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lNtroauction

e So far you have seen that Convolutional Neural
Networks work well for image classification,
localization and etc...

* But does this hold for image generation ?

 Jurns out yes'!



Deconvolutional Architecture
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Works really well
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However

* |n this case, the latent variables describing chairs,
such as class id, view angle, transformation
parameters were available.

 Which makes it strongly supervised and unrealistic
INn practice.

 Need to resort to generative models that learn to
capture latent variables.



Problem Setup

You have a dataset of images = = {x1,x2,...,2,}

There are latent variables z = {z1, 22, ..., 2z} that
model the data.

A generative model is a parametrized |oint
distribution over variables p(z, z|0)

Image generation is p(z|z)where zis sampled from
some distribution.



Generative Models

Three main approaches:

1. Boltzmann Machines (undirected graphical
models)

2. Variational Autoencoders (directed graphical
models)

3. Generative Adversarial Networks (noise
contrastive estimation)



Restricted Boltzmann
Machines

 Undirected bipartite graphical model.
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Hinton & Sejnowski, 1986; Smolensky, 1986



Restricted Boltzmann
Machines

* Inferring the distribution of hidden variables is easy

P v) =[Py V)

hidden variables

| Bipartite
Structure

1

o Similarly for visible variables

P(v|h) = [[ P(v: | b)

1

P(v;=1|h) =
(v ) 1 4+ exp(—Wh — b;)




* We want to learn parameters 6 = {W,a, b}

 Minimize negative log-likelihood objective

L(0) =

* Derivative of log-likelihood objective function
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Derivative of log-
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Contrastive Divergence
P(h|v)
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Data Reconstructed Data

P(v|h)

Idea: Replace the expectation by point estimates.

Initialize visible units to the training data.

For fixed number of steps run MCMC chain (Gibbs Sampler) to

get dream samples of visible and hidden units.



Contrastive Divergence

example energy landscape
at the beginning of training

he goal is to minimize energy (or maximize likelihood) for
training samples and maximize energy for randomly dreamed
samples.



Generated MNIST Digits

Salakhutdinov & Hinton, 2009



Generating 3D objects

Generated Samples
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Issues with Boltzmann
Machines

Inference in Boltzmann Machines is computationally
expensive.

MCMC sampler creates an inner loop of training (for
each example).

Usually one sample is not enough to get good
ikelihood (except for the beginning of training).

As the model gets sharper, giblbs sampler requires
more steps to yield a better estimate of gradient. (learn
more by studying MCMC methods).



Variational Inference

But is it possible to avoid normalization constant 7

What if instead of you learned some distribution ge(z|x)
that approximates posterior p(z|x)

¢ is free to vary.

This distribution Is parametrized by neural network.



Variational Lower Bound

log(p(x)) >= L(x) + Dir.(g(2]7) || pl2]2))

since KL divergence is non-negative maximizing first term
(called variational lower bound) with minimize KL divergence

L(x) = ~Diw(gp(2[2) | P(2)) + By, (21ay | Log (p(x]2))

T
regularization term: distance between
learned distribution g and fixed prior p .
reconstruction

qo(z]z) = N(p,0%) p(z) = N(0,1) term

Kingma & Welling, 2013/14 & Rezende & Mohamed, 2014



Reparametrization trick

» Still can’t backpropagate though

L qs(2]2) {509(17($|Z))]

» Instead of sampling from s (z|z) = N (1, 0°) sample

from p+ 0% % N(0,1)

Original form Reparameterised form



Variational Autoencoder
(VAE)

P(QT:‘Z)
decoder
FI}IN
f L(z) = —Dxr(gs(2|2) [ P(2)) + Eptozan(o,1) {lag(p(ﬂz))}
- mple )
Q) 46 (2]2) = N(p, 0?)
enclde, Trained by backpropagation

FNN as simple as auto-encoders




Convolutional/Deconvolutional
VAE trained on faces
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trained by
A. Radford
2014



DRAW: Deep Recurrent
Attentive Writer

 What if we augment encoder
and decoder with recurrent
neural networks

* Inference and generation
defined by sequential
Process.

* Adds “attention” mechanism
over a static input to define a
sequential process

Gregor et. al. 2015
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Vanilla VAE & DRAW
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DRAW Attention Mechanism

* At each timestep model
generates the coordinates and
zoom of the patch it is going

5 S
to read/write
" H
e Based on that model creates
| —_—_—n
23 <

grid of gaussian filters that

read/write specific sub-
patches.




DRAW Attention Mechanism




Generating House Numbers
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Generating Images from Captions

_ g S
C1 C2 cr
__@__ T write T write T write
—":/,7/—7&‘{:: ~~~~~ . ‘
SN Tl T Generative Generative Generative

..,.,_ R S Skt RNN .. [ RNN, .. RNN e Generative (P)
¥ ¥ ¥ " :- : 1 2 L
<« ||« «— || <« < < A )
hy ha hg [ ] ha hs hg
Latent (z2)
:: p(Zr|Zy.7-1)
e T e e T S S S A S
— — — || — — — :
hy hs hg |ii| hs hs hg Inference |:
RNN ,....| |
hT 1
T T T T T T T read Inference (Q)

a person sking down a mountain
Y W Y2 Y3 Y4 Ys Ye

i

Model is trained to maximize variational lower bound
T
L=FEqgz.r1yx |logp(x|y, Z1.1) — ZDKL (Q(Z¢ | Z1:4-1,yY,%x) || P(Z | Z1:4-1,Y)) | =Dk (Q(Z1 |x) || P(Z1))
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Mansimov et. al. 2015/16



Novel Compositions
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A stop sign is flying in A pale yellow school bus is
blue skies. flying in blue skies.
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A herd of elephants flying A large commercial airplane
In blue skies. flying in blue skies.




lssues with Variational
Autoencoders

In practice, | found that simple feedforward encoder/
decoders don't work well for challenging and diverse
datasets.

Except if you pre-train good classifier (say on ImageNet)
and initialize encoder weights.

Otherwise need to resort to more powerful encoder-
decoder architectures like DRAW, diffusion models and etc.

And/or more advanced inference techniques like
importance weighted autoencoders, normalizing tlows,
HMC, etc.



More Issues with
reconstruction term.

Simple pixel-wise reconstruction error is a bad cost function.
Simply shifting pixels can create a huge difference.

|t starts averaging pixels over likely locations which leads to blurry
output.

|deally cost function should be more location invariant. Currently
researchers trying to create better loss functions.

Original Imgloss Img + Adv Img + Feat  Our

r Oy

A i Dosovitskiy & Brox
a) b) C) d) e) 2016



Generative Adversarial Networks

* Another way of avoiding normalization term and reconstruction
loss.

 Frame image generation as a game between two players
e Discriminator D

e (Generator G

G tries to trick D by generating samples that are hard for D to
distinguish from data.

* D tries not to be tricked by G by trying to discriminate between
real data and fake data.

Goodfellow et. al. 2014



Generative Adversarial Networks

D tries to
output O

D tries to
output 1
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Generative Adversarial Networks

e Minimax value function

minmax V (D, G) = Egp,..(e)10g D(x)] + E,p. (2)log(1 — D(G(2)))]

G D
A 'y # A
Discriminator pushes Discriminator’s
up Discriminator's ability to ability to recognize generator
recognize data as being real samples as being fake

Generator pushes
down

Goodfellow et. al. 2014



Generated Samp\es

CIFAR- IO (fully connected) CIFAR-10 (convolutional)



L aplacian Pyramid of
Generative Adversarial Networks

* |nstead of generating whole image, break down the
image generation into several steps.

Denton & Chintala et. al. 2015



Example of course-to-fine
generation on validation Images
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Generated Samples

40% of samples mistaken by humans as real.
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Stabilizing training of GANS

e GANSs are unstable and hard to train.

e Discriminator can learn very tast to discriminate between real and fake
data and generator might not catch up.

» (Generator might get stuck at specific model of data distribution repeat the
same textures.

Architecture guidelines for stable Deep Convolutional GANSs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.

e Use RelU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et. al. 2015/16



Generated Samples

Radford et. al. 2015/16



|lssues with Generative
Adversarial Networks

 Still with those tricks, training can be unstable and
need to monitor samples carefully.

* Also end-to-end backpropogation though GAN
framework doesn't work for non-continuous data

Ike text.



Conclusions

There many more interesting extensions and
modifications of these models that | haven't
mentioned.

Each generative model has its pros and cons and
there Is no clear winner.

There is a potential to create a hybrid of different
approaches.

Or create completely new approaches from scratch.



