Image Features:

Scale Invariant Interest Point Detection

CSC420: Intro to Image Understanding



Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

image 2

[Source: K. Grauman, slide credit: R. Urtasun]
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

1
If | detect an interest point here Then | also want to detect one here

[Source: K. Grauman, slide credit: R. Urtasun]
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

@ Extract features at a variety of scales, e.g., by using multiple resolutions in a
pyramid, and then matching features at the same level.

@ When does this work?

If | detect an interest point here Then | also want to detect one here
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

@ More efficient to extract features that are stable in both location and scale.

Ja@, ,, (xo) = fU , (.Y

[Source: K. Grauman, slide credit: R. Urtasun]
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

@ Find scale that gives local maxima of a function f in both position and scale.

JU 5, xo) = f, ., (.o

[Source: K. Grauman, slide credit: R. Urtasun]
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Automatic Scale Selection

Function responses for increasing scale (scale signature).
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Automatic Scale Selection

Function responses for increasing scale (scale signature).
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What Can the Signature Function B

@ Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).

@ Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space-+scale) maxima in the resulting structure.

Scale
(next
octave)

Scale
(first
octave)

Difference of YAy, = .=y
Gaussian Gaussian (DOG) VA A A e

[Source: R. Szeliski, slide credit: R. Urtasun]
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What Can the Signature Function B

@ Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).

@ Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space-+scale) maxima in the resulting structure.

Scale
(next
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Gaussian Gaussian (DOG) VA A A e

[Source: R. Szeliski, slide credit: R. Urtasun]
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Blob Detection — Laplacian of Gaussian

@ Laplacian of Gaussian: We mentioned it for edge detection

2%g(x,y,0) N 2%g(x,y,0)

ENs 92 ,  where g is a Gaussian
X y

Vig(x,y,0) =

@ It is a circularly symmetric operator (finds difference in all directions)

@ It can be used for 2D blob detection! How?
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Blob Detection — Laplacian of Gaussian

@ Laplacian of Gaussian: We mentioned it for edge detection

1 2 2 24,2
V2g(x,y,0) = —— (1 - %) exp” 2
g

mot
@ It is a circularly symmetric operator (finds difference in all directions)

@ It can be used for 2D blob detection! How?
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Blob Detection — Laplacian of Gaussian

@ It can be used for 2D blob detection! How?

Original signal

(radius=8)

[Source: F. Flores-Mangas]
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Blob Detection — Laplacian of Gaussian

@ It can be used for 2D blob detection! How?
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[Source: F. Flores-Mangas]
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Blob Detection — Laplacian of Gaussian

@ It can be used for 2D blob detection! How?

Original signal
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[Source: F. Flores-Mangas]
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Blob Detection — Laplacian of Gaussian

@ It can be used for 2D blob detection! How?

Original signal
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[Source: F. Flores-Mangas]
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Blob Detection — Laplacian of Gaussian

@ It can be used for 2D blob detection! How?

Original signal
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[Source: F. Flores-Mangas]
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Blob Detection in 2D: Scale Selection

Laplacian of Gaussian = blob detector

filter scales

[Source: B. Leibe, slide credit: R. Urtasun]
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Characteristic Scale

@ We define the characteristic scale as the scale that produces peak
(minimum or maximum) of the Laplacian response

2000
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:
:

characteristic scale

[Source: S. Lazebnik]
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Example

- ’
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[Source: K. Grauman]
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Scale Invariant Interest Points

Interest points are local maxima in both position
and scale.
o

./
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= List of
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Squared filter
response maps

Kristen Grauman
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[Source: S. Lazebnik]
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Blob Detection — Laplacian of Gaussian

@ That's nice. But can we do faster?

@ Remember again the Laplacian of Gaussian:

_ 0%g(x,y,0)  9%g(x,y,0)

Vg(x,y,0) = 92 Oy? ,  where g is a Gaussian
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Blob Detection — Laplacian of Gaussian

@ That's nice. But can we do faster?

@ Remember again the Laplacian of Gaussian:

0’g(x,y,0) 0%g(x,y,0)
2 _ s Y B
V g(X,y,U)— 8X2 ayz I

where g is a Gaussian

@ So computing our interest points means two convolutions (one for

each derivative) per scale

Larger scale (o), larger the filters (more work for convolution)

@ Can we do it faster?
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Approximate the Laplacian of Gaussian

(Laplacian)

(Difference of Gaussians)

I (ko)

[Source: K. Grauman]
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Lowe's DoG

@ Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure

Scale
(next
octave)

Scale
(first
octave)
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[Source: R. Szeliski, slide credit: R. Urtasun]
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Lowe's DoG

@ First compute a Gaussian image pyramid

Scale
(second
Octave)

Each image is
smoothed by a
factor of k more
than the image
below
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Gaussian

[Source: F. Flores-Mangas]
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@ First compute a Gaussian image pyramid

@ Compute Difference of Gaussians

D(xvyvp) = I(.Z',y) * (G(.’E,y, kp) - G(mayap))
for p = {0, ko, k%0,...,k* 1o}, k=2V¢

Scale
(first

- Ix tave)
1,- 1 Gk{:;ave
I- I« G

I-TeG, Difference of
° Gaussian Gaussian (DOG)

k6

[Source: F. Flores-Mangas]
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Lowe's DoG

@ First compute a Gaussian image pyramid
@ Compute Difference of Gaussians

@ At every scale

e ==

) Scale
(next
octave)

D(x,y,p) = I(z,y) * (G(x,y, kp) — G(x,y,p)
for p = {0, ko, k*o,... k" 'o}

IS:IQGG-KS&

Scale
(first

I,-Ix( k‘{:)clavei

I- I G
I-TeG,

23
D(xv,e
Difference of G, )

Gaussian Gaussian (DOG)

[Source: F. Flores-Mangas]
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Lowe's DoG

First compute a Gaussian image pyramid
Compute Difference of Gaussians
At every scale

Find local maxima in scale

A bit of pruning of bad maxima and we're done!

[Source: F. Flores-Mangas]
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Lowe's DoG

First compute a Gaussian image pyramid

Compute Difference of Gaussians

At every scale

Find local maxima in scale

A bit of pruning of bad maxima and we're done!
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[Source: F. Flores-Mangas]
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Other Interest Point Detectors (Many Good Options!)

o Lindeberg: Laplacian of Gaussian

Lowe: DoG (typically called the SIFT interest point detector)

Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine

Tuyttelaars & Van Gool: EBR and IBR
e Matas: MSER

Kadir & Brady: Salient Regions
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Summary — St ou Should Know

@ To match the same scene or object under different viewpoint, it's useful to
first detect interest points (keypoints)

@ We looked at these interest point detectors:

e Harris corner detector: translation and rotation but not scale invariant
e Scale invariant interest points: Laplacian of Gaussians and Lowe's DoG

@ Harris' approach computes /2, If and i/, and blurs each one with a
Gaussian. Denote with: A= g 12, B=gx (Il,) and C = g« IZ. Then
M. — <A(X7Y) B(x,y)

Y \B(xy) Clxy)
around (x, y). Compute “cornerness” score for each (x, y) as
R(x,y) = det(M,y) — atrace(M,, ). Find R(x,y) > threshold and do

non-maxima suppression to find corners.

> characterizes the shape of Eyyssp for a window

@ Lowe's approach creates a Gaussian pyramid with s blurring levels per
octave, computes difference between consecutive levels, and finds local
extrema in space and scale
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Local Descriptors — Next Time

@ Detection: Identify the interest points.
@ Description: Extract a feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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