
CSC 411: Lecture 11: Neural Networks II

Class based on Raquel Urtasun & Rich Zemel’s lectures

Sanja Fidler

University of Toronto

March 2, 2016

Urtasun, Zemel, Fidler (UofT) CSC 411: 11-Neural Networks II March 2, 2016 1 / 55



Today

Deep learning for Object Recognition
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Neural Nets for Object Recognition

People are very good at recognizing shapes

I Intrinsically di�cult, computers are bad at it

Why is it di�cult?
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Why is it a Problem?

Di�cult scene conditions

[From: Grauman & Leibe]
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Why is it a Problem?

Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]
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Why is it a Problem?

Tones of classes

[Biederman]
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Neural Nets for Object Recognition

People are very good at recognizing shapes

I Intrinsically di�cult, computers are bad at it

Some reasons why it is di�cult:

I Segmentation: Real scenes are cluttered
I Invariances: We are very good at ignoring all sorts of variations that do

not a↵ect shape
I Deformations: Natural shape classes allow variations (faces, letters,

chairs)
I A huge amount of computation is required
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How to Deal with Large Input Spaces

How can we apply neural nets to images?

Images can have millions of pixels, i.e., x is very high dimensional

How many parameters do I have?

Prohibitive to have fully-connected layers

What can we do?

We can use a locally connected layer
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34

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).
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When Will this Work?

When Will this Work?

This is good when the input is (roughly) registered
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General Images

The object can be anywhere

[Slide: Y. Zhu]
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STATIONARITY? Statistics is similar at 
different locations

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters
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The replicated feature approach

The red connections all 
have the same weight. 

5 

Adopt approach apparently used in
monkey visual systems

Use many di↵erent copies of the same
feature detector.

I Copies have slightly di↵erent
positions.

I Could also replicate across scale and
orientation.

I
Tricky and expensive

I Replication reduces number of free
parameters to be learned.

Use several di↵erent feature types, each
with its own replicated pool of detectors.

I Allows each patch of image to be
represented in several ways.
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Convolutional Neural Net

Idea: statistics are similar at di↵erent locations (Lecun 1998)

Connect each hidden unit to a small input patch and share the weight across
space

This is called a convolution layer and the network is a convolutional network
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Convolutional Layer

Ranzato

hnj = max(0,
KX

k=1

hn�1
k ⇤ wn

jk)
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Convolutional Layer

Ranzato
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Learn multiple filters.

E.g.: 200x200 image
        100 Filters
        Filter size: 10x10

   10K parameters

Ranzato

Convolutional Layer
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Convolutional Layer

Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

The number of filters (controls the depth of the output volume)

The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

The size w ⇥ h of the filters
[http://cs231n.github.io/convolutional-networks/]
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MLP vs ConvNet

Figure: Top: MLP, bottom: Convolutional neural network

[http://cs231n.github.io/convolutional-networks/]
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By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer
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Pooling Options

Max Pooling: return the maximal argument

Average Pooling: return the average of the arguments

Other types of pooling exist.
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Pooling

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

The spatial extent F

The stride

[http://cs231n.github.io/convolutional-networks/]
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Pooling
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Ranzato

Pooling Layer: Receptive Field Size

Conv.

layer

h
n−1 h

n

Pool.

layer

h
n1

If convolutional filters have size KxK and stride 1, and pooling layer 
has pools of size PxP, then each unit in the pooling layer depends 
upon a patch (at the input of the preceding conv. layer) of size: 
(P+K-1)x(P+K-1)
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Backpropagation with Weight Constraints

It is easy to modify the backpropagation algorithm to incorporate linear
constraints between the weights

To constrain: w1 = w2

we need: �w1 = �w2

We compute the gradients as usual, and then modify the gradients so that
they satisfy the constraints.

compute: @E
@w1

and @E
@w2

use: @E
@w1

+ @E
@w2

for w1 and w2

So if the weights started o↵ satisfying the constraints, they will continue to
satisfy them.

This is an intuition behind the backprop. In practice, write down the
equations and compute derivatives (it’s a nice exercise, do it at home)
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Now let’s make this very deep to get a real state-of-the-art object
recognition system
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Convolutional Neural Networks (CNN)

Remember from your image processing / computer vision course about
filtering?
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Convolutional Neural Networks (CNN)

If our filter is [�1, 1], you get a vertical edge detector
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Convolutional Neural Networks (CNN)

Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.
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Convolutional Neural Networks (CNN)

So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter. We apply an
activation function on each hidden unit (typically a ReLU).
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Convolutional Neural Networks (CNN)

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?
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Convolutional Neural Networks (CNN)

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.
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Convolutional Neural Networks (CNN)

Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.
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Convolutional Neural Networks (CNN)

Keep adding a few layers. Any idea what’s the purpose of more layers? Why
can’t we just have a full bunch of filters in one layer?
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Convolutional Neural Networks (CNN)

In the end add one or two fully (or densely) connected layers. In this layer,
we don’t do convolution we just do a dot-product between the “filter” and
the output of the previous layer.
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Convolutional Neural Networks (CNN)

Add one final layer: a classification layer. Each dimension of this vector tells
us the probability of the input image being of a certain class.
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Convolutional Neural Networks (CNN)

The trick is to not hand-fix the weights, but to train them. Train them such
that when the network sees a picture of a dog, the last layer will say “dog”.
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Convolutional Neural Networks (CNN)

Or when the network sees a picture of a cat, the last layer will say “cat”.
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Convolutional Neural Networks (CNN)

Or when the network sees a picture of a boat, the last layer will say
“boat”... The more pictures the network sees, the better.
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Classification

Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.
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Example

[http://cs231n.github.io/convolutional-networks/]
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Architecture for Classification

CONV

LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category 
prediction

input
Ranzato
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LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Total nr. params: 60M
4M

16M

37M

442K

1.3M

884K

307K

35K

Total nr. flops: 832M
4M

16M

37M

74M

224M

149M

223M

105M

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category 
prediction

input
Ranzato

Architecture for Classification
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ImageNet

Imagenet, biggest dataset for object classification: http://image-net.org/

1000 classes, 1.2M training images, 150K for test
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The 2012 Computer Vision Crisis

(Classification) (Detection)
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So Neural Networks are Great

So networks turn out to be great.

Everything is deep, even if it’s shallow!

Companies leading the competitions as they have more computational power

At this point Google, Facebook, Microsoft, Baidu “steal” most neural
network professors/students from academia
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So Neural Networks are Great

But to train the networks you need quite a bit of computational power (e.g.,
GPU farm). So what do you do?
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So Neural Networks are Great

Buy even more.
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So Neural Networks are Great

And train more layers. 16 instead of 7 before. 144 million parameters.

Figure: K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv 2014
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150 Layers!

Networks are now at 150 layers

They use a skip connections with special form

In fact, they don’t fit on this screen

Amazing performance!

A lot of “mistakes” are due to wrong ground-truth

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]
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Results: Object Classification

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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What do CNNs Learn?

Figure: Filters in the first convolutional layer of Krizhevsky et al
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What do CNNs Learn?

Figure: Filters in the second layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

Urtasun, Zemel, Fidler (UofT) CSC 411: 11-Neural Networks II March 2, 2016 47 / 55



What do CNNs Learn?

Figure: Filters in the third layer

[http://arxiv.org/pdf/1311.2901v3.pdf]
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What do CNNs Learn?

[http://arxiv.org/pdf/1311.2901v3.pdf]
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How to Train Good CNNs

Normalize your data (standard trick: subtract mean, divide by standard
deviation)

Augment your data (add image flips, rotations, etc)

Keep training data balanced

Shu✏e data before batching

In training: Random initialization of weights with proper variance

Monitor your loss function, and accuracy (performance) on validation

If your labeled image dataset is small: pre-train your CNN on a large dataset
(eg Imagenet), and fine-tune on your dataset

[Slide: Y. Zhu, check tutorial slides and code:
http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html]
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Tricking a Neural Net

Read about it here (and try it!): https://codewords.recurse.com/issues/five/
why-do-neural-networks-think-a-panda-is-a-vulture

Watch: https://www.youtube.com/watch?v=M2IebCN9Ht4
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More on NNs

Figure: Generate images: http://arxiv.org/pdf/1511.06434v1.pdf
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More on NNs

Generate text: https://vimeo.com/146492001, https://github.com/karpathy/neuraltalk2,
https://github.com/ryankiros/visual-semantic-embedding
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More on NNs

Figure: Compose music: https://www.youtube.com/watch?v=0VTI1BBLydE
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Links

NNs for computer vision:
https://github.com/kjw0612/awesome-deep-vision

Recurrent neural networks: https://github.com/kjw0612/awesome-rnn

Lots of code, models, tutorials:
https://github.com/carpedm20/awesome-torch

More links on our class webpage
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