CSC 411: Lecture 09: Naive Bayes

Class based on Raquel Urtasun \& Rich Zemel's lectures

Sanja Fidler

University of Toronto
Feb 8, 2015

Today

- Classification - Multi-dimensional (Gaussian) Bayes classifier
- Estimate probability densities from data
- Naive Bayes classifier

Generative vs Discriminative

Two approaches to classification:

- Discriminative classifiers estimate parameters of decision boundary/class separator directly from labeled examples
- learn $p(y \mid \mathbf{x})$ directly (logistic regression models)
- learn mappings from inputs to classes (least-squares, neural nets)
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier)
- Build a model of $p(\mathbf{x} \mid y)$
- Apply Bayes Rule

Bayes Classifier

- Aim to diagnose whether patient has diabetes: classify into one of two classes (yes $C=1$; no $C=0$)
- Run battery of tests
- Given patient's results: $\mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{d}\right]^{T}$ we want to update class probabilities using Bayes Rule:

$$
p(C \mid \mathbf{x})=\frac{p(\mathbf{x} \mid C) p(C)}{p(\mathbf{x})}
$$

- More formally

$$
\text { posterior }=\frac{\text { Class likelihood } \times \text { prior }}{\text { Evidence }}
$$

- How can we compute $p(\mathbf{x})$ for the two class case?

$$
p(\mathbf{x})=p(\mathbf{x} \mid C=0) p(C=0)+p(\mathbf{x} \mid C=1) p(C=1)
$$

Classification: Diabetes Example

- Last class we had a single observation per patient: white blood cell count

$$
p(C=1 \mid x=48)=\frac{p(x=48 \mid C=1) p(C=1)}{p(x=48)}
$$

- Add second observation: Plasma glucose value
- Now our input \mathbf{x} is 2 -dimensional

Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

- Gaussian Discriminant Analysis in its general form assumes that $p(\mathbf{x} \mid t)$ is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

$$
p(\mathbf{x} \mid t=k)=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left[-\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{T} \Sigma_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)\right]
$$

where $\left|\Sigma_{k}\right|$ denotes the determinant of the matrix, and d is dimension of \mathbf{x}

- Each class k has associated mean vector $\boldsymbol{\mu}_{k}$ and covariance matrix Σ_{k}
- Typically the classes share a single covariance matrix Σ ("share" means that they have the same parameters; the covariance matrix in this case): $\Sigma=\Sigma_{1}=\cdots=\Sigma_{k}$

Multivariate Data

- Multiple measurements (sensors)
- dinputs/features/attributes
- N instances/observations/examples

$$
\mathbf{X}=\left[\begin{array}{cccc}
x_{1}^{(1)} & x_{2}^{(1)} & \cdots & x_{d}^{(1)} \\
x_{1}^{(2)} & x_{2}^{(2)} & \cdots & x_{d}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{(N)} & x_{2}^{(N)} & \cdots & x_{d}^{(N)}
\end{array}\right]
$$

Multivariate Parameters

- Mean

$$
\mathbb{E}[\mathbf{x}]=\left[\mu_{1}, \cdots, \mu_{d}\right]^{T}
$$

- Covariance

$$
\Sigma=\operatorname{Cov}(\mathbf{x})=\mathbb{E}\left[(\mathbf{x}-\mu)^{T}(\mathbf{x}-\mu)\right]=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 d} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{d 1} & \sigma_{d 2} & \cdots & \sigma_{d}^{2}
\end{array}\right]
$$

- Correlation $=\operatorname{Corr}(\mathbf{x})$ is the covariance divided by the product of standard deviation

$$
\rho_{i j}=\frac{\sigma_{i j}}{\sigma_{i} \sigma_{j}}
$$

Multivariate Gaussian Distribution

- $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$, a Gaussian (or normal) distribution defined as

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right]
$$

- Mahalanobis distance $\left(\mathbf{x}-\mu_{k}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\mu_{k}\right)$ measures the distance from \mathbf{x} to μ in terms of Σ
- It normalizes for difference in variances and correlations

Bivariate Normal

$$
\Sigma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \Sigma=0.5\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \Sigma=2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Figure: Probability density function

Figure: Contour plot of the pdf

Bivariate Normal

$$
\operatorname{var}\left(x_{1}\right)=\operatorname{var}\left(x_{2}\right) \quad \operatorname{var}\left(x_{1}\right)>\operatorname{var}\left(x_{2}\right) \quad \operatorname{var}\left(x_{1}\right)<\operatorname{var}\left(x_{2}\right)
$$

Figure: Probability density function

Figure: Contour plot of the pdf

Bivariate Normal

$$
\Sigma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \Sigma=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right) \quad \Sigma=\left(\begin{array}{cc}
1 & 0.8 \\
0.8 & 1
\end{array}\right)
$$

Figure: Probability density function

Figure: Contour plot of the pdf

Bivariate Normal

$\operatorname{Cov}\left(x_{1}, x_{2}\right)=0$
$\operatorname{Cov}\left(x_{1}, x_{2}\right)>0$
$\operatorname{Cov}\left(x_{1}, x_{2}\right)<0$

Figure: Probability density function

Figure: Contour plot of the pdf

Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

- GDA (GBC) decision boundary is based on class posterior:

$$
\begin{aligned}
\log p\left(t_{k} \mid \mathbf{x}\right)= & \log p\left(\mathbf{x} \mid t_{k}\right)+\log p\left(t_{k}\right)-\log p(\mathbf{x}) \\
= & -\frac{d}{2} \log (2 \pi)-\frac{1}{2} \log \left|\Sigma_{k}^{-1}\right|-\frac{1}{2}\left(\mathbf{x}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(\mathbf{x}-\mu_{k}\right)+ \\
& +\log p\left(t_{k}\right)-\log p(\mathbf{x})
\end{aligned}
$$

- Decision: take the class with the highest posterior probability

Decision Boundary

Decision Boundary when Shared Covariance Matrix

Learning

- Learn the parameters using maximum likelihood

$$
\begin{aligned}
\ell\left(\phi, \mu_{0}, \mu_{1}, \Sigma\right) & =-\log \prod_{n=1}^{N} p\left(\mathbf{x}^{(n)}, t^{(n)} \mid \phi, \mu_{0}, \mu_{1}, \Sigma\right) \\
& =-\log \prod_{n=1}^{N} p\left(\mathbf{x}^{(n)} \mid t^{(n)}, \mu_{0}, \mu_{1}, \Sigma\right) p\left(t^{(n)} \mid \phi\right)
\end{aligned}
$$

- What have we assumed?

More on MLE

- Assume the prior is Bernoulli (we have two classes)

$$
p(t \mid \phi)=\phi^{t}(1-\phi)^{1-t}
$$

- You can compute the ML estimate in closed form

$$
\begin{aligned}
\phi & =\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=1\right] \\
\mu_{0} & =\frac{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=0\right] \cdot \mathbf{x}^{(n)}}{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=0\right]} \\
\mu_{1} & =\frac{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=1\right] \cdot \mathbf{x}^{(n)}}{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=1\right]} \\
\Sigma & =\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}^{(n)}-\mu_{t^{(n)}}\right)\left(\mathbf{x}^{(n)}-\mu_{t^{(n)}}\right)^{T}
\end{aligned}
$$

Gaussian Discriminative Analysis vs Logistic Regression

- If you examine $p(t=1 \mid \mathbf{x})$ under GDA, you will find that it looks like this:

$$
p\left(t \mid \mathbf{x}, \phi, \mu_{0}, \mu_{1}, \Sigma\right)=\frac{1}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}\right)}
$$

where \mathbf{w} is an appropriate function of ($\phi, \mu_{0}, \mu_{1}, \Sigma$)

- So the decision boundary has the same form as logistic regression!
- When should we prefer GDA to LR, and vice versa?

Gaussian Discriminative Analysis vs Logistic Regression

- GDA makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GDA is asymptotically efficient (best model in limit of large N)
- But LR is more robust, less sensitive to incorrect modeling assumptions
- Many class-conditional distributions lead to logistic classifier
- When these distributions are non-Gaussian, in limit of large N, LR beats GDA

Simplifying the Model

What if \mathbf{x} is high-dimensional?

- For Gaussian Bayes Classifier, if input \mathbf{x} is high-dimensional, then covariance matrix has many parameters
- Save some parameters by using a shared covariance for the classes
- Any other idea you can think of?

Naive Bayes

- Naive Bayes is an alternative generative model: Assumes features independent given the class

$$
p(\mathbf{x} \mid t=k)=\prod_{i=1}^{d} p\left(x_{i} \mid t=k\right)
$$

- Assuming likelihoods are Gaussian, how many parameters required for Naive Bayes classifier?
- Important note: Naive Bayes does not assume a particular distribution

Naive Bayes Classifier

Given

- prior $p(t=k)$
- assuming features are conditionally independent given the class
- likelihood $p\left(x_{i} \mid t=k\right)$ for each x_{i}

The decision rule

$$
y=\arg \max _{k} p(t=k) \prod_{i=1}^{d} p\left(x_{i} \mid t=k\right)
$$

- If the assumption of conditional independence holds, NB is the optimal classifier
- If not, a heavily regularized version of generative classifier
- What's the regularization?
- Note: NB's assumptions (cond. independence) typically do not hold in practice. However, the resulting algorithm still works well on many problems, and it typically serves as a decent baseline for more sophisticated models

Gaussian Naive Bayes

- Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

$$
p\left(x_{i} \mid t=k\right)=\frac{1}{\sqrt{2 \pi} \sigma_{i k}} \exp \left[\frac{-\left(x_{i}-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}\right]
$$

(this is just a 1-dim Gaussian, one for each input dimension)

- Model the same as Gaussian Discriminative Analysis with diagonal covariance matrix
- Maximum likelihood estimate of parameters

$$
\begin{aligned}
\mu_{i k} & =\frac{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=k\right] \cdot x_{i}^{(n)}}{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=k\right]} \\
\sigma_{i k}^{2} & =\frac{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=k\right] \cdot\left(x_{i}^{(n)}-\mu_{i k}\right)^{2}}{\sum_{n=1}^{N} \mathbb{1}\left[t^{(n)}=k\right]}
\end{aligned}
$$

Decision Boundary: Shared Variances (between Classes)

variances may be different

Decision Boundary: isotropic

- Same variance across all classes and input dimensions, all class priors equal
- Classification only depends on distance to the mean. Why?

Decision Boundary: isotropic

- In this case: $\sigma_{i, k}=\sigma$ (just one parameter), class priors equal (e.g., $p\left(t_{k}\right)=0.5$ for 2-class case)
- Going back to class posterior for GDA:

$$
\begin{aligned}
\log p\left(t_{k} \mid \mathbf{x}\right)= & \log p\left(\mathbf{x} \mid t_{k}\right)+\log p\left(t_{k}\right)-\log p(\mathbf{x}) \\
= & -\frac{d}{2} \log (2 \pi)-\frac{1}{2} \log \left|\Sigma_{k}^{-1}\right|-\frac{1}{2}\left(\mathbf{x}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(\mathbf{x}-\mu_{k}\right)+ \\
& +\log p\left(t_{k}\right)-\log p(\mathbf{x})
\end{aligned}
$$

where we take $\Sigma_{k}=\sigma^{2} /$ and ignore terms that don't depend on k (don't matter when we take max over classes):

$$
\log p\left(t_{k} \mid \mathbf{x}\right)=-\frac{1}{2 \sigma^{2}}\left(\mathbf{x}-\mu_{k}\right)^{T}\left(\mathbf{x}-\mu_{k}\right)
$$

Spam Classification

- You have examples of emails that are spam and non-spam
- How would you classify spam vs non-spam?
- Think about it at home, solution in the next tutorial

