a in state s only one entry of \hat{Q} will change (the entry $\hat{Q}(s,a)$)
- \bullet Notice that if rewards are non-negative, then \hat{Q} values only increase from 0, approach true Q

Q Learning: Summary

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action a results in transition from state s_i to s_j ; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule
- ullet Intuition for simple grid world, reward only upon entering goal state o Q estimates improve from goal state back
 - 1. All $\hat{Q}(s,a)$ start at 0
 - 2. First episode only update $\hat{Q}(s,a)$ for transition leading to goal state
 - 3. Next episode if go thru this next-to-last transition, will update $\hat{Q}(s,a)$ another step back
 - 4. Eventually propagate information from transitions with non-zero reward throughout state-action space

Q Learning: Exploration/Exploitation

- Have not specified how actions chosen (during learning)
- ullet Can choose actions to maximize $\hat{Q}(s,a)$
- Good idea?
- Can instead employ stochastic action selection (policy):

$$P(a_i|s) = \frac{\exp(k\hat{Q}(s,a_i))}{\sum_i \exp(k\hat{Q}(s,a_i))}$$

- Can vary k during learning
 - more exploration early on, shift towards exploitation

Non-deterministic Case

- What if reward and next state are non-deterministic?
- ullet We redefine V,Q based on probabilistic estimates, expected values of them:

$$V^{\pi}(s) = E_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots]$$
$$= E_{\pi}[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}]$$

and

$$Q(s,a) = E[r(s,a) + \gamma V^*(\delta(s,a))]$$

$$= E[r(s,a) + \gamma \sum_{s'} p(s'|s,a) \max_{a'} Q(s',a')]$$

Non-deterministic Case: Learning Q

- ullet Training rule does not converge (can keep changing \hat{Q} even if initialized to true Q values)
- So modify training rule to change more slowly

$$\hat{Q}(s, a) \leftarrow (1 - \alpha_n)\hat{Q}_{n-1}(s, a) + \alpha_n[r + \gamma \max_{a'} \hat{Q}_{n-1}(s', a')]$$

where s' is the state land in after s, and a' indexes the actions that can be taken in state s'

$$\alpha_n = \frac{1}{1 + \mathsf{visits}_n(s, a)}$$

where visits is the number of times action a is taken in state s