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@ The tutorial is online:
http://www.cs.toronto.edu/~fidler/3DsceneTutorialCVPR15.html
with:

Slides

o References

Links to datasets and code

Links to other similar tutorials

@ Today: break 3.45-4.15pm
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Robotics ;
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Why Indoors?

Gaming
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Why Indoors?

Virtual
tours

Gaming
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“Full” Scene Understanding?

@ Full understanding of a scene?
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“Full” Scene Understanding?

@ Full understanding of a scene? You can answer any question about it

[M. Malinowski, M. Fritz, A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input,
NIPS, 2014]
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“Full” Scene Understanding?

@ Full understanding of a scene? You can answer any question about it

Q: What is behind the table? Q:What is in front of the toilet? Q:What is on the counter in the
A: window A:door corner? A: microwave
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“Full” Scene Understanding?

@ Full understanding of a scene? You can answer any question about it

Q: What is behind the table? Q:What is in front of the toilet? Q:What is on the counter in the
A: window A:door corner? A: microwave

Q: What is the shape of the green
chair? A: horse shaped
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“Full” Scene Understanding?

@ Full understanding of a scene? You can answer any question about it

Q: What is behind the table? Q:What is in front of the toilet? Q:What is on the counter in the
A: window A:door corner? A: microwave

=l
Q: What is the shape of the green Q: Where is the oven?
chair? A: horse shaped A: on the right side of the fridge
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“Full” Scene Understanding?

@ Full understanding of a scene? You can answer any question about it

Q: What is behind the table? Q:What is in front of the toilet? Q:What is on the counter in the
A: window A:door corner? A: microwave

Q: What is the shape of the green Q: Where is the oven? Q:What is the largest object?
chair? A: horse shaped A: on the right side of the fridge A: bed
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“Full” Scen derstandin

@ Full understanding of a scene? You can answer any question about it

Q: Which object is red?
A: toaster
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“Full" Scene Understanding?

@ Full understanding of a scene? You can answer any question about it

Q: Which object is red? Q: How many drawers are there? Q: How many doors are open
A: toaster A:6 A1l
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“Full” Scene Understanding?

@ Full understanding of a scene? You can answer any question about it

Q: Which object is red? Q: How many drawers are there?
A: toaster A:6

Q: How many lights are on? Q: Can you make pizza in this room? Q: Where can you sit?
A6 A:yes A: chairs, table, floor
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Overview

@ Monocular 3D Object Detection
@ Room Layout Estimation

e Monocular
e Holistic Models

@ Reconstruction and Localization

@ Inferring Semantics in RGB-D
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Indoor vs OQutdoor vs Generic Scenes

In what way are indoor scenes “special”’?
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Generic Scenes

Examples from Microsoft Coco

a cat taking a nap next to a laptop resting its head on the mouse. some very big commercial planes over the water.
a cat sleeping on the mouse of a computer next to the computer. two airplanes fiying over water and passing each other
a catlays down next to a laptop a couple of large airplanes out in the open.

a little girl wearing a jacket and a backpack with a face on it. two white teddy bears one has pink feet the other blue.
a child with a backpack looking at a polar bear. a pair of white, boy and girl teddy bears
a little girl in a purple coat watches the polar bears there are two stuffed animals sitting next to each other

Fidler, R Indoor Scene Understandi



Outdoor Scenes

Objects typically on the ground. Biased viewpoint.
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Outdoor Scenes
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Objects typically on the ground. Biased viewpoint.
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Indoor Scenes

[C. Kong, D. Lin, M. Bansal, R. Urtasun, S. Fidler, What are you talking about? Text-to-lmage Coreference, CVPR'14]

Description: This room is filled with different types of furniture and home goods. The
lights on the ceiling are strung across the room, they are circular and bright. At the
back of the room, there are shelves filled with an assortment of pillows and blankets.
There are a few couches facing away from those shelves. The couches have many pillows
on top of them. On the second couch, which is dark green, sits a man in a plaid shirt.

Another black couch faces the second couch. In front of the black couch is a shelf
containing large brown bowls on the bottom shelf, towels on the second shelf, and vases

on the top shelf. In front of the shelf is a dining table with brown wooden chalrs pink
placemats, white dinnerware, and a brown glass bottle.
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Indoor Scenes — Manhattan World
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Indoor Scenes — Lots of Structure
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Difficult problem?

Lots of instances Viewpoint, aspect-ratio variation

Figure by Derek Hoiem
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Difficult problem?

Noisy depth Missing depth

25,

@ For example, 30% of chairs have more than 50% missing depth pixels [Gupta
et al., CVPR'15]
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Difficult problem?

Noisy depth

Missing depth

mean aero bicycle bird boat bottle bus car cat chair cow dining dog horse motor person potted sheep sofa train tv
table bike plant monitor
v.yYT VvV VvVV VvV VVYVVYVY VIV Vv Vv v v v v v v
> segDeepM 7 672 823 752 671 507 498 711 696 882 425 712 500 857 766 818 693 415 719 622 732 646
> BabyLearning 7 638 777 738 623 488 454 67.3 670 803 413 708 497 795 747 786 645 360 699 557 704 617
> R-CNN (bbox reg) 71 629 793 724 63.1 440 444 646 663 849 388 673 484 823 750 767 657 358 662 548 691 588
> R-cNNT 598 765 704 580 402 39.6 618 637 8LO 362 645 457 80.5 719 743 606 315 647 525 64.6 572
D> Feature Edit 564 748 692 557 419 361 647 623 69.5 313 533 437 699 640 718 605 327 630 441 636 566
> R-CNN (bbox reg) 71 537 718 658 530 368 359 597 600 69.9 279 506 4L4 700 620 690 581 205 594 393 6L2 524
> R-cNN 502 671 641 467 320 305 S64 572 659 270 473 409 666 578 659 536 267 565 3L 528 502 pAgEA)
mean|bath| bed [book| box |chair|count-|desk|door|dress-| garba- [lamp|monit-|night |pillow|sink | sofa |table| tele |toilet
‘ tub shelf -er -er |-ge bin ‘ -or |[stand vision|
RGBDPM | 9.0| 0.9|27.6 9.0| 0.1| 7.8| 73| 0.7| 25| 14| 6.6 [222| 10.0 | 9.2| 43| 59| 94| 55| 58 |344
RGBD-DPM|23.9(19.3|56.0|17.5| 0.6/23.5| 24.0 | 6.2| 9.5|16.4 | 26.7 |26.7| 34.9 | 32.6 | 20.7 |22.8(|34.2(17.2| 19.5 |45.1
RGB R-CNN|22.5|16.9|45.3|28.5| 0.7|25.9| 30.4 | 9.7 |16.3| 18.9 | 15.7 |27.9| 32.5 |17.0 | 11.1 |16.6|29.4|12.7| 27.4 | 44.1
Our 37.3|44.4|71.0|32.9| 1.4|43.3| 44.0 |15.1|24.5| 30.4 | 39.4 |36.5| 52.6 |40.0 | 34.8 |36.1|53.9|24.4| 37.5 |46.8 [Gupta'14]
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Basic Geometry
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Basic Geometry

Parallel lines converge at a vanishing point

@ Each different direction in the world has its own vanishing point

vanishing point

lines parallel in
the 3D world

[Adopted from: N. Snavely, R. Urtasun]
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Basic Geometry

Parallel lines converge at a vanishing point

@ Each different direction in the world has its own vanishing point

@ All lines with the same 3D direction intersect at the same vanishing point

[Pic: R. Szeliski]
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Basic Geometry

Parallel lines converge at a vanishing point
@ Each different direction in the world has its own vanishing point

@ For lines on the same 3D plane, the vanishing points lie on a line. We call it
a vanishing line. Vanishing line for the ground plane is a horizon line.

Horizon line

VA
/I\ N \ AN\
http://4.bp.blogspot.com/-0Jm9d9j35Tc/TSESbVpKI7I/AAAAAAAACEK/nVAITxBuiyc/s1600/perspectiveGrid-01.png
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Basic Geometry

Parallel lines converge at a vanishing point

@ For lines on the same 3D plane, the vanishing points lie on a line. We call it
a vanishing line or a horizon line.

@ Parallel planes in 3D have the same horizon line in the image.
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Example

@ Can | tell how much above ground this picture was taken?
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Example

@ Can | tell how much above ground this picture was taken?
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Example

@ Same distance as where the horizon intersects a building

horizon line
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Example

@ Same distance as where the horizon intersects a building: 50 floors up

horizon line
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Cross-ratio
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[Figure by Steve Seitz]
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Cross-ratio

@ When the camera is upright and not slanted:

[Figure by Derek Hoiem]
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Camera Estimation for a Manhattan World

@ For images where you see lines corresponding to 3 orthogonal directions you
can compute the camera matrix K as well as rotation matrix R

@ Reference: Zisserman & Hartley book.
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Single Image Reconstruction

@ One can reconstruct the scene in 3D from a single image, under certain
assumptions.

link to video
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http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/sjerome/movies/sjerome.mpg

Single Image Reconstruction

@ One can reconstruct the scene in 3D from a single image, under certain
assumptions.

A. Criminisi, |. Reid, and A. Zisserman
Single View Metrology

International Journal of Computer Vision, vol 40, num 2, 2000
http://www.cs.cmu.edu/ ph/869/papers/Criminisi99.pdf
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Estimating Vanishing Points

@ Detect lines in an image
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Estimating Vanishing Points

@ Detect lines in an image

@ Find all intersections of lines
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Estimating Vanishing Points

@ Detect lines in an image
@ Find all intersections of lines

@ Vote for each intersection
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Estimating Vanishing Points

@ Detect lines in an image
@ Find all intersections of lines
@ Vote for each intersection

@ Solve: vp;, vp,, vp3 = argmax (Vote(p) + vote(q) + vote(r))
ortho(p,q,r)
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Estimating Vanishing Points

@ Detect lines in an image
@ Find all intersections of lines

@ Vote for each intersection

@ Solve: vp;,vpy, VP = argmax (vote(p) + vote(q) + vote(r))
ortho(p,q,r)

@ Greedy: Lee et al., NIPS'10,
Hedau et al., ICCV'09 (code)

@ Exact (when K known): Bazin et
al., CVPR'12
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http://vision.cs.uiuc.edu/~vhedau2/Research/research_spatialLayout.html

Estimate K and R

@ Direction in 3D:

_ K
||K=1vDl|

where D denotes a point in homogeneous coordinates

d

vanishing point for direction D

camera

center parallel lines

in the world

image plane
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Estimate K and R

@ Direction in 3D:
_ Kb
||[K—1¥p]|

where D denotes a point in homogeneous coordinates

d

@ The three directions are orthogonal:
(K~'p1)" - K™'¥p, = 0
(K~'¥py)" - K '¥p3 =0
(K™'¥p,)" - K'vp3 =0
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Estimate K and R

@ Direction in 3D:
_ Kb
||[K—1¥p]|

where D denotes a point in homogeneous coordinates

d

@ The three directions are orthogonal:

(K~'p1)" - K™'¥p, = 0
(K~'¥py)" - K '¥p3 =0
(K™'p,)" - K™ '¥p3 =0

@ Compute K
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Estimate K and R

@ Direction in 3D:
_ Kb
||[K—1¥p]|

where D denotes a point in homogeneous coordinates

d

@ The three directions are orthogonal:
(K™'9py)" - K™'¥p, = 0

(K%py)" - K '¥p3 =0
(K'9D,)" - K™ '¥p3 =0

@ Compute K

@ Compute R = [d1,da, d3], where d; is a direction corresponding to the
vanishing point vp;

S. Fidler, R. Urtasun 3D Indoor Scene Understanding



3D Object Detection

Monocular Case
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Object detection
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Object detection

Usually detectors output 2D boxes around the objects.
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3D Object detection

Important to also infer accurate object pose.
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3D Object detection
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as well as location and extent of objects in 3D.
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3D Object Detection Indoors

Important for free space estimation.

Figure from: Choi et al., CVPR 2013
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3D Object Detection Indoors

Accurate prediction is important.
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Literature — 3D Object Detection

Essentially two types of approaches:

o Viewer-centered: object is modeled by a collection of 2D
appearance models [Torralba07, Felzenswalbl0, Pepik12, etc|, one for
each viewpoint

@ Object-centered: represent object classes with a 3D model typically
equipped with view-invariant geometry and appearance [Leibelt08,
Savarese07, Glasnerll, Yan07]
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Types of Approaches

Object is a: Object is: Object is a detailed
box polygonal CAD model
( Y4 )
Hedau et al., ECCV'10 ‘W‘“ LL “ ol
Fidler et al., NIPS 1? Xiang et al., CVPR'12 Lim et al. ICCV'13
Hedau et al., CVPR'12 Aubry et ;I CVPR'14
\. J\_ J\ Ve y,
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Thinking Inside the Box [Hedau et al., 2010]

V. Hedau, D. Hoiem, D. Forsyth, Thinking Inside the Box: Using Appearance Models and Context Based on Room
Geometry, ECCV 2010

@ Object is a box, aligned with the (Manhattan) room
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Thinking Inside the Box [Hedau et al., 2010]

@ Object is a box, aligned with the (Manhattan) room
@ Assume the camera is distance h above ground
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Thinking Inside the Box [Hedau et al., 2010]

@ Object is a box, aligned with the (Manhattan) room
@ Assume the camera is distance h above ground
@ Place a point on the floor

plane equation:

d;7 X+h=0
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Thinking Inside the Box [Hedau et al., 2010]

@ Object is a box, aligned with the (Manhattan) room
@ Assume the camera is distance h above ground
@ Place a point on the floor, assume box of known physical height
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Thinking Inside the Box [Hedau et al., 2010]

@ Object is a box, aligned with the (Manhattan) room
@ Assume the camera is distance h above ground

@ Place a point on the floor, assume box of known physical height

Place the points only below the horizon

S. Fidler, R. Urtasun 3D Indoor Scene Understanding



Thinking Inside the Box [Hedau et al., 2010]

@ Object is a box, aligned with the (Manhattan) room
@ Assume the camera is distance h above ground

@ Place a point on the floor, assume box of known physical height

Additional constraints for placing the point when layout is known
(object cannot penetrate the walls)
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Thinking Inside the Box [Hedau et al., 2010]

@ Object is a box, aligned with the (Manhattan) room

@ Assume the camera is distance h above ground

@ Place a point on the floor, assume box of known physical height
°

Score each face in fronto-parallel coordinates

Homography:
Hj;=K -Rij -K! 82
where VP2 L

Rij = [di,dj,di X d]‘}
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Thinking Inside the Box [Hedau et al., 2010]

Object is a box, aligned with the (Manhattan) room
Assume the camera is distance h above ground
Place a point on the floor, assume box of known physical height

Score each face in fronto-parallel coordinates

Score a box by summing the scores of the visible faces

> Vi maxeen(ry sc(fi)

%

score(box) =
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Thinking Inside the Box [Hedau et al., 2010]

Inference:
@ Object is a box, aligned with the (Manhattan) room
@ Assume the camera is distance h above ground
@ Place a point on the floor, assume box of known physical height
@ Score each face in fronto-parallel coordinates

@ Score a box by summing the scores of the visible faces

Training:

@ Train each face independently using SVM
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Thinking Inside the Box [Hedau et al., 2010]

Bedroom dataset:

@ Dataset contains 181 train and 128 test images with annotated beds.

Indoor dataset (Hedau et al., CVPR'12):
@ 592 indoor images (containing bedroom dataset as subset)

@ Annotated: sofas, chairs, tables, and dressers

S. Fidler, R. Urtasun 3D Indoor Scene Understanding



Thinking Inside the Box [Hedau et al., 2010]

1.Cuboid detector|2. Felzenszwalb et al.
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Extension [Hedau et al., 2012]

( V. Hedau, D. Hoiem, D. Forsyth, Recovering Free Space of Indoor Scenes from a Single Image, CVPR 2012 )

@ Adds headrest as a latent variable (scores it only if the overall score
increases)
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Extension [Hedau et al., 2012]

@ Adds headrest as a latent variable (scores it only if the overall score
increases)
@ Relocalizes the box more precisely via several cues:

o Edge-based features (line segments) on the cuboid edges
o Corner-based features (Harris cornerness measure) on cuboid corners

) edge-based features on cuboid edges
corner features on cuboid corners
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Extension [Hedau et al., 2012]

@ Adds headrest as a latent variable (scores it only if the overall score
increases)

@ Relocalizes the box more precisely via several cues:

o Edge-based features (line segments) on the cuboid edges
o Corner-based features (Harris cornerness measure) on cuboid corners
o "“Peg" detector
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Results [Hedau et al., 2012]
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[Hedau et al.,

o u

Precision (at recall) | Floor occupancy | 3D voxels
Gupta et al. [6] 0.48 (0.48) 0.08 (0.25)
Ours 0.74 (0.48) 0.49 (0.25)

S. Fidler, R. Urtasun 3D Indoor Scene Understanding
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Deformable 3D Cuboid Model [Fidler et al., 2

(S. Fidler, S. Dickinson, R. Urtasun, 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid )

Model, NIPS 2012

Represent objects with a deformable 3D cuboid model:
@ that score parts and spatially relates them to the cuboid faces

@ scores visible faces and spatially relates them to the stitching point, the
intersection point of the visible faces

@ reasons about the faces and parts in
rectified coordinates

@ explicitly reasons about face
visibility patterns called aspects

@ shares appearance models for the
faces and parts across aspects

Figure: Aspects: topologically different visibility patterns
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Deformable 3D Cuboid Model [Fidler et al., 2012

o Following Felzenswalb et al, the model is scored as:

fW(X) = max w- d)(X,y,Z)
(v:2)

@ x ... image features face deformations SLtCHing point
I ; .

o y=+=1 cuboid _—=

@ z ... hypothesis representing -

angle 6, positions and scales of
stitching point, faces and parts

@ Reasoning about face visibility

via 6, position, scale of 3D bbox Voo
part deformations
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Deformable 3D Cuboid Model [Fidler et al., 2012

6
score(x, 0,s,f) = Z V/(i, a) - scoreparns(fi, 0) +
i=1

6
+ 3 Vi, a) (score(;,0) — dSHieh - 60 f,5,0) ) +

i=1
6
— Y V(i,a) - dES6FC(f, frer, 0) + b
i>ref

where V/(i, a) a binary variable encoding visibility of face i under aspect a.

face deformations
~
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Deformable 3D Cuboid Model [Fidler et al., 2012

@ In inference, the model slides and rotates in 3D

S. Fidler, R. Urtasun 3D Indoor Scene Understanding 43 / 61



Deformable 3D Cuboid Model [Fidler et al., 2012

@ For each viewpoint, the faces are scored in frontal coords.
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Deformable 3D Cuboid Model [Fidler et al., 2012

@ Compute deformation with respect to stitching point.
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Deformable 3D Cuboid Model [Fidler et al., 2012

@ Compute deformations between face sides

@ And stitch the hypotheses into a proper deformable cuboid.

e For training the model latent SVM [Felzenswalb et al] is used
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Deformable 3D Cuboid Model [Fidler et al., 2012

o Evaluation on Hedau's bedroom dataset
@ Bed model was trained with 5 aspects, 4 faces and two parts per face

@ Faces + parts were shared between different aspects

e i i i i

Figure: Aspects, together with the range of 8 that they cover.
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Deformable 3D Cuboid Model [Fidler et al., 2012

Detectors’ performance Layout rescoring
DPM 3D det. combined | DPM 3D det. combined
Hedau et al. | 54.2% 51.3% 59.6% - - 62.8%
ours 55.6% 59.4% 60.5% 60.0% 64.6% 63.8%

Table: Detection performance (measured in AP at 0.5 IOU overlap) for the
bedroom dataset.

3D measure | DPM fit3D 3D det comb. 3D det+layout comb.+layout
convex hull 48.2% 53.9% 53.9% 57.8% 57.1%
face overlap 16.3% 33.0% 34.4% 33.5% 33.6%

Table: 3D detection performance in AP of predicted and GT boxes)

@ convex hull measure: convex hulls of our 3D box hypotheses projected to
the image plane and groundtruth annotations overlap at least 50% IOU

@ face overlap measure: average of the overlaps between top faces and
vertical faces exceeds 50% IOU

S. Fidler, R. Urtasun 3D Indoor Scene Understanding 48 / 61



Deformable 3D Cuboid Model [Fidler et al., 20

bed: 2D Detection performance bed: 3D perf.: conv hull overlap
I T I, T T |—DPM{it3D (AP = 0.482)
0.9 0.9 % — 3D BBOX (AP = 0.539)
08 0.8 7| —— combined (AP = 0.539)
0.7 0.7 : : : :
M c
3 0.6 506
los 2os
) [0}
1 0.4 5 0.4f
0.3/[——DPM (AP = 0.556) 0 03¢
0.2f| — 3D BBOX (AP = 0.594) | %, 0.2
0.1 combined (AP = 0.605) 01r
00 0.1 0.2 0.3 0.4 05 06 0.7 0.8 09 1 00 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1
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Deformable 3D Cuboid Model [Fidler et al., 2012
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Deformable 3D Cuboid Model [Fidler et al., 2012

Used room layout estimation from [Schwing and Urtasun, ECCV 2012]
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Y. Xiang and S. Savarese, Estimating the Aspect Layout of Object Categories, CVPR 2012
Code, data: http://wwweb.eecs.umich.edu/vision/projects/ALM/ALMproj.html

@ Objects represented as deformable aspect parts (not necessarily orthogonal)

@ Aspect parts: surfaces either fully visibly or invisible (e.g. a plane)

Viewpoint: Azimuth 315°, Elevation 30°, Distance 2

Aspect
Layout
Estimation
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http://wwweb.eecs.umich.edu/vision/projects/ALM/ALMproj.html

Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Obtaining the aspect parts:
@ Align the poses and scales of CAD models for a class
@ Aggregate the point cloud and manually mark the parts

@ Fit planar surfaces (with bounding boxes) to the point cloud of each part

S. Fidler, R. Urtasun 3D Indoor Scene Understanding



Objects as Compositions of Aspect Parts [Xiang et al., 2012]

@ Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ~ exp (E(Z w,, ;du(x, part;) + pr,;qﬁp(part,-, partj))

i iJj
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jects as Compositions of Aspect Parts [Xiang et al., 2012]

@ Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ~ exp (E(Z w,, ipu(x, part;) + prmp(parti, partj)>

ij

rectified image

Unary potential:

@ score each aspect part
in frontal view

current view

S. Fidler, R. Urtasun 3D Indoor Scene Understanding



Objects as Compositions of Aspect Parts [Xiang et al., 2012]

@ Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ~ exp (E(Z w, idy(x, part;) + pr,;qbp(part,, partj)>
i

ij

Pairwise potentials:

@ score deformations between
pairs of parts

@ part dependency forms a tree
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]

@ Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ~ exp (E(Z w,, ;du(x, part;) + pr,;qﬁp(part,-, partj))

i iJj

@ Inference: Dynamic programming

@ Learning: Structure SVM
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Objects as Compositions of Aspect Parts

Table 1. Results on the 3DObject dataset and the VOC2006 Car dataset.

Dataset 3DObject (8 views) VOC2006 Car (4 views)
Method ALM | [17] | [29] ALM | [17] [32]
Viewpoint 80.7 | 742 | 57.2 859 | 857 73.0
Detection 81.8 n/a n/a 48.7 51 35

Table 3. Average viewpoint accuracy on the 3DObject dataset.

[Xiang et al., 2012]

Category Bicycle | Car | Cellphone | Iron | Mouse | Shoe | Stapler | Toaster || Mean
DPM [13] 88.4 85.0 62.1 82.7 40.0 71.7 58.5 55.0 67.9
ALM Root 92.5 89.2 83.4 86.0 58.7 82.7 69.2 59.6 77.7
ALM Full 91.4 93.4 85.0 84.6 66.5 87.0 72.8 65.2 80.7

Prediction: a=225 e=30,d=7 Prediction: 2=330, e=15, d=7

90, d=5

S. Fidler, R. Urtasun

150,e=15,d=7  Prediction: a=300,e=90,d=15 Prediction: a=135, e=0.d=11

3D Indoor Scene Understanding

Prediction: a=0, e=60, d=7

Prediction: a=330, e=15, d:i




Predicting the Full Extent of Objects

@ Get a detailed description of objects, going beyond what's visible

@ Predict accurate viewpoint, style, full extent of objects

[Guo, Hoiem, Support surface prediction in indoor scenes, /ICCV 2013]

motivation video by Efros et al.
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https://www.youtube.com/watch?v=ipTyCJi0t1Y

Fitting CAD Models

Goal: Match known detailed 3D CAD model to image:

@ Before: Do some grouping on the image side to get corners, lines, etc

@ Before: match one known 3D model to the image evidence

3D Model Alignment

Refs: Dickinson, Lowe, Huttenlocher, etc
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Fitting CAD Models

@ Now: 3D Warehouse (https://3dwarehouse.sketchup.com/) has

millions of accurate CAD models of objects. 8,375 search results for query
“IKEA".

(" IKEAtable_LACK (95) ) (” IKEA chair POANG (94) ) (~ IKEA table LACK (53) ) (  IKEA_desk_MICKE (5)

\ S >~ P »

v

. AN AN AN J
(KEA_bookcase_EXPEDIT (50)) ( IKEA_sofa_KARLSTAD (40) ) [~ IKEA chair POANG (29) ) [~ IKEA_bookcase BILLY (4) )

. J  \ AN J
(" IKEA_chair STEFAN (22) ) [~ IKEA_bed MALM (15) ) (~ IKEA_chair SKRUVSTA (14) \ [~ IKEA bed_LERVIK(2) )

& g

. U\ AN J \ J
Figure: http://ikea.csail.mit.edu/
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https://3dwarehouse.sketchup.com/
http://ikea.csail.mit.edu/

Fitting CAD Models

@ 127,915 CAD models for 662 object categories in modelnet

ERBTRLRTASHLELERN
BErR BB EROR 2 RETHoR
frsedinhridkbLlaET®
B ERERMAL T ABEALAR
2LEOBRSIRRNLALRE R
B PR EE B & ARk §
BALREBESOnH EPECH
T AL ABRARERED A
RELARBARTREARS LR

Figure: http://modelnet.cs.princeton.edu/
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http://modelnet.cs.princeton.edu/

Fitting CAD Models

@ ldea: Train classifiers and learn which local patches can be reliably detected
for each 3D model.

@ Refs: [Lim et al., ICCV 2013], [Aubry et al., CVPR 2014]
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Parsing IKEA Objects [Lim et al., 2013]

J. J. Lim, H. Pirsiavash, Antonio Torralba. Parsing IKEA Objects: Fine Pose Estimation. ICCV'13]
Data: http://ikea.csail.mit.edu/
Image Edgemap Local correspondence deteciton

Fieure 2. Local corresnpondence: for each 3D interest noint X (red. ereen. and blue). we train an LDA patch detector on an edeeman

@ Train an LDA classifier for each local patch, find discriminative patches
@ Feature space: HOG on edge-map

@ Global alignment via global features (agreement on edges, superpixels,
texture) and RANSAC-style optimization
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http://ikea.csail.mit.edu/

Parsing IKEA Objects [Lim et al., 2013]

10

=——OQurs
——Harris

Detectected keypoints
O = N W H» OO N O ©

50 100 150
Number of point detections per detector

Figure: Learned discriminative patches vs Harris corners
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Parsing IKEA Objects [Lim et al., 2013]

(a) Image

(b) Our result (c) Normal map (d) Novel view
o n

Figure: Results
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Parsing IKEA Objects [Lim et al., 2013]

Figure: Some failure modes
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Seeing 3D Chairs [Aubry et al., 2010]

M. Aubry, D. Maturana, A. A. Efros, B. Russell, J. Sivic, Seeing 3D chairs: exemplar part-based 2D-3D alignment using
a large dataset of CAD models, CVPR 2014

Code, data: http://www.di.ens.fr/willow/research/seeing3Dchairs/
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http://www.di.ens.fr/willow/research/seeing3Dchairs/

Seeing 3D Chairs [Aubry et al., 2010]

Detection:

(a) Input images (b) DPM [14] output (c) Our aligned outputs (d) Retrieved 3D chairs

Retrieval:

"
-
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Seeing 3D Chairs [Aubry et al., 2010]

Detection results: T —
i/l[,'.:‘; ----- DPM (AP: 0.410) )
08 ,ﬁ lIk‘lz'!- p— g;ﬁ (:\g;?s.a(i?: 0.452)
W
] %
_os 1 I!Iw.
T
& 04 ‘ “\
H [
‘1'\._,,_ ‘4‘\\
00 0.2 0.4 0.6 0.8 1
Recall
User study: Ali ent Style
Good | Bad || Good | Ok | Bad
Exemplar-LDA | 52% | 48% 3% 31% | 66%
Ours 90% | 10% || 21% | 64% | 15%
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CAD Model Datasets

@ 219 models of IKEA furniture from 3D Warehouse:

http://ikea.csail.mit.edu/

@ 1,393 chairs:

http://www.di.ens.fr/willow/research/seeing3Dchairs/

@ 200 cars, 200 beds, 296 sofas, 90 tables, where all models are annotated
with viewpoint and aligned:

http://www.cs.toronto.edu/~fidler/projects/CAD.html

@ 128,000 models for 662 categories, where 10 classes (bathtub, bed, chair,
desk, dresser, monitor, night-stand, sofa, table, toilet) are annotated with
viewpoint (aligned up to scale):

http://modelnet.cs.princeton.edu/
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Indoor Object Detection Datasets

@ Indoor dataset by Hedau et al., CVPR 2013:

http://vision.cs.uiuc.edu/~vhedau2/Research/data/indoordataset.zip

@ Indoor-Scene-Objects dataset:

http://wwweb.eecs.umich.edu/vision/3DGP/

@ Parsing IKEA dataset (has CAD models aligned with images):

ttp://wwweb.eecs.umich.edu/vision,
http:// b ich.edu/vision/3DGP/

@ NYUv2 dataset:

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
Additional annotations:
http://aqua.cs.uiuc.edu/site/projects/scenemodel.html

@ RMRC challenge:
http://cs.nyu.edu/~silberman/rmrc2014/indoor.php
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