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Segmentation

* Goal: Partitioning an image into multiple groups

Image credit: Silberman et al.



Foreground Segmentation

e Goal: Extract foreground from the image

Image credit: Rother et al



Unsupervised Segmentation

* Goal: Grouping pixels based similarity

Image credit: Shi et al.



Cosegmentation

* Goal: Segmenting common objects from multiple
Images

Image credit: Guo et al.



Instance Segmentation

* Goal: Assign each pixel an object instance

Image credit: Zhang et al.



Semantic Segmentation

* Goal: Assign a class label to in the image

Why semantic segmentation? Image credit: PASCAL VOC



TextonBoost

* Texton, Location, Color Features
e Texton: Clusters of filter-bank responses

* Joint Boosting
* Different classes share features
* Weak classifier is based counting features
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(a) Input image (b) Texton map (c) Feature pair = (r,t)  (d) Superimposed rectangles

Image credit: Rother et al.



Decision Forest

* Texton, Location, Color Features
* Encoded in a hierarchical way through decision forest

* Decision Forest
* Pass from root to leaf through decisions
* Each leaf node maintains a class distribution
* Weak classifier is very simple
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Image credit: Shotton et al.



Labeling Transfer

* Find pixel-wise correspondence (SiftFlow)
* Transfer labels
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Image credit: Liu et al.



Super-pixel Methods

* Do over-segmentation

* Extract local descriptors for each superpixel

* Consider each superpixel as a sample to classify
e Used for scene labeling
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Pro & Con? Image credit: Ladicky et al.



Region Methods

 Sample object region proposals
* Extract local descriptors for each proposal
* Consider each region as a sample to classify

» Usually used for object segmentation/detection
Object Plausibility

Parametric
Min-Cuts

: Ranking

Degree of foreground bias

Image credit: Carreira et al.



Random Field Model
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Unary term Pairwise term High-order term

* Probabilistic interpretation:

P(x) = - exp(~E(x))

* Map Inference
* Mostly likely labeling
* Has lowest energy
* In general, NP-Hard

Pairwise
Potential



Random Field Model

* All the methods | cover today use random fields

Why?



CRF for Semantic Segmentation

* A discriminative MRF
* Node: usually pixels

* Edge: interactions between
pixels :

* Unary term
e Local classifiers

e Pairwise term

* Neighboring pixels tend to
have similar labels

e Usually weighted by color
similarity

Image credit: Shi et al.
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CRF for Semantic Segmentation

* A discriminative MRF
* Node: usually pixels

* Edge: interactions between
pixels |

* Unary term
e Local classifiers

Image credit: Shi et al.



CRF for Semantic Segmentation

e Location interactions

g Krahenblhl et al.



Cons of adjacent connectivity

* Shrinking bias and limited propagation

Unary

 Krahenbihl et al.



Cons of adjacent connectivity

* Shrinking bias and limited propagation

CRF

t KrahenbUhl et al.



Cons of adjacent connectivity

* Shrinking bias and limited propagation

CRF

t KrahenbUhl et al.



Densely-connected CRF

* Pixels are densely connected
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g Krahenbihl et al.



Densely-connected CRF

e Bilateral Pairwise Term
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Image credit: Krahenbuhl et al.
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Densely-connected CRF
E(x) = Z@(Xz‘) + ) (%, x;)

i,J O
* Pros

* Long range interactions, overcome shrinking bias

* Cons
* Billions of pairwise terms sound scary for inference




Warning

A INEe Tave ol Math IS approdciimng!



Mean-field Approximate Inference

g Z¢z Xz + Z 1% X27Xj
1,J K

X = arg max P(x) where P(x)= 1 exp(—F(x))

Z
O .
® O X = arg max (Q(X)
— HQ,L-(XZ-) close to P(x) in terms of D(Q||P)

Dyr(P||Q) = ZP i) log E?

Why we want such a factorized Q?



Mean-field Approximate Inference

Algorithm 1 Mean field in fully connected CRFs

Initialize )
while not converged do
O(N~2) ng) (l) — Zg;éz k'(m) (fz, fJ)QJ(l) for all m Message Passing

oN)  Q;(x;) D ler p™ (xS ’w(m)ng)(l) Compatibility Transform

o) Qi(wi) < exp{—vu(z:) — Qz(xz)} Update
normalize Q;(x;)
end while




Mean-field Approximate Inference
X = arg max (X)

Q(x) = H Qi(x;) close to P(x) in terms of D(Q||P)

Algorithm 1 Mean field in fully connected >

Initialize ()
while not converged do
O(N) Qz(-m)(l) — Zj# k(m)(fi, f;)Q,;(l) for all m  Efficient Convolution

oN)  Q;(x;) Doler p™ (i 1) S w(m)ng)(l) Compatibility Transform

o) Qi(z:) < exp{—tu(z:i) — Qz’(xz')} Update
normalize Q;(x;)
end while

permutohedral lattice Image credit: Wikipedia



Since Nov. 2014...
State-of-the-art: mAP 77.8

mean aero bicycle bird boat bottle bus car cat chair cow dining dog horse motor person potted sheep sofa train tv/ submission
plane table bike plant monitor date
v v v v v v vV Vv v v v v v v v v v v v v

Adelaide_Context_CNN_CRF_coco [?] 77.8 929 39.6 84.0 67.9 75.3 92.7 83.8 90.1 44.3 855 64.9 87.3 88.8 845 85.5 68.1 89.0 62.8 81.2 71.4 06-Nov-2015
CUHK_DPN_coco [?] 77.5 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 22-Sep-2015
Adelaide_Context_CNN_CRF_coco [?] 77.2  92.3 38.8 82.9 66.1 75.1 92.4 83.1 88.6 41.8 85.9 62.8 86.7 88.4 84.0 85.4 67.4 88.8 61.9 81.9 71.7 13-Aug-2015
CentraleSuperBoundaries++ [?] 76.0 91.1 38.5 90.9 68.7 74.2 89.9 85.3 89.1 34.4 825 65.6 83.1 82.9 857 85.4 60.6  84.5 59.9 80.2 69.9 13-Jan-2016
oxford_TVG_HO_CRF [?] 75.9 912 56.2 88.9 68.0 70.7 89.5 83.8 87.2 33.6 81.0 66.4 82.4 83.1 87.8 82.3 59.8 83.5 53.4 79.5 71.1 08-Jan-2016
CentraleSuperBoundaries [?] 75.7  90.3 37.9 89.6 67.8 74.6 89.3 84.1 89.1 358 83.6 66.2 82.9 81.7 856 84.6 60.3 84.8 60.7 78.3 68.3 01-Dec-2015
Adelaide_Context_CNN_CRF_voc [ 75.3  90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 832 58.2 80.8 72.3 30-Aug-2015
MSRA_BoxSup [?] 75.2 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 837 852 83.5 58.6  84.9 55.8 81.2 70.7 18-May-2015
POSTECH_DeconvNet_CRF_voc [?] 74.8  90.0 40.8 84.2 67.3 70.7 90.9 84.8 87.4 34.8 83.0 58.7 82.3 87.1  86.9 82.4 64.5 84.6 54.9 77.5 64.1 18-Aug-2015
oxford_TVG_CRF_RNN_coco [?] 74.7  90.4 55.3 88.7 68.4 69.8 88.3 824 851 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 22-Apr-2015
DeepLab-MSc-CRF-LargeFOV-COCO-CrossJoint 21  73.9  89.2 46.7 88.5 63.5 68.4 87.0 81.2 86.3 32.6 80.7 62.4 81.0 81.3 843 82.1 56.2  84.6 58.3 76.2 67.2 26-Apr-2015
DeepLab-CRF-COCO-LargeFoV [?] 72.7 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85.0 29.3 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1 18-Mar-2015
POSTECH_EDeconvNet_CRF_voc [?] 72.5  89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 285 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 22-Apr-2015
oxford_TVG_CRF_RNN_voc [?] 72.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 22-Apr-2015
DeepLab-MSc-CRF-LargeFov [?] 71.6 84.4 54.5 81.5 63.6 65.9 851 79.1 83.4 30.7 74.1 59.8 79.0 76.1  83.2 80.8 59.7 82.2 50.4 73.1 63.7 02-Apr-2015
MSRA_BoxSup [?] 71.0 86.4 35.5 79.7 65.2 65.2 84.3 78.5 83.7 30.5 76.2 62.6 79.3 76.1  82.1 81.3 57.0 78.2 55.0 72.5 68.1 10-Feb-2015
DeepLab-CRF-COCO-Strong [?] 70.4  85.3 36.2 84.8 61.2 67.5 84.6 81.4 81.0 30.8 73.8 53.8 77.5 76.5 823 81.6 56.3 78.9 52.3 76.6 63.3 11-Feb-2015
DeepLab-CRF-LargeFoV [?] 70.3  83.5 36.6 82.5 62.3 66.5 85.4 78.5 83.7 30.4 72.9 60.4 78.5 75.5 82.1 79.7 58.2  82.0 48.8 73.7 63.3 28-Mar-2015
TTI_zoomout_v2 [?] 69.6  85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 717 63.3 30-Mar-2015
DeepLab-CRF-MSc [?] 67.1 80.4 36.8 77.4 55.2 66.4 81.5 77.5 78.9 27.1 68.2 52.7 74.3 69.6 79.4 79.0 56.9  78.8 45.2 72.7 59.3 30-Dec-2014
DeepLab-CRF [?] 66.4 78.4 33.1 78.2 55.6 65.3 81.3 75.5 78.6 253 69.2 52.7 75.2 69.0 79.1 77.6 54.7 78.3 45.1 73.3 56.2 23-Dec-2014
CRF_RNN [?] 65.2  80.9 34.0 72.9 52.6 62.5 79.8 76.3 79.9 23.6 67.7 51.8 74.8 69.9 76.9 76.9 49.0 747 42.7 721 59.6 10-Feb-2015
TTI_zoomout_16 [?] 64.4 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4 69.6 53.7 74.0 76.0 76.6 68.8 443  70.2 40.2 68.9 55.3 24-Nov-2014
Hypercolumn [?] 62.6 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9 23.9 60.6 46.9 72.1 68.3 745 72.9 52.6 64.4 454 64.9 57.4 09-Apr-2015
ECN-8s [?] 62.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 724 37.4 709 55.1 12-Nov-2014
MSRA_CFM [?] 61.8 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 717 67.5 50.4 66.5 44.4 58.9 53.5 17-Dec-2014
** SegNet ** [?] 59.9 73.6 37.6 62.0 46.8 58.6 79.1 70.1 65.4 23.6 60.4 456 61.8 63.5 75.3 74.9 42,6 63.7 42.5 67.8 52.7 10-Nov-2015
TTI_zoomout [?] 58.4  70.3 5 o 14
= = The best without CNN: mAP 48.1
Nus_ups [?1 50.0 6, Z ° e 14
TTIC-divmbest-rerank [?] 48.1  62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8 15-Nov-2012




Deeplab

* Qutline
Input Aeroplane
Coarse Score map
Deep
Convolutional -~
> Neural > _ﬂ
Network
\/
Final Output Fully Connected CRF Bi-linear Interpolation

Image credit: Chen et al.



Deeplab

* Convert a detection architecture for segmentation

e A variant of VGG-16

* Initial weight from ImageNet for classification.

convolutional

convl conv2 conv3 conv4 convb
max max max max max
ool pool pool
P pool pool

fully connected

fcl fc2 fc3 softmax
dropout dropou;c 1., prediction

Image credit: Simonyan et al.



Deeplab

* Convert a detection architecture for segmentation
* A variant of VGG-16
* Initial weight from ImageNet for classification.

fully convolutional

convl conv2 conv3 conv4 conv5 conv softmax
max i max max max prediction
ool pool ool dropout dropout
POo, _poot = pool = pool  © _pool | pout tel 1§, ,

Image credit: Simonyan et al.



Deeplab

* Convert a detection architecture for segmentation
* Resolution is a problem (x32)
* You could either avoid some down-sampling (DeepLab)

* Or add additional deconvolution/up-sampling layers
afterwards (FCN8s, CRFasRNN)

Image credit: Chen et al.



Deeplab

e Generate score map (8x)
* Interpolation to image size

Boundary not
aligned.

Image credit: Chen et al.



Deeplab

* Densely-Connected CRF
* Sharpen boundaries using image-based info
* Gaussian spatial pairwise + Bilateral pairwise potential
* Grid-search hyper-parameters over validation set

lpi —p;lI°  |IL = L[
20 20

JOLILEY
5 0

Image/G.T. DCNN output  CRF Iteration 1  CRF Iteration 2  CREF Iteration 10
Image credit: Chen et al.
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Deeplab

* Experimental Result

Raw score maps After dense CRF
Image credit: Chen et al.



CRF as RNN

* Jointly learning the parameters of CNN and CRF

Algorithm 1 Mean field in fully connected CRFs
Initialize ()
while not converged do
Q™ (1) = X2, KU (£:,£;)Q; (1) for all m
Qi(w:) Yy 1™ (@i, 1) 32, w™ Q™ (1)
Qi(z;) < exp{—tpu(zi) — Qi(w:i)}

normalize Q;(x;)

end while
fo
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Quantitative Results

* Intersection-Over-Union

true positives

segmentation accuracy = — — -
true positives + false positives + false negatives



Quantitative Results on Pascal VOC 2012

* Improvements
* Pre-CNN (< 50%)
* CNN (60-64%)
* CNN + CRF (67%)

e Data Augmentation (71%)
* Pretraining using other dataset (COCO < —> Pascal)
* Weakly supervision using bounding boxes
* Learning the parameters for CRF and CNN jointly
(74%)
 Learning the pairwise label compatibility (77%)



Demo

* Notebook Example: FCN_8s + DenseCRF
* Online Demo: CRF-RNN



Summary

* Fully Convolutional Network
* Fully connected Conditional Random Field



* MSRC

e SiftFlow
e Stanford
* LabelMe
* NYU

* Sun RGBD

e KITTI
e CamVid
* Cityscapes

Dataset

J \ J \ J \

Classic but might not large
enough for data-hungry models

RGBD-benchmark, large, indoor
Good for CNNs

Object labeling, large, object seg
Good for CNNs, good for multi-task

Autonomous driving, video, scene
Enough for fine-tuning CNNs
Good for multi-task

Good for taking two courses
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