ADVERSARIAL EXAMPLES

(In 15 minutes or less)

Neill Patterson, MscAC
PART I - BASIC CONCEPTS
WE TRAIN MODELS BY TAKING GRADIENTS W.R.T. WEIGHTS

\[w \leftarrow w - \eta \nabla J_w \]
Change weights via gradient descent
WE’RE GOING TO TAKE GRADIENTS W.R.T. PIXELS INSTEAD

\[x \leftarrow x \pm \eta \nabla J_x \]
WE ARE GOING TO TAKE GRADIENTS W.R.T. PIXELS INSTEAD

\[x \leftarrow x \pm \eta \nabla J_x \]
“Panda”

Change pixels via gradient descent

“Vulture”
KEY IDEA: ADD SMALL, WORST-CASE PIXEL DISTORTION TO CAUSE MISCLASSIFICATIONS
“Panda” + “Gibbon” = 99% confidence
58% confidence
THINK OF ADVERSARIAL EXAMPLES AS WORST-CASE DOPPELGÄNGERS
DEMO
PART II - HARNESING ADVERSARIAL EXAMPLES
KEY IDEA: MAKE TRAINING MORE DIFFICULT TO GET STRONGER MODELS
(DROPOUT, RANDOM NOISE, ETC)
TRAIN WITH ADVERSARIAL EXAMPLES FOR BETTER GENERALIZATION
THE FAST GRADIENT SIGN METHOD OF IAN GOODFELLOW
QUICKLY GENERATING ADVERSARIAL EXAMPLES
WHAT DIRECTION SHOULD YOU MOVE TOWARDS?
INSTEAD OF MOVING TOWARDS A SPECIFIC TYPE OF ERROR, MOVING AWAY FROM THE CORRECT LABEL
HOW BIG A STEP SHOULD YOU TAKE IF YOU WANT IMPERCEPTIBLE DISTORTION?
PIXELS ARE STORED AS SIGNED 8-BIT INTEGERS. ADD JUST LESS THAN 1-BIT OF DISTORTION TO EACH PIXEL

\[0.07 < \frac{1}{2^7} \approx 0.08 \]
WE WANT PRECISELY THIS AMOUNT OF DISTORTION, SO NO MATTER HOW SMALL (OR BIG) THE GRADIENT, JUST TAKE THE SIGN OF IT AND MULTIPLY BY 0.07

\[x + 0.07 \times \text{sign}(\nabla J_x) \]
INCORPORATING ADVERSARIAL EXAMPLES INTO YOUR COST FUNCTION
GENERATE ADVERSARIAL EXAMPLES AT EACH ITERATION OF TRAINING, BUT DON’T WANT TO KEEP THEM AROUND IN MEMORY FOREVER
INSTEAD, MODIFY THE COST FUNCTION TO BE A COMBINATION OF ORIGINAL AND ADVERSARIAL INPUTS
New cost function

\[\tilde{J}(\theta, x, y) = \]
Old cost function

\[\tilde{J}(\theta, x, y) = J(\theta, x, y) + \]
\[\tilde{J}(\theta, x, y) = J(\theta, x, y) + J(\theta, x + \epsilon \text{sign} \nabla_x J, y) \]

Adversarial example
\[\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha) J(\theta, x + \epsilon \text{sign} \nabla_x J, y) \]
\[\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha) J(\theta, x + \epsilon \text{sign} \nabla_x J, y) \]

“Train with a mix of original and adversarial examples”
NOW DO S.G.D. ON THIS NEW COST FUNCTION, BY TAKING GRADIENTS W.R.T. WEIGHTS

\[w \leftarrow w - \eta \nabla \tilde{J}_w \]
PART III - MISCELLANEOUS TIPS FOR TRAINING
YOU NEED MORE MODEL CAPACITY
(ADVERSARIAL EXAMPLES DO NOT LIE ON THE MANIFOLD OF REALISTIC IMAGES)
FOR EARLY STOPPING, BASE YOUR DECISION ON THE VALIDATION ERROR OF ADVERSARIAL EXAMPLES ONLY
RESULTS
BETTER GENERALIZATION ABOVE AND BEYOND DROPOUT

0.94% error \rightarrow 0.84% error
(MNIST)
BETTER GENERALIZATION ABOVE AND BEYOND DROPOUT

0.94% error \rightarrow 0.84% error

(MNIST)
RESISTANCE TO ADVERSARIAL EXAMPLES

89.4% error (97.6% confidence) → 17.9% error
MATHEMATICAL PROPERTIES OF ADVERSARIAL EXAMPLES
MATHEMATICAL PROPERTIES OF ADVERSARIAL EXAMPLES

(Ain't nobody got time for that)
THANK YOU FOR YOUR TIME!