CSC 411: Lecture 06: Decision Trees

Class based on Raquel Urtasun & Rich Zemel's lectures

Sanja Fidler

University of Toronto

Jan 26, 2016

Today

- Decision Trees
 - entropy
 - ▶ information gain

Another Classification Idea

- We tried linear classification (eg, logistic regression), and nearest neighbors.
 Any other idea?
- Pick an attribute, do a simple test
- Conditioned on a choice, pick another attribute, do another test
- In the leaves, assign a class with majority vote
- Do other branches as well

width (cm)

Another Classification Idea

• Gives axes aligned decision boundaries

Decision Tree: Example

Decision Tree: Classification

Example with Discrete Inputs

• What if the attributes are discrete?

Example					Input	Attribu	ites				Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = \textit{Yes}$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = \textit{Yes}$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = \textit{Yes}$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = \textit{Yes}$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12}={\it Yes}$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attributes:

Decision Tree: Example with Discrete Inputs

• The tree to decide whether to wait (T) or not (F)

Decision Trees

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (class assignments)

Decision Tree: Algorithm

- Choose an attribute on which to descend at each level.
- Condition on earlier (higher) choices.
- Generally, restrict only one dimension at a time.
- Declare an output value when you get to the bottom
- In the orange/lemon example, we only split each dimension once, but that is not required.

Decision Tree: Classification and Regression

- ullet Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

Classification tree:

- discrete output
- ▶ leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \dots, t^{(m_k)}\}$
- Regression tree:
 - continuous output
 - ▶ leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \dots, t^{(m_k)}\}$

Note: We will only talk about classification

[Slide credit: S. Russell]

Expressiveness

- Discrete-input, discrete-output case:
 - Decision trees can express any function of the input attributes.
 - ▶ E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Continuous-input, continuous-output case:
 - Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set w/ one path
 to leaf for each example (unless f nondeterministic in x) but it probably
 won't generalize to new examples

Need some kind of regularization to ensure more compact decision trees

[Slide credit: S. Russell]

How do we Learn a DecisionTree?

• How do we construct a useful decision tree?

Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hyafil & Rivest'76]

- Resort to a greedy heuristic:
 - ▶ Start from an empty decision tree
 - ▶ Split on next best attribute
 - Recurse
- What is **best** attribute?
- We use information theory to guide us

[Slide credit: D. Sonntag]

Choosing a Good Attribute

• Which attribute is better to split on, X_1 or X_2 ?

X ₁	X_2	Υ
Τ	Τ	H
Т	F	Т
Т	Т	Т
Т	F	Т
F	Τ	Η
F	F	F
F	Т	F
F	F	F

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty

Choosing a Good Attribute

- Which attribute is better to split on, X_1 or X_2 ?
 - Deterministic: good (all are true or false; just one class in the leaf)
 - Uniform distribution: bad (all classes in leaf equally probable)
 - What about distributions in between?

Note: Let's take a slight detour and remember concepts from information theory

[Slide credit: D. Sonntag]

We Flip Two Different Coins

```
Sequence 1:
000100000000000100...?
Sequence 2:
010101110100110101...?
    16
                          10
                      8
              versus
     0
```

Quantifying Uncertainty

Entropy H:

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

$$-\frac{8}{9}\log_2\frac{8}{9} - \frac{1}{9}\log_2\frac{1}{9} \approx \frac{1}{2}$$

$$-\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

- How surprised are we by a new value in the sequence?
- How much information does it convey?

Quantifying Uncertainty

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

Entropy

• "High Entropy":

- Variable has a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable

"Low Entropy"

- Distribution of variable has many peaks and valleys
- Histogram has many lows and highs
- Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$\begin{array}{lcl} H(X,Y) & = & -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y) \\ & = & -\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100} \\ & \approx & 1.56 \mathrm{bits} \end{array}$$

Specific Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$

$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$

$$\approx 0.24 \text{bits}$$

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y)\log_2 p(y|x)$$

Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

$$= \frac{1}{4}H(\text{cloudy}|\text{is raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining})$$

$$\approx 0.75 \text{ bits}$$

Conditional Entropy

- Some useful properties:
 - ▶ *H* is always non-negative
 - ► Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - ▶ If X and Y independent, then X doesn't tell us anything about Y: H(Y|X) = H(Y)
 - ▶ But Y tells us everything about Y: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• How much information about cloudiness do we get by discovering whether it is raining?

$$IG(Y|X) = H(Y) - H(Y|X)$$

 $\approx 0.25 \text{ bits}$

- Also called information gain in Y due to X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)
- How can we use this to construct our decision tree?

Constructing Decision Trees

- I made the fruit data partitioning just by eyeballing it.
- We can use the information gain to automate the process.
- At each level, one must choose:
 - 1. Which variable to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
- 1. pick an attribute to split at a non-terminal node
- 2. split examples into groups based on attribute value
- 3. for each group:
 - if no examples return majority from parent
 - else if all examples in same class return class
 - else loop to step 1

Back to Our Example

Example					Input	Attribu	ites			
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60

Go	al
Willv	Vait
$y_1 =$	Yes
$y_2 =$	No
$y_3 =$	Yes
$y_4 =$	Yes
$y_5 =$	No
$y_6 =$	Yes
$y_7 =$	No
$y_8 =$	Yes
$y_9 =$	No
$y_{10} =$	No
$ v_{11} $	No

 $y_{12} = \textit{Yes}$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

[from: Russell & Norvig]

Attribute Selection

$$\begin{split} \textit{IG(Y)} &= \textit{H(Y)} - \textit{H(Y|X)} \\ \textit{IG(type)} &= 1 - \left[\frac{2}{12}\textit{H(Y|Fr.)} + \frac{2}{12}\textit{H(Y|It.)} + \frac{4}{12}\textit{H(Y|Thai)} + \frac{4}{12}\textit{H(Y|Bur.)}\right] = 0 \\ \textit{IG(Patrons)} &= 1 - \left[\frac{2}{12}\textit{H(0,1)} + \frac{4}{12}\textit{H(1,0)} + \frac{6}{12}\textit{H(\frac{2}{6},\frac{4}{6})}\right] \approx 0.541 \end{split}$$

Which Tree is Better?

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
- Occam's Razor: find the simplest hypothesis (smallest tree) that fits the observations
- Inductive bias: small trees with informative nodes near the root

Decision Tree Miscellany

- Problems:
 - You have exponentially less data at lower levels.
 - ▶ Too big of a tree can overfit the data.
 - Greedy algorithms don't necessarily yield the global optimum.
- In practice, one often regularizes the construction process to try to get small but highly-informative trees.
- Decision trees can also be used for regression on real-valued outputs, but it requires a different formalism.

Comparison to k-NN

K-Nearest Neighbors

- Decision boundaries: piece-wise
- Test complexity: non-parametric, few parameters besides (all?) training examples

Decision Trees

- Decision boundaries: axis-aligned, tree structured
- Test complexity: attributes and splits

Decision trees are in XBox

[J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake. Real-Time Human Pose Recognition in Parts from a Single Depth Image. CVPR'11]

Decision trees are in XBox: Classifying body parts

• Trained on million(s) of examples

• Trained on million(s) of examples

Results:

Applications of Decision Trees

- Can express any Boolean function, but most useful when function depends critically on few attributes
- Bad on: parity, majority functions; also not well-suited to continuous attributes
- Practical Applications:
 - Flight simulator: 20 state variables; 90K examples based on expert pilot's actions; auto-pilot tree
 - Yahoo Ranking Challenge
 - Random Forests