All You Want To Know About CNNs

Yukun Zhu
Deep Learning
Deep Learning

What society thinks I do
Deep Learning

What society thinks I do

What my friends think I do

Image from http://imgur.com/
Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

Image from http://imgur.com/
Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

Image from http://imgur.com/
Deep Learning

What society thinks I do
What my friends think I do
What other computer scientists think I do
What mathematicians think I do
What I think I do

Image from http://imgur.com/
Deep Learning
Deep Learning in Vision

Object detection performance, PASCAL VOC 2010
Deep Learning in Vision

Object detection performance, PASCAL VOC 2010

<table>
<thead>
<tr>
<th>Method</th>
<th>Year</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM</td>
<td>2010</td>
<td>33.4</td>
</tr>
<tr>
<td>segDPM</td>
<td>2014</td>
<td>40.4</td>
</tr>
</tbody>
</table>
Deep Learning in Vision

Object detection performance, PASCAL VOC 2010

- DPM (2010): 33.4
- segDPM (2014): 40.4
- RCNN (2014): 53.7
Deep Learning in Vision

Object detection performance, PASCAL VOC 2010

- DPM (2010): 33.4
- segDPM (2014): 40.4
- RCNN (2014): 53.7
- RCNN* (Oct 2014): 62.9
Deep Learning in Vision

Object detection performance, PASCAL VOC 2010

<table>
<thead>
<tr>
<th>Method</th>
<th>Year</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM</td>
<td>2010</td>
<td>33.4</td>
</tr>
<tr>
<td>segDPM</td>
<td>2014</td>
<td>40.4</td>
</tr>
<tr>
<td>RCNN</td>
<td>2014</td>
<td>53.7</td>
</tr>
<tr>
<td>RCNN*</td>
<td>Oct 2014</td>
<td>62.9</td>
</tr>
<tr>
<td>segRCNN</td>
<td>Jan 2015</td>
<td>67.2</td>
</tr>
</tbody>
</table>
Deep Learning in Vision

Object detection performance, PASCAL VOC 2010

- DPM (2010): 33.4
- segDPM (2014): 40.4
- RCNN (2014): 53.7
- RCNN* (Oct 2014): 62.9
- segRCNN (Jan 2015): 67.2
- Fast RCNN (Jun 2015): 70.8
A Neuron

A Neuron in Neural Network

Activation Functions

- Sigmoid: \(f(x) = \frac{1}{1 + e^{-x}} \)
- ReLU: \(f(x) = \max(0, x) \)
- Leaky ReLU: \(f(x) = \max(ax, x) \)
- Maxout: \(f(x) = \max(w_0x + b_0, w_1x + b_1) \)
- and many others...
Neural Network (MLP)

The network simulates a function $y = f(x; w)$
Forward Computation

$$f(x_0, x_1) = 1 / (1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2)))$$

Forward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2)))} \]

Forward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

Forward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

Forward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]
Forward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

Forward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(- (w_0 x_0 + w_1 x_1 + w_2)))} \]
Forward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]
Forward Computation

\[
f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}
\]
Loss Function

Loss function measures how well prediction matches true value

Commonly used loss function:

- Squared loss: $(y - y')^2$
- Cross-entropy loss: $-\sum_i (y_i' \times \log(y_i))$
- and many others
Loss Function

During training, we would like to minimize the total loss on a set of training data

- We want to find $w^* = \text{argmin}\{\sum_i [\text{loss}(f(x_i; w), y_i)]\}$
Loss Function

During training, we would like to minimize the total loss on a set of training data

- We want to find $w^* = \text{argmin}\{\sum_i [\text{loss}(f(x_i; w), y_i)]\}$
- Usually we use gradient based approach
 - $w^{t+1} = w^t - a \nabla w$
Backward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2)))} \]
Backward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

Backward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

Backward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

\[f = e^x \]

\[df/dx = e^x \]
Backward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

\[f = -x \]
\[\frac{df}{dx} = -1 \]
Backward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))} \]

Backward Computation

\[f(x_0, x_1) = \frac{1}{1 + \exp(- (w_0 x_0 + w_1 x_1 + w_2)))} \]
Backward Computation

\[f(x_0, x_1) = 1 / (1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))) \]

\[f = ax \]

\[df/dx = a \]

Why NNs?
Universal Approximation Theorem

A feed-forward network with a single hidden layer containing a finite number of neurons, can approximate continuous functions on compact subsets of \mathbb{R}^n, under mild assumptions on the activation function.

Stone’s Theorem

- Suppose X is a compact Hausdorff space and B is a subalgebra in $C(X, \mathbb{R})$ such that:
 - B separates points.
 - B contains the constant function 1.
 - If $f \in B$ then $af \in B$ for all constants $a \in \mathbb{R}$.
 - If $f, g \in B$, then $f + g, \max\{f, g\} \in B$.
- Then every continuous function defined on $C(X, \mathbb{R})$ can be approximated as closely as desired by functions in B.
Why CNNs?
Problems of MLP in Vision

For input as a 10 * 10 image:

- A 3 layer MLP with 200 hidden units contains ~100k parameters

For input as a 100 * 100 image:

- A 1 layer MLP with 20k hidden units contains ~200m parameters
Can We Do Better?

Based on such observation, MLP can be improved in two ways:

- Locally connected instead of fully connected
- Sharing weights between neurons

We achieve those by using convolution neurons
Convolutional Layers

Image from http://cs231n.github.io/convolutional-networks/
Convolutional Layers

Pooling Layers

Image from http://cs231n.github.io/convolutional-networks/
Pooling Layers Example: Max Pooling

Image from http://cs231n.github.io/convolutional-networks/
Pooling Layers

Commonly used pooling layers:

- Max pooling
- Average pooling

Why pooling layers?

- Reduce activation dimensionality
- Robust against tiny shifts
CNN Architecture: An Example

Image from http://cs231n.github.io/convolutional-networks/
Layer Activations for CNNs

Conv:1 ReLU:1 Conv:2 ReLU:2 MaxPool:1 Conv:3

Layer Activations for CNNs

Learnt Weights for CNNs: First Conv Layer of AlexNet

Image from http://cs231n.github.io/convolutional-networks/
Why CNNs Work Now?
Convolutional Neural Networks

- Faster heterogeneous parallel computing
 - CPU clusters, GPUs, etc.
- Large dataset
 - ImageNet: 1.2m images of 1,000 object classes
 - CoCo: 300k images of 2m object instances
- Improvements in model architecture
 - ReLU, dropout, inception, etc.
AlexNet

GoogLeNet

Quiz

of parameters for the first conv layer of AlexNet?
Quiz

of parameters if the first layer is fully-connected?
Quiz

Given a convolution operation written as

\[
f(x^{3x3}; w^{3x3}, b) = \sum_{i,j} (x_{i,j} w_{i,j}) + b
\]

Can you derive its gradients (\(df/dx\), \(df/dw\), \(df/db\))?
Ready to Build Your Own Networks?
Tips and Tricks for CNNs

- Know your data, clean your data, and normalize your data
 - A common trick: subtract the mean and divide by its std.

Tips and Tricks for CNNs

- Augment your data
Tips and Tricks for CNNs

● Organize your data:
 ○ Keep training data balanced
 ○ Shuffle data before batching

● Feed your data in the correct way
 ○ Image channel order
 ○ Tensor storage order
Tips and Tricks for CNNs

First order, in order.

First order, out of order.
Tips and Tricks for CNNs

Common tensor storage order:

- **BDRC**
 - Used in Caffe, Torch, Theano, supported by CuDNN
 - Pros: faster for convolution (FFT, memory access)

- **BRCD**
 - Used in TensorFlow, limited support by CuDNN
 - Pros: Fast batch normalization, easier batching
Tips and Tricks for CNNs

Designing model architecture

- Convolution, max pooling, then fully connected layers

- Nonlinearity
 - Stay away from sigmoid (except for output)
 - ReLU preferred
 - Leaky ReLU after
 - Use Maxout if most ReLU units die (have zero activation)
Tips and Tricks for CNNs

Setting parameters

● Weights
 ○ Random initialization with proper variance

● Biases
 ○ For ReLU we prefer a small positive bias to activate ReLU
Tips and Tricks for CNNs

Setting hyperparameters

- Learning Rate / Momentum ($\Delta w^t_*= \Delta w^t + m\Delta w^{t-1}$)
 - Decrease learning rate while training
 - Setting momentum to 0.8 - 0.9

- Batch Size
 - For large dataset: set to whatever fits your memory
 - For smaller dataset: find a tradeoff between instance randomness and gradient smoothness
Tips and Tricks for CNNs

Monitoring your training:

- Split your dataset to training, validation and test
 - Optimize your hyperparameter in val and evaluate on test
 - Keep track of training and validation loss during training
 - Do early stopping if training and validation loss diverge
 - Loss doesn’t tell you all. Try precision, class-wise precision, and more
Tips and Tricks for CNNs

Borrow knowledge from another dataset

- Pre-train your CNN on a large dataset (e.g. ImageNet)
- Remove / reshape the last a few layers
- Fix the parameters of first a few layers, or make the learning rate small for them
- Fine-tune the parameters on your own dataset
Tips and Tricks for CNNs

Debugging

- import unittest, not import pdb
- Check your gradient [**deprecated**]
- Make your model large enough, and try overfitting training
- Check gradient norms, weight norms, and activation norms
Talk is Cheap, Show Me Some Code
THAT'S NOT ENOUGH

WE HAVE TO GO DEEPER
Fully Convolutional Networks