Neural Conversational Models

Human: What is the purpose of living?
Machine: To live forever.
Conversational model

• Purpose: Given previous sentences of the dialogue and context, output a response
• Why?
 • goal driven dialogue systems
 • e.g. tech support
 • non-goal driven dialogue systems
 • e.g. language learning, video game characters

• How?
 • discriminative
 • generative
 • heavily hand-crafted
 • data-driven systems
Demo (Cleverbot)

• http://www.cleverbot.com/

• http://www.cleverbot.com/conv/201603150055/VWU01366204_Hi-can-you-help-me (Troubleshooting)

• http://www.cleverbot.com/conv/201603150111/VWU01366307_Hello (Basic)

• http://www.cleverbot.com/conv/201603150120/VWU01366357_What-is-the-purpose-of-life (Philosophical)

• http://www.cleverbot.com/conv/201603150204/VWU01366635_We-are-no-strangers-to-love (extra)
Frameworks

• sequence-to-sequence (seq2seq)
• classification problem over a known vocabulary
• input: sequence of tokens
• output: sequence of tokens

image: Sutskever et. al. 2015
Frameworks: seq2seq

• The goal: estimate

\[p(y_1, \ldots, y_{T'} | x_1, \ldots, x_T) \]

• problem: boundaries

• solution:

\[p(y_1, \ldots, y_{T'} | x_1, \ldots, x_T) = \prod_{t=1}^{T'} p(y_t | v, y_1, \ldots, y_{t-1}) \]

• training: maximize

\[\frac{1}{|S|} \sum_{(T, S) \in S} \log p(T | S) \] (target given source)

• inference:

\[\hat{T} = \arg \max_T p(T | S) \]

• approximated by beam search

equation images: Sutskever et. al. 2015
Beam Search

w=3
A Neural Conversational Model

- IT helpdesk dataset of conversations (closed-domain)
- OpenSubtitles movie transcript dataset (open-domain)
- Experiments: troubleshooting, general knowledge, philosophical etc.
A Neural Conversational Model

- training: maximize cross entropy of the correct sequence given its context
 - (aside) how is cross entropy measured when the true distribution of the words in the corpus is not known? Monte Carlo estimation: training set is treated as samples from the true distribution

\[H(T, q) = - \sum_{i=1}^{N} \frac{1}{N} \log_2 q(x_i) \]

- inference: greedy search

image: Chris Olah
Some results (troubleshooting)

Password issues

Describe your problem: i forgot my password
Machine: hi, this is <NAME> from helpdesk connect, what can i help you with today?
Human: hi, i forgot my password
Machine: ok great
Human: can you tell me how i can recover it?
Machine: i 'll need to verify who it is at that machine
Machine: can we do a hangout
Machine: ?
Human: yes
Machine: <anonymized hangout instructions and verifications>
Human: cool, i am good now
Machine: how ’s this looking good?
Machine: i ’ll go ahead and close this chat.
Machine: take care. :)
Human: bye
Machine: bye.

Browser issues

Describe your problem: browser keeps crashing
Machine: hi
Human: hi
Machine: could you please let me know what is the operating system you are using?
Human: linux
Machine: ok this is the issue with the system performance, nasser, tools.
Human: what is that?

Machine: is it a windows machine?
Machine: we have linux on your machine.
Machine: is it windows xp or windows ??
Human: i am using linux
Machine: let me take a remote of your machine and check if issue has been pushed properly.
Human: ok
Machine: please open terminal and run the below commands in one computer:
Machine: sudo apt - get update
Machine: sudo apt - get upgrade
Machine: sudo <COMMAND> - updater
Human: done
Machine: let me try connecting now
Human: ok
Machine: its done
Machine: should use the second or hit run on the background
Human: done
Machine: try signing out now and follow the prompts as per the message given above
Machine: shd i reboot the machine.
Human: ok, please go ahead
Machine: once its completed please try to login

Cleverbot:

http://www.cleverbot.com/conv/201603150055/VWU0136620
4_Hi-can-you-help-me
Some more results

Basic

Human: hello!
Machine: hello!
Human: how are you?
Machine: i'm good.
Human: what's your name?
Machine: i'm julia.
Human: when were you born?
Machine: july 20th.
Human: what year were you born?
Human: where are you from?
Machine: bye.
Human: see you later.
Machine: bye.

Machine: i'm out in the boonies.
Human: are you a man or a woman?
Machine: i'm a woman.
Human: why are we here?
Machine: i'm not sure.
Human: okay, bye!
Machine: bye.

Contexts and multiple choice

Human: my name is david. what is my name?
Machine: david.
Human: my name is john. what is my name?
Machine: john.
Human: are you a leader or a follower?
Machine: i'm a leader.
Human: are you a follower or a leader?
Machine: i'm a leader.

Cleverbot:
http://www.cleverbot.com/conv/201603150111/VWU01366307_Hello
Some more results

Philosophical

Human: what is the purpose of life?
Machine: to serve the greater good.
Human: what is the purpose of living?
Machine: to live forever.
Human: what is the purpose of existence?
Machine: to find out what happens when we get to the planet earth.
Human: where are you now?
Machine: i`m in the middle of nowhere.
Human: what is the purpose of dying?
Machine: to have a life.
Human: what is the purpose of being intelligent?
Machine: to find out what it is.
Human: what is the purpose of emotions?
Machine: i don`t know.

Opinions

Human: what do you think about tesla?
Machine: he `s a good conductor.
Human: what do you think about bill gates?
Machine: he `s a good man.
Human: What do you think about messi?
Machine: he `s a great player.
Human: what do you think about cleopatra?
Machine: oh, she `s very regal.
Human: what do you think about england during the reign of elizabeth?
Machine: it was a great place.

Cleverbot:
http://www.cleverbot.com/conv/201603150120/VWU0136635
7_What-is-the-purpose-of-life
Evaluation

- Perplexity measures how well a model predicts the given samples

\[2^{H_q(S_1, \ldots, S_n)} = 2^{-\sum q(S_i) \log_q(q(S_i))} \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Model</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT Helpdesk Troubleshooting</td>
<td>N-grams</td>
<td>18</td>
</tr>
<tr>
<td>IT Helpdesk Troubleshooting</td>
<td>Neural conversational model</td>
<td>8</td>
</tr>
<tr>
<td>OpenSubtitles</td>
<td>N-grams</td>
<td>28</td>
</tr>
<tr>
<td>OpenSubtitles</td>
<td>Neural conversational model</td>
<td>17</td>
</tr>
</tbody>
</table>
Evaluation

- human evaluation against a rule-based bot (CleverBot)
 - asked a list of questions to both models
 - judges picked the bot they preferred
 - Mechanical Turk

<table>
<thead>
<tr>
<th># questions</th>
<th># judges</th>
<th># prefer neural model</th>
<th># prefer CleverBot</th>
<th># tie</th>
<th># disagreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>4</td>
<td>97</td>
<td>60</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>
Wrong objective function?

• the answers are not diverse, i.e. likely to give most probable answers without giving out much information
 • e.g. S="How old are you?" T="I don’t know."
 • $p(T|S)$ high, $p(S|T)$ low
 • e.g. S="How old are you?" T="I am 10 years old"
 • $p(T|S)$ lower, $p(S|T)$ higher

• not really obvious from the selected examples in the paper
A Diversity-Promoting Objective Function for Neural Conversation Models

<table>
<thead>
<tr>
<th>Input (message)</th>
<th>Output (response)</th>
<th>log p</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are you doing?</td>
<td>I don’t know.</td>
<td>-0.862</td>
</tr>
<tr>
<td></td>
<td>I don’t know!</td>
<td>-1.035</td>
</tr>
<tr>
<td></td>
<td>Nothing.</td>
<td>-1.062</td>
</tr>
<tr>
<td></td>
<td>Get out of the way.</td>
<td>-1.088</td>
</tr>
<tr>
<td></td>
<td>Get out of here.</td>
<td>-1.089</td>
</tr>
<tr>
<td></td>
<td>I’m going home.</td>
<td>-1.092</td>
</tr>
<tr>
<td></td>
<td>Oh my god!</td>
<td>-1.094</td>
</tr>
<tr>
<td></td>
<td>I’m talking to you.</td>
<td>-1.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I don’t know.</td>
<td>-0.913</td>
</tr>
<tr>
<td></td>
<td>I don’t know!</td>
<td>-0.916</td>
</tr>
<tr>
<td></td>
<td>I don’t know, sir.</td>
<td>-0.920</td>
</tr>
<tr>
<td></td>
<td>Oh, my god!</td>
<td>-0.974</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>My name is Robert.</td>
<td>-1.553</td>
</tr>
<tr>
<td></td>
<td>My name is John.</td>
<td>-1.583</td>
</tr>
<tr>
<td></td>
<td>My name’s John.</td>
<td>-1.586</td>
</tr>
<tr>
<td>How old are you?</td>
<td>I don’t know.</td>
<td>-0.794</td>
</tr>
<tr>
<td></td>
<td>I’m fine.</td>
<td>-1.064</td>
</tr>
<tr>
<td></td>
<td>I’m all right.</td>
<td>-1.167</td>
</tr>
<tr>
<td></td>
<td>Don’t know.</td>
<td>-1.169</td>
</tr>
<tr>
<td></td>
<td>I’m not sure.</td>
<td>-1.170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Twenty-five.</td>
<td>-1.637</td>
</tr>
<tr>
<td></td>
<td>Five.</td>
<td>-1.657</td>
</tr>
<tr>
<td></td>
<td>Eight.</td>
<td>-1.713</td>
</tr>
</tbody>
</table>

Li et. al. 2015
A Diversity-Promoting Objective Function for Neural Conversation Models

• An alternative objective function: Maximum Mutual Information (MMI)

• maximize mutual information between source (S) and target (T)

 \[I(S, T) = \log \left(\frac{p(S,T)}{p(S)p(T)} \right) \]

• \(\hat{T} = \arg_T \max \{ \log p(T|S) - \lambda \log p(T) \} \)

• remember, previously \(\hat{T} = \arg \max_T p(T|S) \)
message	SEQ2SEQ	MMI $P(T	S') - \lambda P(T)$	
I did not get the report from an mi-6 agent.	I don’t think that’s a good idea.	You did the right thing, did you?		
You haven’t been given an assignment in this case.	I don’t know what you are talking about.	I’ve been looking all over for you.		
I’m losing my grip.	I don’t know what you are talking about.	I’m the only one in the world.		
I am ready to help.	Come on, come on	I have something we need to talk about.		
You programmed me to gather intelligence. That’s all I’ve ever done.	You know that, don’t you?	You do have fun, don’t you?		
I mean, we’d have to talk to him.	I mean, I don’t know.	I mean, he’s a good guy.		
This has nothing to do with him.	You don’t know anything about him, do you?	I know him as much.		
How come you never say it?	I don’t know	Because I don’t want to hurt you.		
He is the one behind this scheme to crash x-net.	I don’t know what you are talking about.	Yes, he is, isn’t he?		
How much time do you have here?	I don’t know.	Not long enough. Sorry, sir.		
message	SEQ2SEQ	MMI \((1 - \lambda)p(T	S) + \lambda p(S	T)\)
--	----------------------------------	---		
Ohh I’ve never seen that! How long does it take you guys to learn the drill?	I don’t even know.	Like 2 weeks ago!!		
You’ll know when we sign Heskey in 2 weeks	I’ll see what I can do	I sure hope so..		
I’m waiting!! I have even got biscuits waiting for you??	I have no idea what you’re talking about	I’ll send you a pic when I get home xx		
My parents actually had touch too much played at their wedding.	I have no idea what you’re talking about	How old are they??		
Say anything you want... I know you love me and I love you.	I love you so much.	I love you too, baby.		
I am off all week next week	What time you going?	What time you going?		
How are you doing?	I’m good, thanks.	I’m good, you?		
Frameworks

• Hierarchical Recurrent Encoder Decoder (HRED)

image: Serban et. al. 2015
Frameworks: HRED

• Motivation?
Hierarchical Neural Network Generative Models for Movie Dialogues

• Non-goal driven: can be easily adapted to specific tasks
• Bootstrapping
 • from word embeddings OR
 • from a large non-dialogue corpus (Q-A SubTle containing 5.5 pairs)
• Interactive dialogue structure
 • end-of-utterance token
 • continued-utterance token
Dataset

• why movie scripts?
 • large dataset
 • wide range of topics
 • long dialogues with few participants
 • relatively few spelling mistakes and acronyms
 • similar to human spoken conversations
 • mostly single dialogue thread
• atomic entries are triples
• 13M words total; 10M in training
Evaluations (movie dialogue generation)

- test set perplexity and classification errors when bootstrapping from SubTle corpus
Evaluations

<table>
<thead>
<tr>
<th>Reference (U₁, U₂)</th>
<th>MAP</th>
<th>Target (U₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U₁: yeah, okay.</td>
<td>i’ll see you tomorrow.</td>
<td>yeah.</td>
</tr>
<tr>
<td>U₂: well, i guess i’ll be going now.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₁: oh. <continued_utterance> oh.</td>
<td>i don’t know.</td>
<td>oh.</td>
</tr>
<tr>
<td>U₂: what’s the matter, honey?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₁: it’s the cheapest.</td>
<td>no, it’s not.</td>
<td>they’re all good, sir.</td>
</tr>
<tr>
<td>U₂: then it’s the worst kind?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₁: <person>! what are you doing?</td>
<td>what are you doing here?</td>
<td>what are you that crazy?</td>
</tr>
<tr>
<td>U₂: shut up! c’mon.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future work?

• study larger length dialogues (as opposed to triplets)
• bootstrapping on other non-dialogue but large datasets
Thank you!

Questions?
References