Edge Detection

Finding Waldo

- Let's revisit the problem of finding Waldo
- And let's take a simple example

image

Finding Waldo

- Let's revisit the problem of finding Waldo
- And let's take a simple example

normalized cross-correlation

Waldo detection
(putting box around max response)

Finding Waldo

- Now imagine Waldo goes shopping
- ... but our filter doesn't know that

image

Finding Waldo

- Now imagine Waldo goes shopping (and the dog too)
- ... but our filter doesn't know that

normalized cross-correlation

Waldo detection
(putting box around max response)

Finding Waldo (again)

- What can we do to find Waldo again?

Finding Waldo (again)

- What can we do to find Waldo again?
- Edges!!!

image

template (filter)

Finding Waldo (again)

- What can we do to find Waldo again?

- Edges!!!

normalized cross-correlation
(using the edge maps)

Waldo detection
(putting box around max response)

Waldo and Edges

Edge detection

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition

Figure: [Shotton et al. PAMI, 07]
[Source: K. Grauman]

Edge detection

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

Figure: Parse basketball court (left) to figure out how far the guy is from net

Edge detection

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

Figure: How can a robot pick up or grasp objects?

Edge detection

- Map image to a set of curves or line segments or contours.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

Figure: How can a robot pick up or grasp objects?

Origin of Edges

- Edges are caused by a variety of factors

[Source: N. Snavely]

What Causes an Edge?

[Source: K. Grauman]

Looking More Locally...

[Source: K. Grauman]

Images as Functions

- Edges look like steep cliffs

[Source: N. Snavely]

Characterizing Edges

- An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]

How to Implement Derivatives with Convolution

How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x, y)}{\epsilon}
$$

How to Implement Derivatives with Convolution

How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x, y)}{\epsilon}
$$

- Since it's discrete, take discrete derivative (finite difference)

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x+1, y]-f[x, y]}{1}
$$

How to Implement Derivatives with Convolution

How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x, y)}{\epsilon}
$$

- Since it's discrete, take discrete derivative (finite difference)

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x+1, y]-f[x, y]}{1}
$$

- What would be the filter to implement this using correlation/convolution?

How to Implement Derivatives with Convolution

How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x, y)}{\epsilon}
$$

- Since it's discrete, take discrete derivative (finite difference)

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x+1, y]-f[x, y]}{1}
$$

- What would be the filter to implement this using correlation/convolution?

[Source: S. Seitz]

Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter $[-1,1]$ look like?

Image

Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter $[-1,1]$ look like?

Image

$\frac{\partial f(x, y)}{\partial x}$ with $[-1,1]$ and correlation

Examples: Partial Derivatives of an Image

- How about the vertical derivative using filter $[-1,1]^{T}$?

Image

Examples: Partial Derivatives of an Image

- How about the vertical derivative using filter $[-1,1]^{T}$?

Image

$$
\frac{\partial f(x, y)}{\partial y} \text { with }[-1,1]^{T} \text { and correlation }
$$

Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter $[-1,1]$ look like?

Image

Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter $[-1,1]$ look like?

Image

$\frac{\partial f(x, y)}{\partial x}$ with $[-1,1]$ and correlation

Examples: Partial Derivatives of an Image

- How about the vertical derivative using filter $[-1,1]^{T}$?

Image

Examples: Partial Derivatives of an Image

- How about the vertical derivative using filter $[-1,1]^{T}$?

Image

$$
\frac{\partial f(x, y)}{\partial y} \text { with }[-1,1]^{T} \text { and correlation }
$$

Examples: Partial Derivatives of an Image

Figure: Using correlation filters
[Source: K. Grauman]

Finite Difference Filters

Prewitt: $\quad M_{z}=$\begin{tabular}{|r|l|l|}
\hline-1 \& 0 \& 1

\hline-1 \& 0 \& 1

\hline-1 \& 0 \& 1

\hline

$\quad ; \quad M_{y}=$

\hline 1 \& 1 \& 1

\hline 0 \& 0 \& 0

\hline-1 \& -1 \& -1

\hline
\end{tabular}

Sobel: $\quad M_{x}=$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

$M_{y}=$| 1 | 2 | 1 |
| ---: | ---: | ---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |

Roberts: $\quad M_{x}=$\begin{tabular}{|r|r|}
\hline 0 \& 1

\hline-1 \& 0

\hline

$\quad ; \quad M_{y}=$

\hline 1 \& 0

\hline 0 \& -1

\hline
\end{tabular}

```
>> My = fspecial('sobel');
>> outim = imfilter(double(im), My);
>> imagesc(outim);
>> colormap gray;
```

[Source: K. Grauman]

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

$$
\xrightarrow[\longrightarrow]{\nabla f=\left[\frac{\partial f}{\partial x}, 0\right] \quad \varliminf_{\nabla f=\left[0, \frac{\partial f}{\partial y}\right]} \quad \mathrm{Lo}_{\boldsymbol{\theta}} \nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]}
$$

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

- The gradient direction (orientation of edge normal) is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

$$
\stackrel{\nabla f}{\longrightarrow} \overbrace{\nabla f=\left[0, \frac{\partial f}{\partial y}\right]} \quad \varliminf_{\boldsymbol{\theta}}^{\longrightarrow} \nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

- The gradient direction (orientation of edge normal) is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- The edge strength is given by the magnitude $\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}$
[Source: S. Seitz]

Example: Image Gradient

Example: Image Gradient

Example: Image Gradient

[Source: S. Lazebnik]

Effects of noise

- What if our image is noisy? What can we do?
- Consider a single row or column of the image.
- Plotting intensity as a function of position gives a signal.

Noisy input image

[Source: S. Seitz]

Effects of noise

- Smooth first with h (e.g. Gaussian), and look for peaks in $\frac{\partial}{\partial x}(h * f)$.

[Source: S. Seitz]

Derivative theorem of convolution

- Differentiation property of convolution

$$
\frac{\partial}{\partial x}(h * f)=\left(\frac{\partial h}{\partial x}\right) * f=h *\left(\frac{\partial f}{\partial x}\right)
$$

- It saves one operation

[Source: S. Seitz]

2D Edge Detection Filters

Gaussian

$$
h_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}
$$

Derivative of Gaussian (x)

$$
\frac{\partial}{\partial x} h_{\sigma}(u, v)
$$

[Source: N. Snavely]

Derivative of Gaussians

x-direction

y-direction

[Source: K. Grauman]

Example

- Applying the Gaussian derivatives to image

Example

- Applying the Gaussian derivatives to image

Properties:

- Zero at a long distance from the edge
- Positive on both sides of the edge
- Highest value at some point in between, on the edge itself

Effect of σ on derivatives

The detected structures differ depending on the Gaussian's scale parameter:

- Larger values: detects edges of larger scale
- Smaller values: detects finer structures

$\sigma=1$ pixel

$\sigma=3$ pixels
[Source: K. Grauman]

Locating Edges - Canny's Edge Detector

Let's take the most popular picture in computer vision: Lena

[Source: N. Snavely]

Locating Edges - Canny's Edge Detector

Figure: Canny's approach takes gradient magnitude
[Source: N. Snavely]

Locating Edges - Canny's Edge Detector

Figure: Thresholding
[Source: N. Snavely]

Locating Edges - Canny's Edge Detector

Figure: Gradient magnitude
[Source: N. Snavely]

Non-Maxima Suppression

Figure: Gradient magnitude

- Check if pixel is local maximum along gradient direction
- If yes, take it
[Source: N. Snavely]

Finding Edges

Problem: pixels along this edge didn't survive the thresholding

Figure: Problem with thresholding
[Source: K. Grauman]

Hysteresis thresholding

- Use a high threshold to start edge curves, and a low threshold to continue them

[Source: K. Grauman]

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold
[Source: L. Fei Fei]

Located Edges!

Figure: Thinning: Non-maxima suppression
[Source: N. Snavely]

Canny Edge Detector

Matlab: edge(image,' canny')
(1) Filter image with derivative of Gaussian (horizontal and vertical directions)
(2) Find magnitude and orientation of gradient
(3) Non-maximum suppression
(9) Linking and thresholding (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them
[Source: D. Lowe and L. Fei-Fei]

Canny Edge Detector

- large σ (in step 1) detects "large-scale" edges
- small σ detects fine edges

[Source: S. Seitz]

Canny Edge detector

- Still one of the most widely used edge detectors in computer vision
- J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- Depends on several parameters: σ of the blur and the thresholds
[Adopted by: R. Urtasun]

Another Way of Finding Edges: Laplacian of Gaussians

- Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]

2D Edge Filtering

Gaussian
$h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}$

derivative of Gaussian
Laplacian of Gaussian
$\frac{\partial}{\partial x} h_{\sigma}(u, v) \quad \nabla^{2} h_{\sigma}(u, v)$

with ∇^{2} the Laplacian operator $\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$
[Source: S. Seitz]

Example

$\sigma=1$ pixels

$\sigma=3$ pixels

- Applying the Laplacian operator to image

Example

$$
\sigma=1 \text { pixels }
$$

$\sigma=3$ pixels

- Applying the Laplacian operator to image

Properties:

- Zero at a long distance from the edge
- Positive on the lighter side of edge
- Negative on the darker side

- Zero at some point in between, on edge itself

Example

$\sigma=1$ pixels

$\sigma=3$ pixels

- Applying the Laplacian operator to image

Properties:

- Zero at a long distance from the edge
- Positive on the lighter side of edge
- Negative on the darker side

- Zero at some point in between, on edge itself

But Sanja, we are in 2024

This is "old-style" Computer Vision. We are now in the era of successful Machine Learning techniques.

Question: Can we use ML to do a better job at finding edges?

Summary - Stuff You Should Know

Not so good:

- Horizontal image gradient: Subtract intensity of left neighbor from pixel's intensity (filtering with $[-1,1]$)
- Vertical image gradient: Subtract intensity of bottom neighbor from pixel's intensity (filtering with $[-1,1]^{T}$)
Much better (more robust to noise):
- Horizontal image gradient: Apply derivative of Gaussian with respect to x to image (filtering!)
- Vertical image gradient: Apply derivative of Gaussian with respect to y to image
- Magnitude of gradient: compute the horizontal and vertical image gradients, square them, sum them, and $\sqrt{ }$ the sum
- Edges: Locations in image where magnitude of gradient is high
- Phenomena that causes edges: rapid change in surface's normals, depth discontinuity, rapid changes in color, change in illumination

Summary - Stuff You Should Know

- Properties of gradient's magnitude:
- Zero far away from edge
- Positive on both sides of the edge
- Highest value directly on the edge
- Higher σ emphasizes larger structures
- Canny's edge detector:
- Compute gradient's direction and magnitude
- Non-maxima suppression
- Thresholding at two levels and linking

Summary - Stuff You Should Know

Matlab functions:

- FSPECIAL: gives a few gradients filters (PREWITT, SOBEL, ROBERTS)
- SmoothGradient: function to compute gradients with derivatives of Gaussians. Find it in Lecture's 3 code (check class webpage)
- EDGE: use EDGE(I, 'CANNY') to detect edges with Canny's method, and EDGE(I, 'LOG') for Laplacian method

Python functions (in skimage):

- SKIMAGE.FILTERS.(PREWITT/SOBEL/ROBERTS): gives a few gradients filters (PREWITT, SOBEL, ROBERTS)
- SCIPY.NDIMAGE.GAUSSIAN_FILTER(I, order $=1$): compute image gradients with derivatives of Gaussians. Order 0 corresponds to convolution with a Gaussian kernel. A positive order implements convolution with a derivative of a Gaussian.
- SKIMAGE.FEATURE.CANNY: detect edges with Canny's method

