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Introduction

Motivation

e T

Could a crocodile run a steeplechase?!

!The example was borrowed from Levesque (2014)



Introd

Symbolic approach

KB:

Vz.Crocodile(x) D WeakLegs(x)
V. WeakLegs(x) D ~CanJump(x)

Vz.~CanJump(z) DO ~CanSteeplechase(x)

Query: —3z.Crocodile(x) A CanSteeplechase(x)
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Symbolic approach

Strategy: Contradiction proof.
Assume query is false: Crocodile(a) A CanSteeplechase(a)

[Crocodile(a)] [—Crocodile(x),WeakLegs(x)]
[WeakLegs(a)] [=WeakLegs(x),—~Canjump(x)]
[ﬁCanJump(a‘{ [CanJump(x),—~CanSteeplechase(x)]
[ﬁCanSteepIechase(a‘{ [CanSteeplechase(a)]

N

[1

Observations:
- This is SLD resolution.
- Scalability problems.
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A Neural Conversational Model

Vinyals & Le (2015)

They trained a seq2seq:
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Credit: Vinyals & Le

. with movie subtitles.
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A Neural Conversational Model

Vinyals & Le (2015)

Human: who is skywalker ?
Machine: he is a hero .

Human: what is the color of the sky ?
Machine: blue .

Human: how many legs does a cat have ?
Machine: four , i think .

Human: what is the purpose of living ?
Machine: to live forever



Introduction

Research question

Can we use neural networks for common sense reasoning?
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Long term goal
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Reasoning with Neural Networks

Reasoning with Neural Networks

Two main branches:
- Common Sense embeddings.

- Neural Reasoners.
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Common Sense embeddings

Hinton (1990)

Christopher = Penelope Andrew = Christine

Margaret = Arthur Victoria = James Jennifer = Charles

Colin Charlotte

Roberto = Maria Pierro = Francesca
Gina = Emilio Lucia = Marco Angela = Tomaso

Alfonso Sophia
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Common Sense embeddings

Hinton (1990)

Person Relationship
\4 \4

Person Relationship

embedding embedding
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Related people
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Common Sense embeddings

McClelland & Rogers (2003)

Relation

Living thing
Plant
Animal
Tree
Flower
Bird
Flower
Pine

Rose
Deisy
Robin

Sunfish
Salmon

Wings
Feathers
Scales
Gils
Roots
Skin
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Common Sense embeddings

McClelland & Rogers (2003)
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Common Sense embeddings

McClelland & Rogers (2003)

DC'’s delayed copy of a swan
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Common Sense embeddings

Socher et al. (2013)

Reasoning with neural tensor networks for knowledge
base completion.
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Common Sense embeddings

Socher et al. (2013)

Reasoning with neural tensor networks for knowledge
base completion.

Knowledge Base ‘Word Vector Space Reasoning about Relations
Relation: h: re N
Confidence for Triplet
cat tall ===
dog leg
. Neural
Relation: type of i R Tensor
tiger cat ! Network
leg limb 7/
i ’ el Zig e
Relation: instance of 1ol @

( Bengal tiger, has part, tail)
Does a Bengal tiger have a tail?
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Common Sense embeddings

Socher et al. (2013)

historian male
gender
professitk gender
Francesco Francesco
Guicciardini Patrizi
place of blrth
nationality /
nationality
Florence Italy

[oca$ Matteo /nationality

Rosselli
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Common Sense embeddings

Bowman et al. (2014)

Recursive neural networks can learn logical semantics.
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Common Sense embeddings

Bowman et al. (2014)

Recursive neural networks can learn logical semantics.

Softmax classifier P(C) = 0.8

Comparison :

N(T)N layer all reptiles walk vs. some tu‘lﬂi move
Composition all reptiles walk some turtles move
RN(T)N N PN
layers all reptiles walk some turtles Mmove

TN TN

all reptiles some turtles
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Common Sense embeddings

Bowman et al. (2014)

YreRNN = f <M [ g((i)) ] +?>

U TreeRNTN = J TreerNN + f(Z OTTL-n72 ()
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Common Sense embeddings

Bowman et al. (2014)

Name Symbol Set-theoretic definition Example

(strict) entailment rCy rCy turtle, reptile
(strict) reverse entailment rJy rDy reptile, turtle
equivalence r=y r=y couch, sofa
alternation Ty zNy=0AzUy#D turtle, warthog
negation zy zNy=0AzUy="D able, unable
cover T~y zNy#0AzUy=D animal, non-turtle

independence THY (else) turtle, pet
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Common Sense embeddings

Bowman et al. (2014)
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Common Sense embeddings
Bowman et al. (2014)
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Common Sense embeddings

Bowman et al. (2014)

Train Test
P1 = D2 P2 " pr
p1 1ps P2 1Dps
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Common Sense embeddings

Bowman et al. (2014)

Train Test
pP1 = P2 P2 n pr
p1 1ps P2 1 ps
P4 1 P8 Ps—>Ps
Ps A|p7 propa
br ;1 Ps L pa
Train Test

# only 53.8 (10.5) 53.8 (10.5)
15d NN 99.8 (99.0) 94.0 (87.0)
ISANTN 100 (100) 99.6 (95.5)
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Common Sense embeddings

Bowman et al. (2014)

notps "

notnotps =

p3 L
(p1or(p2orps)) T

not (not p1 and not p2)

p3
De
(ps or p2)
(p2 and not p4)
(p1 orp2)
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Common Sense embeddings

Bowman et al. (2014)
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Common Sense embeddings

Bowman et al. (2014)

(most turtle) swim | (no turtle) move
(all lizard) reptile C (some lizard) animal

(most turtle) reptile | (all turtle) (not animal)



Reasoning with Neural Networks
0000000000000 00e00

Common Sense embeddings

Bowman et al. (2014)

(most turtle) swim | (no turtle) move
(all lizard) reptile C (some lizard) animal

(most turtle) reptile | (all turtle) (not animal)

Train Test

# only 354 (7.5) 354 (1.5)
25d SumNN 96.9 (97.7) 93.9 (95.0)
25d TreeRNN 99.6 (99.6) 99.2 (99.3)
25d TreeRNTN 100 (100) 99.7 (99.5)
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Common Sense embeddings

Bowman et al. (2014)

SICK textual entailment challenge

The patient is being helped by the doctor entailment
A little girl is playing the violin on a beach contradiction
The yellow dog is drinking water from a bottle contradiction
A woman is breaking two eggs in a bowl neutral
Dough is being spread by a man neutral

The doctor is helping the patient (PASSIVE)

There is no girl playing the violin on a beach (NEG)

The yellow dog is drinking water from a pot (SUBST)

A man is mixing a few ingredients in a bowl (MULTIED)
A woman is slicing meat with a knife (DIFF)
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Common Sense embeddings

Bowman et al. (2014)

neutral 30d 30d 50d

only SumNN TrRNN TrRNTN

DG Train 50.0 68.0 67.0 74.0
SICK Train 56.7 96.6 954 97.8
SICK Test 56.7 73.4 74.9 76.9
PASSIVE (4%) 0 76 68 88
NEG (7%) 0 96 100 100
SUBST (24%) 28 72 64 72
MULTIED (39%) 68 61 66 64
DIFF (26%) 96 68 79 96

SHORT (47%) 50.0 73.9 73.5 77.3
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Reasoning about facts
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Reasoning about facts

The bADbI project (Weston et al. (2015)).

Task 15: Basic Deduction
Sheep are afraid of wolves.
Cats are afraid of dogs.
Mice are afraid of cats.
Gertrude is a sheep.
What is Gertrude afraid of? A:wolves

Task 16: Basic Induction
Lily is a swan.
Lily is white.
Bernhard is green.
Greg is a swan.
What color is Greg? A:white

Task 17: Positional Reasoning
The triangle is to the right of the blue square.
The red square is on top of the blue square.
The red sphere is to the right of the blue square.
Is the red sphere to the right of the blue square? A:yes
Is the red square to the left of the triangle? A:yes

Task 18: Size Reasoning
The football fits in the suitcase.
The suitcase fits in the cupboard.
The box is smaller than the football.
Will the box fit in the suitcase? A:yes
Will the cupboard fit in the box? A:no
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Reasoning about facts

Three models have been proposed:
- Dynamic Networks (Kumar et al. (2015))
- Memory Networks (Sukhbaatar et al. (2015))
- Neural Reasoner (Peng et al. (2015))
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Reasoning about facts
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Reasoning about facts
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Reasoning about facts

Question Factl Fact2 FactK

Credit: Peng et al. (2015)
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Reasoning about facts
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Reasoning about facts

SLD resolution.

[Crocodile(a)] [—Crocodile(x),WeakLegs(x)]
[WeakLegs(a)] [=WeakLegs(x),—~Canjump(x)]
[=Canjump(a)] [CanJump(x),~CanSteeplechase(x)]
[ﬂCanSteepIechase(a‘{ [CanSteeplechase(a)]
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Reasoning about facts

Testing Memory Networks

Facts

mice are afraid of sheep
wolves are afraid of cats
jessica is a wolf

sheep are afraid of cats

winona is a mouse
cats are afraid of mice
gertrude is a cat
emily is a wolf

Questions
what is jessica afraid of?
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Testing Memory Networks

Facts
mice are afraid of sheep
wolves are afraid of cats

jessica is a wolf

sheep are afraid of cats
winona is a mouse

cats are afraid of mice
gertrude is a cat

emily is a wolf

Questions
what is jessica afraid of? A: cat (99.74%)
is emily afraid of gertrude?
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Reasoning about facts

Testing Memory Networks

Facts
mice are afraid of sheep
wolves are afraid of cats

jessica is a wolf

sheep are afraid of cats
winona is a mouse

cats are afraid of mice
gertrude is a cat

emily is a wolf

Questions
what is jessica afraid of? A: cat (99.74%)
is emily afraid of gertrude? A: cat (71.79%)
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Reasoning about facts

Testing Memory Networks

Facts
the triangle is to the left of the red square
the pink rectangle is below the triangle

Questions
is the red square to the right of the pink rectangle?
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Reasoning about facts

Testing Memory Networks

Facts
the triangle is to the left of the red square
the pink rectangle is below the triangle

Questions
is the red square to the right of the pink rectangle? A: yes (87%)
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Reasoning about facts

Testing Memory Networks

Facts
the triangle is to the left of the red square
the pink rectangle is below the triangle

Questions
is the red square to the right of the pink rectangle? A: yes (87%)
is the red square to the left of the pink rectangle?
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Reasoning about facts

Testing Memory Networks

Facts
the triangle is to the left of the red square
the pink rectangle is below the triangle

Questions
is the red square to the right of the pink rectangle? A: yes (87%)
is the red square to the left of the pink rectangle?  A: yes (92%)
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Reasoning about facts

Testing Memory Networks

Facts
sandra and daniel journeyed to the bedroom
john and sandra travelled to the garden

sandra and john travelled to the bedroom
mary and sandra went back to the kitchen
sandra and mary travelled to the bedroom
john and mary moved to the office

Questions
where is daniel?
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Reasoning about facts

Testing Memory Networks

Facts
sandra and daniel journeyed to the bedroom
john and sandra travelled to the garden

sandra and john travelled to the bedroom
mary and sandra went back to the kitchen
sandra and mary travelled to the bedroom
john and mary moved to the office

Questions
where is daniel? A: bedroom (99.60%)
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Reasoning about facts

Testing Memory Networks

Facts

sandra and daniel journeyed to the bedroom
john and sandra travelled to the garden
sandra and john travelled to the bedroom

mary and sandra went back to the kitchen
sandra and mary travelled to the bedroom
john and mary moved to the office

Questions
where is daniel? A: bedroom (99.60%)
is daniel in the bedroom?
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Reasoning about facts

Testing Memory Networks

Facts

sandra and daniel journeyed to the bedroom
john and sandra travelled to the garden
sandra and john travelled to the bedroom

mary and sandra went back to the kitchen
sandra and mary travelled to the bedroom
john and mary moved to the office

Questions
where is daniel? A: bedroom (99.60%)
is daniel in the bedroom? A: no (91.38%)
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Reasoning about facts
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Proposals: Explanations

Example 1:
- julius is white.
- What is julius color? White.



Reasoning with Neural Networks
00000000000

Proposals: Explanations

Example 1:
- julius is white.

- What is julius color? White.

Example 2:

julius is a lion.

julius is white.

greg is a lion.

What is greg color? White.
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