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Introduction

• So far you have seen that Convolutional Neural 
Networks work well for image classification, 
localization and etc… 

• But does this hold for image generation ? 

• Turns out yes !



Deconvolutional Architecture

Dosovitskiy et al 2014



Works really well

Dosovitskiy et al 2014



However
• In this case, the latent variables describing chairs, 

such as class id, view angle, transformation 
parameters were available. 

• Which makes it strongly supervised and unrealistic 
in practice. 

• Need to resort to generative models that learn to 
capture latent variables.



Problem Setup
• You have a dataset of images 

• There are latent variables                                 that 
model the data. 

• A generative model is a parametrized joint 
distribution over variables 

• Image generation is           where   is sampled from 
some distribution.

x = {x1, x2, ..., xn}

z
p(x|z)

p(x, z|✓)

z = {z1, z2, ..., zk}



Generative Models
• Three main approaches: 

• 1. Boltzmann Machines (undirected graphical 
models) 

• 2. Variational Autoencoders (directed graphical 
models) 

• 3. Generative Adversarial Networks (noise 
contrastive estimation)



Restricted Boltzmann 
Machines 

• Undirected bipartite graphical model. 

•                   observed visible units 

•                   hidden binary units 

v 2 {0, 1}D

h 2 {0, 1}K

P (v,h) =
1

Z

exp(�E(v,h))

E(v,h) = �v>Wh� b>h� a>v

Z =
X

v2{0,1}D

X

h2{0,1}K

exp(�E(v,h))

Hinton & Sejnowski,1986; Smolensky,1986 



Restricted Boltzmann 
Machines 

• Inferring the distribution of hidden variables is easy 

• Similarly for visible variables 

P (h | v) =
Y

j

P (hj | v)

P (v | h) =
Y

i

P (vi | h)

P (vi = 1 | h) = 1

1 + exp(�Wh� bi)

P (hj = 1 | v) = 1

1 + exp(�v>
W � aj)



Learning RBMs
• We want to learn parameters 

• Minimize negative log-likelihood objective 

• Derivative of log-likelihood objective function 

✓ = {W,a, b}

@L(✓)

@Wij
= EPdata [vihj ]� EP✓ [vihj ]

L(✓) = �log(p(v)) = �log(
1

Z

X

h

exp(�E(v,h)))

Hinton, 2000



Derivative of log-likelihood
@L(✓)

@Wij
= EPdata [vihj ]� EP✓ [vihj ]

intractable: 
requires summing  

over all possible configurations

Easy to compute

X

v

X

h

vihjP✓(vh)



Contrastive Divergence

Idea: Replace the expectation by point estimates. 

Initialize visible units to the training data. 

For fixed number of steps run MCMC chain (Gibbs Sampler) to 
get dream samples of visible and hidden units. 



Contrastive Divergence

The goal is to minimize energy (or maximize likelihood) for 
training samples and maximize energy for randomly dreamed 

samples.

example energy landscape 
at the beginning of training



Generated MNIST Digits

Salakhutdinov & Hinton, 2009



Generating 3D objects

Salakhutdinov & Hinton, 2009



Issues with Boltzmann 
Machines

• Inference in Boltzmann Machines is computationally 
expensive. 

• MCMC sampler creates an inner loop of training (for 
each example). 

• Usually one sample is not enough to get good 
likelihood (except for the beginning of training). 

• As the model gets sharper, gibbs sampler requires 
more steps to yield a better estimate of gradient. (learn 
more by studying MCMC methods).



Variational Inference

• But is it possible to avoid normalization constant ? 

• What if instead of you learned some distribution 
that approximates posterior 

•    is free to vary. 

• This distribution is parametrized by neural network.

p(z|x)
q�(z|x)

�



Variational Lower Bound

since KL divergence is non-negative maximizing first term 
(called variational lower bound) with minimize KL divergence

reconstruction  
term

regularization term: distance between  
learned distribution q and fixed prior p

q�(z|x) = N(µ,�2) p(z) = N(0, 1)

log(p(x)) >= L(x) + DKL(q�(z|x) k p(z|x))

L(x) = �DKL(q�(z|x) k p(z)) + E
q�(z|x)

h
log(p(x|z))

i

Kingma & Welling, 2013/14 & Rezende & Mohamed, 2014



Reparametrization trick
• Still can’t backpropagate though  

• Instead of sampling from                                 sample 
from 

q�(z|x) = N(µ,�2)

E
q�(z|x)

h
log(p(x|z))

i

µ+ �2 ⇤N(0, 1)



Variational Autoencoder 
(VAE)

L(x) = �DKL(q�(z|x) k p(z)) + Eµ+�2⇤N(0,1)

h
log(p(x|z))

i

q�(z|x) = N(µ,�2)

Trained by backpropagation  
as simple as auto-encoders



Convolutional/Deconvolutional 
VAE trained on faces

trained by  
A. Radford 

2014



DRAW: Deep Recurrent 
Attentive Writer

• What if we augment encoder 
and decoder with recurrent 
neural networks 

• Inference and generation 
defined by sequential 
process. 

• Adds “attention” mechanism 
over a static input to define a 
sequential process

Gregor et. al. 2015



Vanilla VAE & DRAW

Variational Autoencoder DRAW



DRAW Attention Mechanism

• At each timestep model 
generates the coordinates and 
zoom of the patch it is going 
to read/write 

• Based on that model creates 
grid of gaussian filters that 
read/write specific sub-
patches.



DRAW Attention Mechanism



Generating House Numbers



Generating Images from Captions

Model is trained to maximize variational lower bound
L = EQ(Z1:T |y,x)

"
log p(x |y, Z1:T )�

TX

t=2

DKL (Q(Zt |Z1:t�1,y,x) kP (Zt |Z1:t�1,y))

#
�DKL (Q(Z1 |x) kP (Z1))

Mansimov et. al. 2015/16



Novel Compositions

A stop sign is flying in 
blue skies.

A herd of elephants flying 
in blue skies.

A pale yellow school bus is 
 flying in blue skies.

A large commercial airplane
 flying in blue skies.



Issues with Variational 
Autoencoders

• In practice, I found that simple feedforward encoder/
decoders don’t work well for challenging and diverse 
datasets. 

• Except if you pre-train good classifier (say on ImageNet) 
and initialize encoder weights. 

• Otherwise need to resort to more powerful encoder-
decoder architectures like DRAW, diffusion models and etc. 

• And/or more advanced inference techniques like 
importance weighted autoencoders, normalizing flows, 
HMC, etc.



More issues with 
reconstruction term.

Simple pixel-wise reconstruction error is a bad cost function. 

Simply shifting pixels can create a huge difference. 

It starts averaging pixels over likely locations which leads to blurry 
output. 

Ideally cost function should be more location invariant. Currently 
researchers trying to create better loss functions. 

Dosovitskiy & Brox 
2016



Generative Adversarial Networks
• Another way of avoiding normalization term and reconstruction 

loss. 

• Frame image generation as a game between two players 

• Discriminator D

• Generator G 

• G tries to trick D by generating samples that are hard for D to 
distinguish from data. 

• D tries not to be tricked by G by trying to discriminate between 
real data and fake data.

Goodfellow et. al. 2014



Generative Adversarial Networks

Goodfellow et. al. 2014



• Minimax value function

Generative Adversarial Networks

Goodfellow et. al. 2014



Generated Samples



• Instead of generating whole image, break down the 
image generation into several steps. 

Laplacian Pyramid of  
Generative Adversarial Networks

Denton & Chintala et. al. 2015



Example of course-to-fine 
generation on validation images



Generated Samples
40% of samples mistaken by humans as real.



Stabilizing training of GANs
• GANs are unstable and hard to train.  

• Discriminator can learn very fast to discriminate between real and fake 
data and generator might not catch up. 

• Generator might get stuck at specific model of data distribution repeat the 
same textures.

Radford et. al. 2015/16



Generated Samples

Radford et. al. 2015/16



Issues with Generative 
Adversarial Networks

• Still with those tricks, training can be unstable and 
need to monitor samples carefully. 

• Also end-to-end backpropogation though GAN 
framework doesn't work for non-continuous data 
like text.



Conclusions
• There many more interesting extensions and 

modifications of these models that I haven't 
mentioned. 

• Each generative model has its pros and cons and 
there is no clear winner. 

• There is a potential to create a hybrid of different 
approaches. 

• Or create completely new approaches from scratch.


