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Today

Key Concepts:

I Logistic Regression
I Regularization
I Cross validation

(note: we are still talking about binary classification)
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Logistic Regression

An alternative: replace the sign(·) with the sigmoid or logistic function

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = σ
(
wTx + w0

)
where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

0 
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0 

1 

The output is a smooth function of the inputs and the weights. It can be
seen as a smoothed and differentiable alternative to sign(·)
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Logistic Regression

We assumed a particular functional form: sigmoid applied to a linear

function of the data

y(x) = σ
(
wTx + w0

)
where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

I One parameter per data dimension (feature) and the bias

I Features can be discrete or continuous

I Output of the model: value y ∈ [0, 1]

I Allows for gradient-based learning of the parameters
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Shape of the Logistic Function

Let’s look at how modifying w changes the shape of the function

1D example:
y = σ (w1x + w0)

Demo
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Probabilistic Interpretation

If we have a value between 0 and 1, let’s use it to model class probability

p(C = 0|x) = σ(wTx + w0) with σ(z) =
1

1 + exp(−z)

Substituting we have

p(C = 0|x) =
1

1 + exp (−wTx− w0)

Suppose we have two classes, how can I compute p(C = 1|x)?

Use the marginalization property of probability

p(C = 1|x) + p(C = 0|x) = 1

Thus (show matlab)

p(C = 1|x) = 1− 1

1 + exp (−wTx− w0)
=

exp(−wTx− w0)

1 + exp (−wTx− w0)
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Decision Boundary for Logistic Regression

What is the decision boundary for logistic regression?

p(C = 1|x,w) = p(C = 0|x,w) = 0.5

p(C = 0|x,w) = σ
(
wTx + w0

)
= 0.5, where σ(z) = 1

1+exp(−z)

Decision boundary: wTx + w0 = 0

Logistic regression has a linear decision boundary
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Logistic Regression vs Least Squares Regression

If the right answer is 1 and the 
model says 1.5, it loses, so it 
changes the boundary to avoid 
being “too correct” (tilts away 
from outliers) 

logistic 
regression 

least squares 
regression 

33 
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Example

Problem: Given the number of hours a student spent learning, will
(s)he pass the exam?
Training data (top row: x(i), bottom row: t(i))

Learn w for our model, i.e. logistic regression (coming up)
Make predictions:
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Learning?

How should we learn the weights w,w0?

We have a probabilistic model

Let’s use maximum likelihood

(simplify notation: we will write w to represent both w and w0)
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Conditional Likelihood

Assume t ∈ {0, 1}, we can write the probability distribution of each of our
training points p(t(1), · · · , t(N)|x(1), · · · x(N);w)

Assuming that the training examples are sampled IID: independent and
identically distributed, we can write the likelihood function:

L(w) = p(t(1), · · · , t(N)|x(1), · · · x(N);w) =
N∏
i=1

p(t(i)|x(i);w)

We can write each probability as (will be useful later):

p(t(i)|x(i);w) = p(C = 1|x(i);w)t
(i)

p(C = 0|x(i);w)1−t(i)

=
(

1− p(C = 0|x(i);w)
)t(i)

p(C = 0|x(i);w)1−t(i)

We can learn the model by maximizing the likelihood

max
w

L(w) = max
w

N∏
i=1

p(t(i)|x(i);w)

Easier to maximize the log likelihood log L(w)
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Loss Function

L(w) =
N∏
i=1

p(t(i)|x(i)) (likelihood)

=
N∏
i=1

(
1− p(C = 0|x(i))

)t(i)
p(C = 0|x(i))1−t(i)

We can convert the maximization problem into minimization so that we can
write the loss function:

`log (w) = − log L(w)

= −
N∑
i=1

log p(t(i)|x(i);w)

= −
N∑
i=1

t(i) log(1− p(C = 0|x(i),w))−
N∑
i=1

(1− t(i)) log p(C = 0|x(i);w)

Is there a closed form solution?

It’s a convex function of w. Can we get the global optimum?
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Gradient Descent

min
w

`(w) = min
w

{
−

N∑
i=1

t(i) log(1− p(C = 0|x(i),w))−
N∑
i=1

(1− t(i)) log p(C = 0|x(i),w)

}

Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size λ

w
(t+1)
j ← w

(t)
j − λ

∂`(w)

∂wj

You can write this in vector form

5`(w) =

[
∂`(w)

∂w0
, · · · , ∂`(w)

∂wk

]T
, and 4 (w) = −λ5 `(w)

But where is w?

p(C = 0|x) =
1

1 + exp (−wTx− w0)
, p(C = 1|x) =

exp(−wTx− w0)

1 + exp (−wTx− w0)
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Let’s Compute the Updates

The loss is

`log−loss(w) = −
N∑
i=1

t(i) log p(C = 1|x(i),w)−
N∑
i=1

(1−t(i)) log p(C = 0|x(i),w)

where the probabilities are

p(C = 0|x,w) =
1

1 + exp(−z)
p(C = 1|x,w) =

exp(−z)

1 + exp(−z)

and z = wTx + w0

We can simplify

`(w)log−loss =
∑
i

t(i) log(1 + exp(−z(i))) +
∑
i

t(i)z(i) +
∑
i

(1− t(i)) log(1 + exp(−z(i)))

=
∑
i

log(1 + exp(−z(i))) +
∑
i

t(i)z(i)

Now it’s easy to take derivatives
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Updates

`(w) =
∑
i

t(i)z (i) +
∑
i

log(1 + exp(−z (i)))

Now it’s easy to take derivatives

Remember z = wTx + w0

∂`

∂wj
=
∑
i

(
t(i)x

(i)
j − x

(i)
j ·

exp(−z (i))
1 + exp(−z (i))

)

What’s x
(i)
j ? The j−th dimension of the i−th training example x(i)

And simplifying

∂`

∂wj
=
∑
i

x
(i)
j

(
t(i) − p(C = 1|x(i);w)

)

Don’t get confused with indices: j for the weight that we are updating and i
for the training example
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Gradient Descent

Putting it all together (plugging the update into gradient descent):

Gradient descent for logistic regression:

w
(t+1)
j ← w

(t)
j − λ

∑
i

x
(i)
j

(
t(i) − p(C = 1|x(i);w)

)
where:

p(C = 1|x(i);w) =
exp(−wTx− w0)

1 + exp (−wTx− w0)
=

1

1 + exp (wTx + w0)

This is all there is to learning in logistic regression. Simple, huh?
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Regularization

We can also look at

p(w|{t}, {x}) ∝ p({t}|{x},w) p(w)

with {t} = (t(1), · · · , t(N)), and {x} = (x(1), · · · , x(N))

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and overfitting

max
w

log

[
p(w)

∏
i

p(t(i)|x(i),w)

]

What’s p(w)?
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Regularized Logistic Regression

For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N (0, α−1I)

This prior pushes parameters towards zero

Including this prior the new gradient is

w
(t+1)
j ← w

(t)
j − λ

∂`(w)

∂wj
− λαw (t)

j

where t here refers to iteration of the gradient descent

The parameter α is the importance of the regularization, and it’s a
hyper-parameter

How do we decide the best value of α (or a hyper-parameter in general)?
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Use of Validation Set

Tuning hyper-parameters:

Never use test data for tuning the hyper-parameters

We can divide the set of training examples into two disjoint sets: training
and validation

Use the first set (i.e., training) to estimate the weights w for different values
of α

Use the second set (i.e., validation) to estimate the best α, by evaluating
how well the classifier does on this second set

This tests how well it generalizes to unseen data
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Cross-Validation

Leave-p-out cross-validation:

I We use p observations as the validation set and the remaining
observations as the training set.

I This is repeated on all ways to cut the original training set.
I It requires Cpn for a set of n examples

Leave-1-out cross-validation: When p = 1, does not have this problem

k-fold cross-validation:

I The training set is randomly partitioned into k equal size subsamples.
I Of the k subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining k − 1 subsamples are
used as training data.

I The cross-validation process is then repeated k times (the folds).
I The k results from the folds can then be averaged (or otherwise

combined) to produce a single estimate
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Logistic Regression wrap-up

Advantages:

Easily extended to multiple classes (thoughts?)

Natural probabilistic view of class predictions

Quick to train

Fast at classification

Good accuracy for many simple data sets

Resistant to overfitting

Can interpret model coefficients as indicators of feature importance

Less good:

Linear decision boundary (too simple for more complex problems?)

[Slide by: Jeff Howbert]
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