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Motivation

. Command robots using natural
language instructions

- Free-form instructions are difhicult
for robots to interpret due to its
ambiguity and complexity

. Previous methods rely on language
semantics to parse natural language
instructions

. Can robot learn the mapping from
instructions to actions directly?




Previous Work

- Symbol grounding problem (Harnad 1990): What is the meaning of words (symbols)?
- How do the words in our head connects to things they refer to in the real world?
- Manual mapping of words to environment features and actions (MacMahon 20006)
- Corpus of 786 route instructions from 6 people in 3 large indoor environments
- Instructions were validated by 36 people with 69% completion rate
- MACRO:
- Interpret instructions linguistically to obtain meaning
. Combine linguistic meaning with spatial knowledge to compose action sequence
- Infer actions via exploratory actions

- 61% completion rate



Previous Work

+ MACRO: simulated environment for indoor navigation

. Hallways with pattern on the floor

. Paintings on the wall

- Objects at intersections

. 'This setup and dataset is used in this paper

Objects Floor patterns

B Barstool s Blue

C Chair W Brick

E Fasel s Conerete

H Hatrack s Flower

L Lamp s Grass

S Sofa mem Gravel
e Wood

Wall paintings Yellow

= Tower
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Previous Work

. Translate instructions into formal language equivalent
Learning a parser to handle the mapping

» Use probabilistic context free grammar to parse free-form instructions
into formal actions (Kim and Mooney 2013)

Mapping instructions to features in the world model

Use generative model of the world and learn a model for spatial
relations, adverbs and verbs (Kollar 2010)

Parse the free-form instructions and and use probability distribution to
express the learned relation between words and actions



Problem Statement

+ Sequence to sequence learning problem
+ Translating navigational instructions to sequence of actions
. Knowledge of the local environment in the agent’s line-of-sight

+ Understand the natural language commands and map words in the
Instructions to correct actions

+ Instructions may not be completely specified



Problem Statement

Variables

x®, variable length natural language instructions
y@, observable environment (world state)
aW, action sequence

Mapping instructions to action sequence

a1.T = arg max P(ai.1 | y1.1, X1:N)
a1:T



Implementation: Encoder

- Encoder-decoder architecture for sequence to sequence

mapping
. Encoder: Bidirectional Recurrent Neural Net (BiRNN)

. hj = £(xj, hj.1, hj.1), the encoder’s hidden state for word j

. Hidden states h are obtained via feeding instructions x to

Long Short-Term Memory(LSTM)-RNN

. h describes the temporal relationships between previous
words



Implementation: Overview
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Implementation: Encoder

. Why LSTM-RNN?

- RNN handles variable length input: input sequence of

symbols are compressed into the context vector (h)
- RNN models the sequence probabilistically
. LSTM is shown to provide better recurrent activation

function for RNN: LSTM unit “remembers” previous
information better



Implementation: Multi-Level Aligner

¢ X and hj describes the instruction and the context

. aligner decides which part of input will have higher influence (attention
weight) and help the decoder to focus depending on the context

. 'This paper included x; in the aligner to improve performance

. both high-level (h) and low-level (x) representations are considered by
the aligner

. The model can offset information lost in abstraction of the instruction

. z.=c(hy, ..., hy), the context vector to encode instructions at time t -
this is for the decoder



Implementation: Decoder

. LSTM-RNN

. decoder takes world state (y;) and context of instruction (z)
as Input

. 'The output is the conditional probability for the next action

P, = P(ai|lar.1—1, Y, T1.N)



Implementation: Training

. Objective

a’T:T — arg max P(alzT‘ylzTa wl:N)
ai.T

T
— arg max H P(a¢lar.i—1,Y:, T1:N)

aiy.rT t—1
. Loss function
L =— logp(a;‘klyta :L'lzN)

. Parameters are learned through back-propagation



—Xperiment: Setup

. SAIL route instruction dataset (MacMahon, 20006)

. Local environment: features and objects in line-of-slight
Single-sentence and multi-sentence task

. Training
. 3 maps for 3-fold cross validation

. for each map, 90% training and 10% validation



Results

Method Single-sent  Multi-sent
Chen and Mooney (2011) 54.40 16.18
Chen (2012) 57.28 19.18
Kim and Mooney (2012) H7.22 20.17
Kim and Mooney (2013) 62.81 26.57
Artzi and Zettlemoyer (2013) 65.28 31.93
Artzi, Das, and Petrov (2014) 64.36 35.44
Andreas and Klein (2015) 59.60 -
Our model (vDev) 69.98 26.07
Our model (vTest) 71.05 30.34

. Outperforms state-of-the-art in single sentence task

. Competitive result for multi-sentence task




Results: Ablation Studies and Distance

—valuation

Full Model High-level Aligner No Aligner Unidirectional No Encoder

Single-sentence 69.98 68.09 68.05 67.44 61.63
Multi-sentence 26.07 24.79 25.04 24.50 16.67

. 'The encoder-decoder architecture using RNN with multi-level

aligner can significantly improve performance

Distance (d) 0 1 2 3

Single-sentence 71.73 86.62 92.86 95.74
Multi-sentence  26.07 42.88 59.54 72.08

. In the failure cases, the model can produce end-points that are

close to the destination



Conclusion

LSTM-RNN with multi-level aligner achieves a new state-of-
the-art performance on single sentence navigation task

. 'This model does not require linguistic knowledge and can be
trained end-to-end

Low-level context (the original input) is shown to improve
performance



DIScCuUSSIon

. 'This problem is very similar to the machine translation problem, with
additional environment information for the model to make the decision

. 'The authors” approach is largely inspired by advances in neural machine
translation and encoder-decoder architecture

+ 'The model does not implement exploratory behaviour nor correcting
mistakes

+ It would be interesting to investigate the effect of error in the instructions
in leading to the failed navigation

+ Multilevel alignment and the use of BiRNN greatly increase model
complexity



