
Intro to Image Understanding (CSC420)

Assignment 3
Submission Deadline : October 26 (Sunday), 11.59pm, 2014

Max points: 10, max extra credit points: 3

1. [2 points] A robber left his/her shoe behind. Police took a picture of it, see shoe.jpg. Estimate
the width and length (in centimeters) of the shoe from the picture as accurately as possible!

2. The goal of the exercise is to locate the Halloween toy in toy.jpg in a collection of twelve
test images, 01.jpg, 02.jpg, . . . , 12.jpg. For all sub-tasks below, please provide code and an
explanation. Note that the toy is not a planar object, however, you may assume that its out-of-
plane rotation (rotation away from the camera) in the test images is small. Check Lowe’s SIFT
paper, in particular Figure 12 and the text that corresponds to it, to see how Lowe matched
non-planar objects: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf.

(a) [1 point] Use your function from the previous assignment to compute SIFT features on
all twelve test image as well as the reference image (toy.jpg). Match the reference image
to each test image and keep all matches. Visualize top 10 matches for each test image
(your solution document has to have 12 pictures).

(b) [1 point] For each test image use the top 3 matches from (a) to solve for the transfor-
mation between the features in the two images (reference and test). Which transformation
did you use?

(c) [2 points] For each test image count the number of inliers for the transformation you
computed in (b). Please explain how you computed the inliers. In your document, please
rank all the images according to the number of inliers. That is, first show the image which
has the most inliers, then the image with second highest number of inliers, etc.

(d) [1 point] Take the test image that had the most inliers. Re-compute the transformation
using all the inlier matches. Visualize the transformation by plotting the rectangle from
the reference image transformed to the second image with the computed transformation
(just as you did in the Assignment 2, exercise 2 (d)).

3. You are given an image and depth captured with Microsoft Kinect. The file rgbd.mat contains
a variable im which is the RGB image and depth that contains depth information for each pixel.
Depth is nothing else but the Z coordinate in camera’s coordinate system. To get familiar with
it, you can plot it with e.g., imagesc(depth). In this plot, pixels that are red are far away,
blue ones are close to the camera, the rest are somewhere in between. Further, you can find a
function camera params.m which contains the camera’s parameters.

(a) [1 point] Compute a 3D coordinate for each pixel (with non-zero depth) in camera coor-
dinate system. Plot the computed point cloud (all 3D points). You can use the function
plot3. For visually more pleasant plots you could also use the function surf. Include the
plot in your solution document.

(b) [2 points] The file rgbd.mat also contains a variable called labels. This variable encodes
four objects of interest. For example, imagesc(labels==1) will visualize the first object

1

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


of interest, imagesc(labels==4) the fourth one. Thus, all pixels in labels that have
value 1 belong to the first object, all pixels that have value 2 belong to the second object,
etc. To get the x and y coordinates of all pixels that belong to the first object, you can do:
[y,x] = find(labels==1);.

For each object, compute the 3D location for all of its pixels. Now compute the geometric
center of each object by simply averaging its computed 3D coordinates. Write code that
finds the object (among the labeled four) that is farthest from the camera (its distance
to camera center is the largest). Write also code that finds the object that is the highest
above floor. Here you can assume that the image plane is orthogonal to the floor.

4. [Extra credit: 3 points] In this Exercise, the goal is to render synthetic CAD models into real
photographs in a realistic way. The purpose of the exercise is to work out a bit of geometry, and
to generate really fun videos. We will follow the setup described in the slides 59+ in Lecture 10,
http://www.cs.utoronto.ca/~fidler/slides/CSC420/lecture10.pdf. To summarize, you
are given the camera intrinsic parameters and an image and you know that the image plane is
orthogonal to the ground plane. While the authors of the picture state that the distance above
ground is 1.7 meters, for the provided CAD data, a distance 1.9 meters works better.

You are given most of the code that does really simple rendering and trajectory smoothing (feel
free to write your own). The code as well as data is in the folder Render CAD, and the main
function is project CAD demo. Right now it’s written in a way such that:
project CAD demo(“um 000038”, 64, 0)
will read in the image um 000038.png and its camera parameters, and will want to render
the CAD model called car 064 mesh.mat. I included some other CAD models, e.g. 177 is
a formula 1, and there’s also a bed 008 mesh.mat that contains a CAD model of a bed. If
you are not happy with the current collection of the models, more are available here: http:

//www.cs.toronto.edu/~fidler/projects/CAD.html, including the CAD visualization code.
Even more models can be found on the 3D Warehouse: https://3dwarehouse.sketchup.com/.
The last parameter of the project CAD demo function is whether you want the frames of your
video to be stored in a folder. You can always use the ffmpeg (free) software to combine all
frames into a video. Include a few videos as well as code in your solution. This time, CDF will
accept zip files.

In the function project CAD demo in line 42, you’ll find the following: [p3d, ng] = YOUR-
FUNCTION(x,y,??). Your task is to write an actual function that computes 3D locations of
the 2D points (x, y) as well as the normal to the ground called ng. Here p3d is a n× 3 matrix
of the 3D points and ng is a 3 × 1 normal vector. Once you have that, the full demo function
should run and you should be able to see a video of your rendering.

Particularly inventive solutions might get even more extra credit. This might include
flying cars that spin in the air, or solutions that pay attention to occlusion (if your CAD car is
behind a real car, you shouldn’t render it), solutions that have multiple objects driving around,
solutions that also “write” something fun on the road, just to give you a few ideas. The most
inventive solutions will be posted on the class webpage (unless you don’t want it, which you
should indicate in your solution document).

2

http://www.cs.utoronto.ca/~fidler/slides/CSC420/lecture10.pdf
http://www.cs.toronto.edu/~fidler/projects/CAD.html
http://www.cs.toronto.edu/~fidler/projects/CAD.html
https://3dwarehouse.sketchup.com/

