CSC 411: Lecture 14: Principal Components Analysis \& Autoencoders

Class based on Raquel Urtasun \& Rich Zemel's lectures

Sanja Fidler

University of Toronto

March 14, 2016

Today

- Dimensionality Reduction
- PCA
- Autoencoders

Mixture models and Distributed Representations

- One problem with mixture models: each observation assumed to come from one of K prototypes
- Constraint that only one active (responsibilities sum to one) limits the representational power
- Alternative: Distributed representation, with several latent variables relevant to each observation
- Can be several binary/discrete variables, or continuous

Example: Continuous Underlying Variables

- What are the intrinsic latent dimensions in these two datasets?

- How can we find these dimensions from the data?

Principal Components Analysis

- PCA: most popular instance of second main class of unsupervised learning methods, projection methods, aka dimensionality-reduction methods
- Aim: find a small number of "directions" in input space that explain variation in input data; re-represent data by projecting along those directions
- Important assumption: variation contains information
- Data is assumed to be continuous:
- linear relationship between data and the learned representation

PCA: Common Tool

- Handles high-dimensional data
- If data has thousands of dimensions, can be difficult for a classifier to deal with
- Often can be described by much lower dimensional representation
- Useful for:
- Visualization
- Preprocessing
- Modeling - prior for new data
- Compression

PCA: Intuition

- As in the previous lecture, training data has N vectors, $\left\{\mathbf{x}_{n}\right\}_{n=1}^{N}$, of dimensionality D, so $\mathbf{x}_{i} \in \mathbb{R}^{D}$
- Aim to reduce dimensionality:
- linearly project to a much lower dimensional space, $M \ll D$:

$$
x \approx U \mathbf{z}+\mathbf{a}
$$

where U a $D \times M$ matrix and \mathbf{z} a M-dimensional vector

- Search for orthogonal directions in space with the highest variance
- project data onto this subspace
- Structure of data vectors is encoded in sample covariance

Finding Principal Components

- To find the principal component directions, we center the data (subtract the sample mean from each variable)
- Calculate the empirical covariance matrix:

$$
C=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}^{(n)}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{(n)}-\overline{\mathbf{x}}\right)^{T}
$$

with $\overline{\mathrm{x}}$ the mean

- What's the dimensionality of C ?
- Find the M eigenvectors with largest eigenvalues of C : these are the principal components
- Assemble these eigenvectors into a $D \times M$ matrix U
- We can now express D-dimensional vectors \mathbf{x} by projecting them to M-dimensional z

$$
\mathbf{z}=U^{T} \mathbf{x}
$$

Standard PCA

- Algorithm: to find M components underlying D-dimensional data 1. Select the top M eigenvectors of C (data covariance matrix):

$$
C=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}^{(n)}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{(n)}-\overline{\mathbf{x}}\right)^{T}=U \Sigma U^{T} \approx U_{1: M} \Sigma_{1: M} U_{1: M}^{T}
$$

where U is orthogonal, columns are unit-length eigenvectors

$$
U^{T} U=U U^{T}=1
$$

and Σ is a matrix with eigenvalues on the diagonal, representing the variance in the direction of each eigenvector
2. Project each input vector \mathbf{x} into this subspace, e.g.,

$$
z_{j}=\mathbf{u}_{j}^{T} \mathbf{x} ; \quad \mathbf{z}=U_{1: M}^{T} \mathbf{x}
$$

Two Derivations of PCA

- Two views/derivations:
- Maximize variance (scatter of green points)
- Minimize error (red-green distance per datapoint)

PCA: Minimizing Reconstruction Error

- We can think of PCA as projecting the data onto a lower-dimensional subspace
- One derivation is that we want to find the projection such that the best linear reconstruction of the data is as close as possible to the original data

$$
J(\mathbf{u}, \mathbf{z}, \mathbf{b})=\sum_{n}\left\|\mathbf{x}^{(n)}-\tilde{\mathbf{x}}^{(n)}\right\|^{2}
$$

where

$$
\tilde{\mathbf{x}}^{(n)}=\sum_{j=1}^{M} z_{j}^{(n)} \mathbf{u}_{j}+\sum_{j=M+1}^{D} b_{j} \mathbf{u}_{j}
$$

- Objective minimized when first M components are the eigenvectors with the maximal eigenvalues

$$
z_{j}^{(n)}=\mathbf{u}_{j}^{T} \mathbf{x}^{(n)} ; \quad b_{j}=\overline{\mathbf{x}}^{T} \mathbf{u}_{j}
$$

Applying PCA to faces

- Run PCA on 2429 19x19 grayscale images (CBCL data)
- Compresses the data: can get good reconstructions with only 3 components

- PCA for pre-processing: can apply classifier to latent representation
- PCA with 3 components obtains 79% accuracy on face/non-face discrimination on test data vs. 76.8% for GMM with 84 states
- Can also be good for visualization

Applying PCA to faces: Learned basis

Applying PCA to digits

Relation to Neural Networks

- PCA is closely related to a particular form of neural network
- An autoencoder is a neural network whose outputs are its own inputs

- The goal is to minimize reconstruction error

Autoencoders

- Define

$$
\mathbf{z}=f(W \mathbf{x}) ; \quad \hat{\mathbf{x}}=g(V \mathbf{z})
$$

- Goal:

$$
\min _{\mathbf{W}, \mathbf{V}} \frac{1}{2 N} \sum_{n=1}^{N}\left\|\mathbf{x}^{(n)}-\hat{\mathbf{x}}^{(n)}\right\|^{2}
$$

- If g and f are linear

$$
\min _{\mathbf{W}, \mathbf{V}} \frac{1}{2 N} \sum_{n=1}^{N}\left\|\mathbf{x}^{(n)}-V W \mathbf{x}^{(n)}\right\|^{2}
$$

- In other words, the optimal solution is PCA.

Autoencoders: Nonlinear PCA

- What if $g()$ is not linear?
- Then we are basically doing nonlinear PCA
- Some subtleties but in general this is an accurate description

Comparing Reconstructions

0	1	2	3	4	5	6	7	8	9	Real data
0	1	2	3	4	5	6	7	8	9	30-d deep autoencoder
0	1	2	3	4	5	6	7	8	9	30-d logistic PCA
0	1	2	3	4	5	6	7	8	9	30-d PCA

