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@ Margin

@ Max-margin classification
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@ We are back to supervised learning

o We are given training data {(x(), t())}N

o We will look at classification, so £ will represent the class label

e We will focus on binary classification (two classes)

e We will consider a linear classifier first (next class non-linear decision
boundaries)

@ Tiny change from before: instead of using t =1 and t = 0 for

positive and negative class, we will use t = 1 for the positive and
t = —1 for the negative class
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Logistic Regression

Recall logistic regression classifiers
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Max Margin Classification

@ Instead of fitting all the points, focus on boundary points

@ Aim: learn a boundary that leads to the largest margin (buffer) from points
on both sides

@ Why: intuition; theoretical support; and works well in practice

@ Subset of vectors that support (determine boundary) are called the support
vectors
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Linear SVM

@ Max margin classifier: inputs in margin are of unknown class
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Undefined if —1<w'x+b<1

@ Can write above condition as:

(wix+ by >1
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Geometry of the Problem
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@ The vector w is orthogonal to the +1 plane.
If u and v are two points on that plane, then

wi(u-v)=0

@ Same is true for —1 plane

@ Also: for point x; on +1 plane and x_ nearest point on —1 plane:

Xp = AW + x_
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Computing the Margin

@ Also: for point x; on +1 plane and x_ nearest point on —1 plane:

Xp = AW + x_

" wix, +b=1
V w'(Aw +x_)+b=1
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Computing Margin

@ Define the margin M to be the distance between the +1 and —1 planes

@ We can now express this in terms of w to maximize the margin we minimize
the length of w
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Learning a Margin-Based Classifier

@ We can search for the optimal parameters (w and b) by finding a solution
that:

1. Correctly classifies the training examples: {(x(), t()}N
2. Maximizes the margin (same as minimizing w’w)
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@ This is called the primal formulation of Support Vector Machine (SVM)
@ Can optimize via projective gradient descent, etc.

@ Apply Lagrange multipliers: formulate equivalent problem
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Learning a Linear SVM

@ Convert the constrained minimization to an unconstrained optimization
problem: represent constraints as penalty terms:

.1 2
min = ||w|[” + penalty_term
w,b 2

@ For data {(x(), t())}N_, use the following penalty

, , T 4 B > 1
max a,[l _ (WTX(I) + b)t(l)] — {0 | (W X\ + b)t =

;>0 oo otherwise

@ Rewrite the minimization problem
1 N
inf = 2 11— (wx(® ()
min{5|iwll +Z;gjg>5a,[1 (wx? + b))}
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where «; are the Lagrange multipliers
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Solution to Linear SVM

@ Let: 1 N
o) — o 2 11 — (w T x() ()
J(w, bra) = 5 |lw]] +;a,[1 (w'xt + b)tt"]

@ Swap the "max" and "min”: This is a lower bound

maxmin J(w, b; ) < minmax J(w, b; a)

;>0 w,b w,b a;>0

@ Equality holds in certain conditions
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Solution to Linear SVM

@ Solving:
L S () ()
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maxmin J(w, bja) = maxmin >|w| +;a,[1 (wTx® 4+ p)()]

@ First minimize J() w.r.t. w, b for fixed Lagrange multipliers:
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@ Then substitute back to get final optimization:
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Summary of Linear SVM

@ Binary and linear separable classification
@ Linear classifier with maximal margin

@ Training SVM by maximizing
max{z o — = Z 00 o5 (x7) -x(j))}

a; >0
i,j=1

subject to «; > 0; Z oz;t(i) =0
@ The weights are

N
w=3 it
i=1

@ Only a small subset of «;'s will be nonzero, and the corresponding x(N's are
the support vectors S

@ Prediction on a new example:

y =sign[b+x- Za, = sign[b+x - Za,

i=1 i€S
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What if data is not linearly separable?

+1 plane
’
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Y / -1 plane
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@ Introduce slack variables &;
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@ Example lies on wrong side of hyperplane & >1
@ Therefore ). & upper bounds the number of training errors
@ )\ trades off training error vs model complexity

@ This is known as the soft-margin extension
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