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Today

Administration details

Why is machine learning so cool?
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The Team

Instructor:

Sanja Fidler (fidler@cs.toronto.edu)

Office: 283B in Pratt

Office hours: Mon 1.15-2.30pm, or by appointment

TAs:

Shenlong Wang (slwang@cs.toronto.edu)

Ladislav Rampasek (rampasek@cs.toronto.edu)

Boris Ivanovic (boris.ivanovic@mail.utoronto.ca)
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Admin Details

Liberal wrt waiving pre-requisites

I But it is up to you to determine if you have the appropriate background

Do I have the appropriate background?

I Linear algebra: vector/matrix manipulations, properties

I Calculus: partial derivatives

I Probability: common distributions; Bayes Rule

I Statistics: mean/median/mode; maximum likelihood

I Sheldon Ross: A First Course in Probability
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Course Information

Class: Mondays and Wednesday at noon-1pm in LM158

Tutorials: Fridays, same hour as lecture, same classroom

Class Website:

http://www.cs.toronto.edu/~fidler/teaching/2015/CSC411.html

The class will use Piazza for announcements and discussions:

https://piazza.com/utoronto.ca/winter2016/csc411/home

First time, sign up here:

https://piazza.com/utoronto.ca/winter2016/csc411

Your grade will not depend on your participation on Piazza. It’s just a

good way for asking questions, discussing with your instructor, TAs and your

peers
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Textbook(s)

Christopher Bishop: ”Pattern Recognition and Machine Learning”, 2006

Other Textbooks:

I Kevin Murphy: ”Machine Learning: a Probabilistic Perspective”
I David Mackay: ”Information Theory, Inference, and Learning

Algorithms”
I Ethem Alpaydin: ”Introduction to Machine Learning”, 2nd edition,

2010.
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Requirements

Do the readings!

Assignments:

I Three assignments, first two worth 12.5% each, last one worth 15%,

for a total of 40%

I Programming: take Matlab/Python code and extend it

I Derivations: pen(cil)-and-paper

Mid-term:

I One hour exam on Feb 29th

I Worth 25% of course mark

Final:

I Focused on second half of course

I Worth 35% of course mark
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More on Assigments

Collaboration on the assignments is not allowed. Each student is responsible
for his/her own work. Discussion of assignments should be limited to
clarification of the handout itself, and should not involve any sharing of
pseudocode or code or simulation results. Violation of this policy is grounds
for a semester grade of F, in accordance with university regulations.

The schedule of assignments is included in the syllabus. Assignments are
due at the beginning of class/tutorial on the due date.

Assignments handed in late but before 5 pm of that day will be penalized by
5% (i.e., total points multiplied by 0.95); a late penalty of 10% per day will
be assessed thereafter.

Extensions will be granted only in special situations, and you will need a
Student Medical Certificate or a written request approved by the instructor
at least one week before the due date.

Final assignment is a bake-off: competition between ML algorithms. We will
give you some data for training a ML system, and you will try to develop the
best method. We will then determine which system performs best on unseen
test data.
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Calendar

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 9 / 37



What is Machine Learning?

How can we solve a specific problem?

I As computer scientists we write a program that encodes a set of rules

that are useful to solve the problem
I In many cases is very difficult to specify those rules, e.g., given a

picture determine whether there is a cat in the image

Learning systems are not directly programmed to solve a problem, instead

develop own program based on:

I Examples of how they should behave
I From trial-and-error experience trying to solve the problem

Different than standard CS:

I Want to implement unknown function, only have access to sample

input-output pairs (training examples)

Learning simply means incorporating information from the training examples

into the system
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Tasks that requires machine learning: What makes a 2?
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Tasks that benefits from machine learning: cooking!
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Why use learning?

It is very hard to write programs that solve problems like recognizing a
handwritten digit

I What distinguishes a 2 from a 7?
I How does our brain do it?

Instead of writing a program by hand, we collect examples that specify the
correct output for a given input

A machine learning algorithm then takes these examples and produces a
program that does the job

I The program produced by the learning algorithm may look very
different from a typical hand-written program. It may contain millions
of numbers.

I If we do it right, the program works for new cases as well as the ones
we trained it on.

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 13 / 37



Why use learning?

It is very hard to write programs that solve problems like recognizing a
handwritten digit

I What distinguishes a 2 from a 7?

I How does our brain do it?

Instead of writing a program by hand, we collect examples that specify the
correct output for a given input

A machine learning algorithm then takes these examples and produces a
program that does the job

I The program produced by the learning algorithm may look very
different from a typical hand-written program. It may contain millions
of numbers.

I If we do it right, the program works for new cases as well as the ones
we trained it on.

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 13 / 37



Why use learning?

It is very hard to write programs that solve problems like recognizing a
handwritten digit

I What distinguishes a 2 from a 7?
I How does our brain do it?

Instead of writing a program by hand, we collect examples that specify the
correct output for a given input

A machine learning algorithm then takes these examples and produces a
program that does the job

I The program produced by the learning algorithm may look very
different from a typical hand-written program. It may contain millions
of numbers.

I If we do it right, the program works for new cases as well as the ones
we trained it on.

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 13 / 37



Why use learning?

It is very hard to write programs that solve problems like recognizing a
handwritten digit

I What distinguishes a 2 from a 7?
I How does our brain do it?

Instead of writing a program by hand, we collect examples that specify the
correct output for a given input

A machine learning algorithm then takes these examples and produces a
program that does the job

I The program produced by the learning algorithm may look very
different from a typical hand-written program. It may contain millions
of numbers.

I If we do it right, the program works for new cases as well as the ones
we trained it on.

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 13 / 37



Why use learning?

It is very hard to write programs that solve problems like recognizing a
handwritten digit

I What distinguishes a 2 from a 7?
I How does our brain do it?

Instead of writing a program by hand, we collect examples that specify the
correct output for a given input

A machine learning algorithm then takes these examples and produces a
program that does the job

I The program produced by the learning algorithm may look very
different from a typical hand-written program. It may contain millions
of numbers.

I If we do it right, the program works for new cases as well as the ones
we trained it on.

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 13 / 37



Why use learning?

It is very hard to write programs that solve problems like recognizing a
handwritten digit

I What distinguishes a 2 from a 7?
I How does our brain do it?

Instead of writing a program by hand, we collect examples that specify the
correct output for a given input

A machine learning algorithm then takes these examples and produces a
program that does the job

I The program produced by the learning algorithm may look very
different from a typical hand-written program. It may contain millions
of numbers.

I If we do it right, the program works for new cases as well as the ones
we trained it on.

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 13 / 37



Why use learning?

It is very hard to write programs that solve problems like recognizing a
handwritten digit

I What distinguishes a 2 from a 7?
I How does our brain do it?

Instead of writing a program by hand, we collect examples that specify the
correct output for a given input

A machine learning algorithm then takes these examples and produces a
program that does the job

I The program produced by the learning algorithm may look very
different from a typical hand-written program. It may contain millions
of numbers.

I If we do it right, the program works for new cases as well as the ones
we trained it on.

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 13 / 37



Learning algorithms are useful in many tasks

1. Classification: Determine which discrete category the example is
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Examples of Classification

What digit is this?
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Examples of Classification

Is this a dog?
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Examples of Classification

what about this one?
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Examples of Classification

Am I going to pass the exam?
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Examples of Classification

Do I have diabetes?
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Learning algorithms are useful in many tasks

1. Classification: Determine which discrete category the example is

2. Recognizing patterns: Speech Recognition, facial identity, etc
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Examples of Recognizing patterns

Figure: Siri: https://www.youtube.com/watch?v=8ciagGASro0
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Examples of Recognizing patterns

Figure: Photomath: https://photomath.net/
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Learning algorithms are useful in other tasks

1. Classification: Determine which discrete category the example is

2. Recognizing patterns: Speech Recognition, facial identity, etc

3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon,
Netflix).
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Examples of Recommendation systems
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Examples of Recommendation systems
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Examples of Information Retrieval
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Computer Vision
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Computer Vision

Figure: Kinect: https://www.youtube.com/watch?v=op82fDRRqSY
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Computer Vision

[Gatys, Ecker, Bethge. A Neural Algorithm of Artistic Style. Arxiv’15.]
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Learning algorithms are useful in other tasks

1. Classification: Determine which discrete category the example is

2. Recognizing patterns: Speech Recognition, facial identity, etc

3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon,
Netflix).

4. Information retrieval: Find documents or images with similar content

5. Computer vision: detection, segmentation, depth estimation, optical flow,
etc

6. Robotics: perception, planning, etc
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Autonomous Driving

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 25 / 37

https://www.youtube.com/watch?v=cdgQpa1pUUE
https://www.youtube.com/watch?v=3yCAZWdqX_Y
https://www.youtube.com/watch?v=3yCAZWdqX_Y


Flying Robots

Figure: Video: https://www.youtube.com/watch?v=YQIMGV5vtd4
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Learning algorithms are useful in other tasks

1. Classification: Determine which discrete category the example is

2. Recognizing patterns: Speech Recognition, facial identity, etc

3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon,
Netflix).

4. Information retrieval: Find documents or images with similar content

5. Computer vision: detection, segmentation, depth estimation, optical flow,
etc

6. Robotics: perception, planning, etc

7. Learning to play games
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Playing Games: Atari

Figure: Video: https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Playing Games: Super Mario

Figure: Video: https://www.youtube.com/watch?v=wfL4L_l4U9A

Urtasun, Zemel, Fidler (UofT) CSC 411: 01-Introduction Jan 11, 2016 29 / 37

https://www.youtube.com/watch?v=wfL4L_l4U9A


Learning algorithms are useful in other tasks

1. Classification: Determine which discrete category the example is

2. Recognizing patterns: Speech Recognition, facial identity, etc

3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon,
Netflix).

4. Information retrieval: Find documents or images with similar content

5. Computer vision: detection, segmentation, depth estimation, optical flow,
etc

6. Robotics: perception, planning, etc

7. Learning to play games

8. Recognizing anomalies: Unusual sequences of credit card transactions, panic
situation at an airport

9. Spam filtering, fraud detection: The enemy adapts so we must adapt too

10. Many more!
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Human Learning
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Types of learning tasks

Supervised: correct output known for each training example

I Learn to predict output when given an input vector
I Classification: 1-of-N output (speech recognition, object recognition,

medical diagnosis)
I Regression: real-valued output (predicting market prices, customer

rating)

Unsupervised learning

I Create an internal representation of the input, capturing
regularities/structure in data

I Examples: form clusters; extract features
I How do we know if a representation is good?

Reinforcement learning

I Learn action to maximize payoff
I Not much information in a payoff signal
I Payoff is often delayed
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Machine Learning vs Data Mining

Data-mining: Typically using very simple machine learning techniques on
very large databases because computers are too slow to do anything more
interesting with ten billion examples

Previously used in a negative sense – misguided statistical procedure of
looking for all kinds of relationships in the data until finally find one

Now lines are blurred: many ML problems involve tons of data

But problems with AI flavor (e.g., recognition, robot navigation) still domain
of ML
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Machine Learning vs Statistics

ML uses statistical theory to build models

A lot of ML is rediscovery of things statisticians already knew; often

disguised by differences in terminology

But the emphasis is very different:

I Good piece of statistics: Clever proof that relatively simple estimation

procedure is asymptotically unbiased.

I Good piece of ML: Demo that a complicated algorithm produces

impressive results on a specific task.

Can view ML as applying computational techniques to statistical problems.

But go beyond typical statistics problems, with different aims (speed vs.

accuracy).
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Cultural gap (Tibshirani)

MACHINE LEARNING

weights

learning

generalization

supervised learning

unsupervised learning

large grant: $1,000,000

conference location:
Snowbird, French Alps

STATISTICS

parameters

fitting

test set performance

regression/classification

density estimation, clustering

large grant: $50,000

conference location: Las Vegas in
August
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Course Survey

Please complete the following survey this week:
https://docs.google.com/forms/d/

1O6xRNnKp87GrDM74tkvOMhMIJmwz271TgWdYb6ZitK0/viewform?usp=

send_form
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Initial Case Study

What grade will I get in this course?

Data: entry survey and marks from previous years

Process the data

I Split into training set; test set
I Determine representation of input features; output

Choose form of model: linear regression

Decide how to evaluate the system’s performance: objective function

Set model parameters to optimize performance

Evaluate on test set: generalization
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