Neural Networks

Sanja Fidler CSC420: Intro to Image Understanding

This book has a lot of material:

lan Goodfellow and Yoshua Bengio and Aaron Courville
Deep Learning

MIT Press, 2016
Online Available: https://www.deeplearningbook.org

Sanja Fidler CSC420: Intro to Image Understanding

https://www.deeplearningbook.org

What we already know

@ Before we proceed, let's first give a shot to the techniques we already know

@ Can we try edge detection with this image?

Sanja Fidler CSC420: Intro to Image Understanding

What we already know

@ Before we proceed, let's first give a shot to the techniques we already know
@ Can we try edge detection with this image?

@ Well, let's run Canny edge detection!!!!

255N
Wit
7
(AKX
RN
RO KN Y K50
o

Derivative of Gaussian (x)

d
Bx ha (u7 V)
Sanja Fidler

CSC420: Intro to Image Understanding

What we already know

@ Before we proceed, let's first give a shot to the techniques we already know
@ Can we try edge detection with this image?

@ Well, let's run Canny edge detection!!!

Figure: Results from Canny Edge Detection.

Sanja Fidler CSC420: Intro to Image Understanding

What we already know

@ Before we proceed, let's first give a shot to the techniques we already know
@ Can we try edge detection with this image?
@ Well, let's run Canny edge detection!!!

@ Hold on a second, what about these images?

Figure: Objects have similar color with background.

Sanja Fidler CSC420: Intro to Image Understanding

What we already known

@ Before we proceed, let's first give a shot to the techniques we already know
@ Can we try edge detection with this image?
@ Well, let's run Canny edge detection!!!

@ Hold on a second, what about these images?

A

Figure: Over exposure. Under exosure. Hard illumination

Sanja Fidler CSC420: Intro to Image Understanding

What if we want to do a harder task?

@ What's the category for one image?

@ Can you manually write down a kernel to do it?

=
R

[Pic from: S. Lazebnik]

Sanja Fidler CSC420: Intro to Image Understanding

o~
=X
(2]
T
-
—
[P}
N®)
—
(q0]
d=
=
(D]
>
(]
c
(]
O
®)
(©)
+
4+
(=
@©
=
(D]
=
=
+
(q0]
=

@ Tones of classes

@ Can you manually write down a kernel to do it?

NLoRNE TOICS 1K
Lo/)| & e \ Y
f S dmd @y
Uil Ouéin) i

® QCl=1® ¢
e ...M ol At P
= 'y e]- §

od !

= les TN

)

"40,000

L\
w

»
-

* | —aw

> | —w | M 2T Y

LI
Ik

5 %[

el

(I IR BB 8 AL D PRI |

tsi

A =ER T @A TA> e

anja Fidler

b0
=
2
Il
b
17
&
[}
°
=
o}
[
b0
©
=
e}
S
g
=]
=
S
a
<
9]
[%2]
O

Neural Network

@ What if | tell you that you can do all these tasks with fantastic accuracy
(enough to get a D+ in Papert's class) with a single concept?

Sanja Fidler CSC420: Intro to Image Understanding

Neural Network

@ What if | tell you that you can do all these tasks with fantastic accuracy
(enough to get a D+ in Papert's class) with a single concept?

@ This concept is called Neural Networks

@ And it is quite simple.

most prestigious technical award, is given for major contributions of lasting importance to computing.

B I

g~
P

Yoshua Bengio
Jrp—

‘s mage s GG This mage s COD publc domain

Figure: 2018 Turing Award for Deep Learning

Sanja Fidler CSC420: Intro to Image Understanding

Inspiration: The Brain

@ Many machine learning methods inspired by biology, eg the (human) brain

@ Our brain has ~ 10! neurons, each of which communicates (is connected)
to ~ 10* other neurons

impulses carried
toward cell body
branches
of axon

dendrites

axon

nucleus terminals

impulses carried
away from cell body
cell body

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Sanja Fidler CSC420: Intro to Image Understanding

Mathematical Model of a Neuron

@ Neural networks define functions of the inputs (hidden features), computed
by neurons
@ Artificial neurons are called units
e Input: xp, x1, 2. Information from other neurons
o Weights: wg, wy, ws.
o Output: o = f(>; wix; + b). Output of this neuron

Lo wo
— o
axon from a neuron Sanse
WoTo

cell body

i (Zwiwi + b)
Z w;z; + b i

output axon

activation
function

Figure: A mathematical model of the neuron in a neural network

Sanja Fidler CSC420: Intro to Image Understanding

Activation Functions

Most commonly used activation functions:

@ Suppose z =) wixi+ b
. .. o 1
@ Sigmoid: 0(2) = o5
: _ exp(z)—exp(—2)

@ Tanh: tanh(h) = () Tep(=2)

@ RelU (Rectified Linear Unit): ReLU(z) = max(0, z)

@ Thinking: why do we need activation function? (we will talk later)

Sigmoid: (z) = 1/(1+exp(-2)) Tanh: f(z) = [exp(z)-exp(-2)] / [exp(z)+exp(-2)] RelLU: f(z) = max(0, z)
1 1
09 08 ,
08 06
6
07| 04
06 0z s
05 o 4
04 02 3
03 04
2

02 06
o1 08 !

T L I ar a I e e L

Sanja Fidler CSC420: Intro to Image Understanding

Neuron in Python

@ Example in Python of a neuron with a sigmoid activation function

class Neuron(object):
def forward(inputs):

wan wun

assume inputs and weights are 1-D numpy arrays and bias is a number
cell_body_sum = np.sum(inputs * self.weights) + self.bias

firing rate = 1.0 / (1.0 + math.exp(-cell_body sum)) # sigmoid activation function
return firing rate

Figure: Example code for computing the activation of a single neuron

[http://cs231n.github.io/neural-networks-1/]

Sanja Fidler CSC420: Intro to Image Understanding

A layer of neurons

@ We have multiple neurons for output layer

Sanja Fidler CSC420: Intro to Image Understanding

A layer of neurons

@ We have multiple neurons for output layer

Figure: A mathematical model of a layer in a neural network

@ Each unit computes its value based on linear combination of values of units
that point into it, and an activation function

0o = f(wp oXo + Wo,1x1 + Wo 2% + by)
@ o = f(wyox0 + Wi 1x1 + wypxo + by)
0 0o = f(Waoxp + Wo,1X1 + Wa2x0 + bo)

()

@ 03 = f(w3oxp + W3 1X1 + Wz 2Xx2 + b3

Sanja Fidler CSC420: Intro to Image Understanding

A layer of neurons

@ We have multiple neurons for output layer

Figure: A mathematical model of a layer in a neural network

@ Each unit computes its value based on linear combination of values of units
that point into it, and an activation function

@ Written in a matrix form:

e o= f(wx+b):
o Size of each element: 0:4x1,w:4x3,x:3x1,b:4x1

Sanja Fidler CSC420: Intro to Image Understanding

One layer in Python

@ Example in Python of one layer with a sigmoid activation function

f = lambda x: 1.0 / (1.0 + np.exp(-x)) # Sigmod activation function
Input_dim, Output_dim = 3, 4
class OnelLayer(object):
def init():
self.W = np.randn(Output_dim, Input_dim) # Random initialize the weight
self.b = np.zeros(Output_dim, 1) # Bias
def forward(x):
Input data x: Input_dim x 1
o = f(np.dot(self.W, x) + self.b) # sigmoid(W1 * x + b1)
return o

Figure: Example code for computing the activation of one layer neurons

Sanja Fidler CSC420: Intro to Image Understanding

19/67

ural Network Architecture (Multi-Layer Perceptr

@ Network with one layer of four hidden units:

Output units

output layer
input layer
Input units hidden layer

Figure: Two different visualizations of a 2-layer neural network. In this example: 3 input un
4 hidden units and 2 output units

@ Naming conventions; a 2-layer neural network:

e One layer of hidden units
e One output layer
(we do not count the inputs as a layer)

[http://cs231n.github.io/neural-networks-1/]

Sanja Fidler CSC420: Intro to Image Understanding

Neural Network Architecture (Multi-Layer Perceptron)

@ Going deeper: a 3-layer neural network with two layers of hidden units

input layer
hidden layer 1 hidden layer 2

Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second hidder
layer and 1 output unit

@ Naming conventions; a N-layer neural network:

o N —1 layers of hidden units
e One output layer

[http://cs231n.github.io/neural-networks-1/]

Sanja Fidler CSC420: Intro to Image Understanding

Two layers in Python

@ Example in Python of two layers with a sigmoid activation function

f = lambda x: 1.0 / (1.0 + np.exp(-x)) # Sigmod activation function
Input_dim, Hidden_dim, Output_dim = 3, 4, 2
class TwolLayerMLP(object):
def init():
self.W1 = np.randn(Hidden_dim, Input_dim) # Random init weight for the 1st laye
self.b1 = np.zeros(Hidden_dim, 1) # Bias for the 1st layer
self.W2 = np.randn(Output_dim, Hidden_dim) # Random init weight for the 2nd lay
self.b2 = np.zeros(Output_dim, 1) # Bias for the 2nd layer
def forward(x):
Input data x: Input_dim x 1
h f(np.dot(self.W1, x) + self.b1l) # sigmoid(W1 * x + b1)
output = f(np.dot(self.W2, h) + self.b2) # Sigmoid (W2 * h + b2)
return output

Figure: Example code for computing the activation of two layer neurons

Sanja Fidler CSC420: Intro to Image Understanding 22 /67

Why we need activation functions?

@ What if we do not have activation function f in the case of deep network?

Sanja Fidler CSC420: Intro to Image Understanding

Why we need activation functions?

@ What if we do not have activation function f in the case of deep network?

@ One-layer neural network: 0 = wix + b;

Sanja Fidler CSC420: Intro to Image Understanding

Why we need activation functions?

@ What if we do not have activation function f in the case of deep network?
@ One-layer neural network: 0 = wix + b;

@ Two-layer neural network: 0 = wy(wix + by) + b

Sanja Fidler CSC420: Intro to Image Understanding

Why we need activation functions?

@ What if we do not have activation function f in the case of deep network?
@ One-layer neural network: 0 = wix + b;
@ Two-layer neural network: 0 = wy(wix + by) + b

@ N-layer neural network: 0 = wpy(- -« (wix + b1) +ba) +...)

Sanja Fidler CSC420: Intro to Image Understanding

Why we need activation functions?

@ What if we do not have activation function f in the case of deep network?
@ One-layer neural network: 0 = wix + b;

@ Two-layer neural network: 0 = wy(wix + by) + b

@ N-layer neural network: 0 = wpy(- -« (wix + b1) +ba) +...)

@ Even if we have infinite layers, it will still be a linear function :(

Sanja Fidler CSC420: Intro to Image Understanding

Why we need activation functions?

@ What if we have activation function f in the case of deep network?
@ One-layer neural network: 0 = f(wix + by)

@ Two-layer neural network: 0 = f(waf(wix + by) + ba)

@ N-layer neural network: o = f(wpnf(--- f(wix+by) +by)+...)

@ More non-linearity with more layers.

Sanja Fidler CSC420: Intro to Image Understanding

Let's play with it Online!

@ A Neural Network Playground: https://playground.tensorflow.org

N o " 000202 oas - o - b o chesicaton

DATA FEATURES + = 3 HIDDENLAYERS outPUT

Tostl0s5 0000

+

)
H
L

@ O
08 o
= * o
. B b
— 3 B8 :
— in(X, D _
infX, D

Sanja Fidler CSC420: Intro to Image Understanding 25 /67

https://playground.tensorflow.org

Representational Power

@ Neural network with at least one hidden layer is a universal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons
o © ® e © o s o © o s
() ® ® ® @ ®
® ® ®
° ° o ® CRS °® ° o
o L ® L] ¢ ® ® L L]
* ® @ ® @ ®
® ° ®
() . o @ [. & ° e
e o [e o r e o §
® Y °) ®]
@ ® L @ ® i ® ° L
L] L 2 °
° L] @

Sanja Fidler CSC420: Intro to Image Understanding

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://arxiv.org/pdf/1312.6184v7.pdf

Representational Power

@ Neural network with at least one hidden layer is a universal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons
o © ® e © o s o © o s
() ® ® ® @ ®
® ® ®
° ° o ® CRS °® ° o
o L ® (] ¢ ® ® L L]
* ® @ ® @ ®
o @
® ° ®
® . ® °® ° 5 ~ ® ° e ° ry
e o [e o r e o §
® Y °) ®]
@ ® L @ ® i ® ° L
L] L 2 °
L] °]

@ The capacity of the network increases with more hidden units and more
hidden layers

Sanja Fidler CSC420: Intro to Image Understanding

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://arxiv.org/pdf/1312.6184v7.pdf

Representational Power

@ Neural network with at least one hidden layer is a universal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons
o © ® e © o s o © o
() ® ® ® @ ®
® ® ®
° ° o ® CRS °® ° o
o L ® (] ¢ @ (] L L]
* ® @ ® @ ®
o @ L 4 “
® ° ®
- o & & 2 OO i Ok SR
e o [e o r e o §
® Y °) ®]
@ ® L @ ® i ® o »
L L 2 L]
L] °]

@ The capacity of the network increases with more hidden units and more
hidden layers

@ Why go deeper? Read eg: Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich
Caruana, Paper: paper]

[http://cs231n.github.io/neural-networks-1/]

Sanja Fidler CSC420: Intro to Image Understanding

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://arxiv.org/pdf/1312.6184v7.pdf

Neural Networks

@ We only need to know two algorithms

e Forward pass: performs inference

o Backward pass: performs training

Sanja Fidler CSC420: Intro to Image Understanding

Forward Pass: What does the Network Compute?

output layer
input layer
hidden layer

Sanja Fidler CSC420: Intro to Image Understanding

Forward Pass: What does the Network Compute?

output layer
input layer
hidden layer

@ Output of the network can be written as:

D
hi(x) = f(b}+> xwj)
i=1

Sanja Fidler CSC420: Intro to Image Understanding

Forward Pass: What does the Network Compute?

output layer
input layer
hidden layer

@ Output of the network can be written as:
D
hi(x) = f(b}+> xwj)
i=1

J
ok(x) = g(bi+zhj(x)wfj)

(j indexing hidden units, k indexing the output units, D number of inputs)

Sanja Fidler CSC420: Intro to Image Understanding

Training Neural Networks

@ Dataset: {(x(V),tM), (x® t?), ... (xM) t(M)1
@ Find weights:
N
w* = argmin Zloss(o("), (")
w n=1

where 0 = f(x; w) is the output of a neural network, t is ground-truth

Sanja Fidler CSC420: Intro to Image Understanding

Defining a loss function

@ Continuous labels: Squared loss: K 1(of" — ()2

Next day temperature (celcius)?

Price of a house (dollars)?

How many oils from olive?

Other loss function: L1 loss °f 3ol — (")

Sanja Fidler CSC420: Intro to Image Understanding

Defining a loss function

@ Discrete labels: Cross-entropy loss: — 3K t") log 0"

o Image category (dog or cat?)

Edges (Edge or not?)

Note: target label t,((") is one-hot.

Maximize the log probability of target category

igure: Image classification: is this a dog or cat?

Sanja Fidler CSC420: Intro to Image Understanding

Defining a loss function

@ Discrete labels: Cross-entropy loss: — 3K t") log 0"

o Constraints: YK 0,((") =1,&0< 01(<n) <1

Sanja Fidler CSC420: Intro to Image Understanding

Defining a loss function

@ Discrete labels: Cross-entropy loss: — 3K t") log 0"

o Constraints: ZkK 0,((") =1,&0< 01(<n) <1
(n _ _ ew(z")
K XK en(@”)

e Softmax o

igure: Image classitication: Is this a dog or cat!

Sanja Fidler CSC420: Intro to Image Understanding

Training Neural Networks

@ Find weights:
N
w* = argmin Zloss(o(”), (")
w n=1
where 0 = f(x; w) is the output of a neural network, t is ground-truth

@ Define the loss function: discrete labels, continuous labels.

Sanja Fidler CSC420: Intro to Image Understanding

Training Neural Networks

- N
= argmin Z loss(o(", (")
n=1

@ Find weights
W*
w
where 0 = f(x; w) is the output of a neural network, t is ground-truth

0

@ Gradient Descent!
e Start: Random initialization: w
tHl Wt " oL
owt

o Every iteration
w

where 7 is the learning rate (and L is error/loss)
Initial
Incremental "
w\ y
/ Minimum Cost

Derivative of Cost
Weight

CSC420: Intro to Image Understanding

Sanja Fidler

Wait! How to compute the gradient for NN?

@ Find weights:
N
w* = argmin Zloss(o(”), (")
w n=1
where 0 = f(x; w) is the output of a neural network, t is ground-truth
@ Gradient Descent!
witl — wt — n oL
owt

where 7 is the learning rate (and L is error/loss)

input layer
hidden layer 1 hidden layer 2

Figure: Neural Network

Sanja Fidler CSC420: Intro to Image Understanding

Wait! How to compute the gradient for NN?

@ Let's start with one-layer neural network with sigmoid activation & squared
loss

Sanja Fidler CSC420: Intro to Image Understanding

Wait! How to compute the gradient for NN?

@ Let's start with one-layer neural network with sigmoid activation & squared

loss 1
2 —wx®, ol = sigmoid(2") = ;s
N o1
[— ; 5(o(n) —)2, w* = arg‘:lﬂin L

where 0 = f(x; w) is the output of a neural network, t is ground-truth

Sanja Fidler CSC420: Intro to Image Understanding

Wait! How to compute the gradient for NN?

@ Let's start with one-layer neural network with sigmoid activation & squared

loss 1
2 —wx®, ol = sigmoid(2") = ;s
N o1
[— ; 5(o(n) —)2, w* = arg‘:lﬂin L

where 0 = f(x; w) is the output of a neural network, t is ground-truth

@ How to compute g—L?
W

Sanja Fidler CSC420: Intro to Image Understanding

Wait! How to compute the gradient for NN?

@ Let's start with one-layer neural network with sigmoid activation & squared

loss 1
2 —wx®, ol = sigmoid(2") = ;s
N o1
[— ; 5(o(n) —)2, w* = arg“rlnin L

@ How to compute g—L?
W

@ This is a composition function! Let'’s use chain rule!

oL L oL Ho

w22 90™ " ow

oL n n
m:(o() — ()

Sanja Fidler CSC420: Intro to Image Understanding

Wait! How to compute the gradient for NN?

@ Let's start with one-layer neural network with sigmoid activation & squared

loss 1
2 —wx®, ol = sigmoid(2") = ;s
N o1
[— ; 5(o(n) —)2, w* = arg‘:lﬂin L

@ How to compute 3 8L ?

@ This is a composition function! Let's use chain rule! (Backprogapation)

EN: oL ao< z“’: oL 9o 0z
30(” oo~ 9z(M) Ow
oL " "
5ol = (ol — ()

Sanja Fidler CSC420: Intro to Image Understanding

Wait! How to compute the gradient for NN?

@ Let's try with two-layer neural network with squared loss

2(" = wy « F(wyx(M), ol" = £(z(M)

N
1
L= Z 5(0(”) — (M2, w”™ = argmin L

w

Sanja Fidler CSC420: Intro to Image Understanding

Wait! How to compute the gradient for NN?

@ Let's try with two-layer neural network with squared loss

2(" = wy « F(wyx(M), ol" = £(z(M)

N
1
L= Z 5(0(”) — (M2, w”™ = argmin L

@ How to compute a“f 7

@ This is a composition function! Let’s use chain rule!
o L oaL 9o oz

Z 80(") aw2 T 290 " 92 " w,

Sanja Fidler CSC420: Intro to Image Understanding

How to train the neural network efficiently?

@ It's hard to put all the data into memory and get gradient :(

@ Stochatic Gradient Descent (SGD): random sample a batch of data at every
iteration

for epoch in range(100) :# Each epoch means running through the whole dataset
for data in dataloader:
x, t = data # Randomly fetch a batch of data (e.g. 32 data points)
output = nn.forward(x) # Forward through the network to get output
loss = np.sum((output - t) ** 2) # Calculate loss function
loss.backward() # Backpropagation to get the gradients
optimizer.step() # Gradient descent

@ Other optimizers: Adam, Adagrad, RMSprop

Sanja Fidler CSC420: Intro to Image Understanding 41/67

Train one neural network in Python

f = lambda x: 1.8 / (1.0 + np.exp(-x)) # Sigmod activation function
Input_dim, Hidden_dim, Output_dim = 3, 4, 2
class TwolLayerMLP(object):
def init(
self.W1 = np.randn(Hidden_dim, Input_dim) # Random init weight for the 1st laye
self.b1 = np.zeros(Hidden_dim, 1) # Bias for the 1st layer
self.W2 = np.randn(Output_dim, Hidden_dim) # Random init weight for the 2nd lay
self.b2 = np.zeros(Output_dim, 1) # Bias for the 2nd layer
def forward(x):
Input data x: Input_dim x 1
h = f(np.dot(self.W1, x) + self.b1) # sigmoid(W1 * x + b1)
output = f(np.dot(self.W2, h) + self.b2) # Sigmoid (W2 * h + b2)
return output

nn = TwolLayerMLP()
for epoch in range(1600): # Each epoch means running through the whole dataset
for data in dataloader:
X, t = data # Fetch a batch of data from your dataset
output = nn.forward(x) # Forward through the network to get output
loss = np.sum((output - t) ** 2) # Calculate loss function
loss.backward() # Backpropagation to get the gradients

optimizer.step() # Gradient descent

Sanja Fidler CSC420: Intro to Image Understanding

Some advices on training neural network

@ Initialization matters (be careful about the scale — Normalizations)
@ Avoid gradient vanishing problem

@ Be careful about the learning rates

Sigmoid: £(z) = 1/(1+exp(-2)) Tanh: f(z) = [exp(z)-exp(-2)] / [exp(z)+exp(-2)] RelU: f(z) = max(©, 2)
1 1
09 LE ;
08 06
6
07| 04
06 02 s
05 0 4
04 02 5
03 04
2
02 08
ot 08| 1
0 4)
5 < ¢ 0 2 4 8 E 5 ¢ =2 0 2 4 8 5 ¢ =2 0 2 4 8
Initial radient
e ’ radien
Cost i ','/
/
Incremental /

= \ ﬁ
i
s

Minimum Cost
Derivative of Cost A

Weight

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ To work with images we typically use NN with special architecture

@ Any specical properties we can think of for an image?

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ To work with images we typically use NN with special architecture
@ Any specical properties we can think of for an image?
@ Depending on the tasks, we prefer different properties.
@ Translation Equivariance :
o If | translate the input, the output will be translated by the same

amount.
. j

o E.g. Edge detection

f
S |

Figure: S(£(1)) = F(S(1))

_&
_a

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

To work with images we typically use NN with special architecture
Any specical properties we can think of for an image?

Depending on the tasks, we prefer different properties.

Translation Equivariance

Translation Invariance :

o If | translate the input, the output will be the same.
o E.g. Image classification

T

‘cat’ ‘cat’

Figure: (1) = f(S(1))
[Adapted from Bernhard Kainz]

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Remember our Lecture 2 about filtering?

Input “image” Filter

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ If our filter was [—1, 1], we got a vertical edge detector

Input “image” Filter

L 11
3 -11
v,
e il 4
\
Output map W
\o?

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Now imagine we didn't only want a vertical edge detector, but also a
horizontal one, and one for corners, one for dots, etc. We would need to
take many filters. A filterbank.

Input “image” Filter bank
N
3 channels
(R,G,B)
o Output has many
utput map <==== “‘channels”, one for
each filter

[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Applying a filterbank to an image.

@ Instead of using predefined convolution kernel, we use the data to learn it!
image (3 channels: R, G, B)
Each slice in this cube is the output of

convolution of the image and a filter
(in this example an 11x11 filter)

In this example there are 96 filters

Stride
of 4

In this example our network will
always expect a 224x224x3 image.

[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Instead of using predefined convolution kernel, we use the data to learn it.

@ Convolution vs. MLP?
image (3 channels: R, G, B)

Each slice in this cube is the output of
convolution of the image and a filter.

In this example the filter size is
11x11x3.

" We don’t do convolution in every pixel, but in
every 4t pixel (in x and y direction)

[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Do some additional tricks. A popular one is called max pooling: Only care
about the maximum within certain region.

@ Any idea why you would do this? (Why didn't do convlution with stride?)

o Max
Stride 8 pooling
224\ || of 4 .

[Pic adopted from: A. Krizhevsky]
Sanja Fidler

ke{i—1,i,i+1}

................. O(i,j)= max O(k1)

Take each slice in the output cube,

evenrsnssnesnnssnnrensrnne ! andin each pixel compute a max over
a small patch around it. This is called
max pooling.

CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Do some additional tricks. A popular one is called max pooling.

@ Any idea why you would do this? To get invariance to small shifts in

position.
55E k O
\ P P ’
SAN - i :
N P03, 5) = max O(k,1
24 . E :HE ! (’) kE{i*l,‘i,’i{»l} (’)
i : le{j—1.j.j+1}
Y Max‘ E é
- S;r;de gpooling : i Take eachslice in the output cube,
© R i and in each pixel compute a max over
a small patch around it. This is called
max pooling.

[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.

=

=
P

224

Stride

\=

27

of 4

Max
pooling

27

256

[Pic adopted from: A. Krizhevsky]

Sanja Fidler

Add one more layer of filters

These filters are convolved with the
output of the previous layer. The
results of each convolution is again a
slice in the cube on the right.

What is the dimension of each of
these filters?

CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Keep adding a few layers. Any idea what's the purpose of more layers? Why
can't we just have a full bunch of filters in one layer?

27
13 13 13

7/

=

55 384 384 256
256 Max
Max Max pooling
Stride\| oq pooling pooling

of 4

Do it recursively

Have multiple ““layers”
[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ In the end add one or two fully (or densely) connected layers. In this layer,
we don't do convolution we just do a dot-product between the “filter” and
the output of the previous layer.

In the top, most networks add a “densely” connected layer. You

can think of this as a filter, and the output value is a dot product
between the filter and the output cube of the previous layer.

What are the dimensions of this filter in this example? How many

such filters are on this layer?

55
27
A 13 13 13
1
5 s, B ~ < N4 ——
N[2 N =% |1 Q:/' IER \ el E 1
224 sS\L |~ 27 NT b N~
- 384 384 256
Max
256 L
Max Max pooling 4096
stride\| o4 | PO0ling pooling
s of 4

[Pic adopted from: A. Krizhevsky]

Sanja Fidler

CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Add one final layer: a classification layer. Each dimension of this vector
tells us the probability of the input image being of a certain class.

55 \i \
27
13 13
N\

1 <
A \ 5 it S E W 36:\—“—7 i N

—|— o [~ 13 1 13 - 13
224 s\L|~ A \ P Dl ﬁ: -7

55 384 384
256
Max Max

Stride\| o4 | P0°ling pooling

224\ || of 4

Add a classification “layer”.

For an input image, the value in a particular
dimension of this vector tells you the
probability of the corresponding object class.

[Pic adopted from: A. Krizhevsky]

Sanja Fidler

CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ This fully specifies a network. The one below has been a popular choice in

224

~ =
NI
hg
//4;;;;;;55
|

the fast few years. It was proposed by UofT guys: A. Krizhevsky, I.

Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional

Neural Networks, NIPS 2012. This network won the Imagenet Challenge of

2012, and revolutionized computer vision.

How many parameters (weights) does this network have?

27

13 13

Max

. li
Stride\| o4 | PO0'IN9

of 4

Sanja Fidler

- E| N & —
T-Cms A - 13 3} -5
3 N -

384

Max
pooling

CSC420: Intro to Image Understanding

pooling

4096

Convolutional Neural Networks (CNN)

=

Trained with stochastic gradient descent on
two NVIDIA GPUs for about a week

650,000 neurons

60,000,000 parameters

630,000,000 connections

Final feature layer: 4096-dimensional

Convolutional layer: convolves its input
O with a bank of 3D filters, then applies
point-wise non-linearity

filters to its input, then applies point-

Image D Fully-connected layer: applies linear
wise non-linearity

Figure: From: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Convolutional Neural Networks (CNN)

@ The trick is to not hand-fix the weights, but to train them. Train them such
that when the network sees a picture of a dog, the last layer will say “dog”.

e

27

v

train the we|ghts of filters

i i

13 13

Max
Stride pooling

of 4

27

256

al\ e N1 - -
35:;:} 13 - T\ |2 35:—;

7]

384 384

[Pic adopted from: A. Krizhevsky]

Sanja Fidler

Max
pooling

CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Or when the network sees a picture of a cat, the last layer will say “cat”.

O_ B B DB [

train the we|ghts of filters P cat”
55 i i V
27
| 13 13 13
‘ Y 5@5::7 36:\ —b SQ::M_-’ < Nl
|| - ey 13 ~ 1 13 =X |13
{ s\ |~ 27 At 3 ﬁ: _
\ - 384 384 256
Max
Max 256 -— pooling 4098 4096
Stride 9% pooling pooling

of 4

[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

Convolutional Neural Networks (CNN)

@ Or when the network sees a picture of a boat, the last layer will say
“boat”... The more pictures the network sees, the better.

BB B DD

i train the we|ghts of filters i “boat”
v H i 5
55 i '
27
13 13
x| ® -5 £y SQ:_MJ--’ N
] = N -7 - LT~ 13 N - 13 ﬁ:::
- 384 384
M 256 Max podling 6 4096
523 stride\| g, | POOling pooling

of 4
3

Trainon lOtS of examples. Millions. Tens of millions. Wait a week for training to finish.
Share your network (the weights) with others who are not fortunate enough with GPU power.

[Pic adopted from: A. Krizhevsky]

Sanja Fidler CSC420: Intro to Image Understanding

Classification

@ Once trained we can do classification. Just feed in an image or a crop of the
image, run through the network, and read out the class with the highest
probability in the last (classification) layer.

What'’s the class of this object?

27

") 13 13 13
5 4
5 I AN 3 =+ ——
IN_|_[x ~ - T8 -\ s Ay % s
224 |wemumgnm Femsynginnsn Wasudsessunnnnnnfsennng\puannudsuunnnn
55 384 384 256
Max
256 .
Max Max pooling 4096 4096
Stride\| oq pooling pooling
228\ || of 4

Sanja Fidler CSC420: Intro to Image Understanding

Example

RELU RELU RELU RELU RELU RELU

CONV lCONV\ CONV lCONVl CONV lCONVl FC

Ly

}

L

by

N3

HEr |

e

IHEBE

7
(111
[17
e

CLT0 Teld 101
LI T T

HENYAREERDE
LI TRISTAT T 17T

(L]
L
LI

[http://cs231n.github.io/convolutional-networks /]

Sanja Fidler CSC420: Intro to Image Understanding 49 /67

Classification Performance

@ Imagenet, main challenge for object classification: http://image-net.org/

@ 1000 classes 1.2M training images, 150K for test
E lﬂimﬁﬂﬂuﬁiﬁé&m ¥ IOEHWGM
M - TV 1R b

1000 object classes tha

oster created by Fengjun Lv using VIPBase

Sanja Fidler CSC420: Intro to Image Understanding

http://image-net.org/

Classification Performance in 2023

@ Top 1 accuracy: 90+%

Image Classification on ImageNet

Leaderboard Dataset
View | Top1Accuracy v by | Date v| for | Allmodels 5
100 H
VIT-G/14__ CoCa (finetuned)
FixResNeXt-101 32x48d
Inception y3_RESNeXt-101 64xa_, PNASNetsS
VGG-19
75
5 Mexer FIVe Bae + Five HIRES
2
2
E
g s
2
e
25
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Other models State-of-the-art models

[Source: https://paperswithcode.com/sota/image-classification-on-imagenet]

Sanja Fidler CSC420: Intro to Image Understanding

https://paperswithcode.com/sota/image-classification-on-imagenet

Classification Performance in 2023

@ Top 5 accuracy: 99+%

Image Classification on ImageNet

Leaderboard Dataset
View | Top5Accuracy | by = Date | for
105
00 FixResNext-101 32x48d
AmoebaNet:-A-
ResNeXt-101 64x4

5 s Inception V3.
3 VGG-19
S

9 wmsgA
g 9
n Five Base + Fivé HiRes
& g5 Alexer

2013 2014 2015 2016 2017 2018 2019 2020

Other models -+ Models with highest Top 5 Accuracy

All models b

Florence-CoSwin-H

2021 2022

[Source: https://paperswithcode.com/sota/image-classification-on-imagenet]

Sanja Fidler CSC420: Intro to Image Understanding

https://paperswithcode.com/sota/image-classification-on-imagenet

Performance of CNN in 2023

@ Stable Diffusion

AT
i

|}

Figure: Text prompt to 2D Images (Training data: 5 billion images)

[Source: https://www.youtube.com/watch?v=nVhmFski3vg]

Sanja Fidler CSC420: Intro to Image Understanding

https://www.youtube.com/watch?v=nVhmFski3vg

Neural Networks as Descriptors

@ What vision people like to do is take the already trained network (avoid one
week of training), and remove the last classification layer. Then take the top
remaining layer (the 4096 dimensional vector here) and use it as a descriptor
(feature vector).

27
13 13 13

5 - =] s 1= ~ -
i [|_[x z by =t 13 3y - X |3
224 |edmmmgnm fnmspnganns Wfamuia ssmsg\paannjudsunnnnn

55 384 256

Max
Max Max pooling
Stride 9% pooling pooling

224\ || of 4

4096 4096

Vision people are mainly interested in this vector. You can use
it as a descriptor. A much better descriptor than SIFT, etc.

Train your own classifier on top for your choice of classes.

Sanja Fidler CSC420: Intro to Image Understanding

Neural Networks as Descriptors

@ What vision people like to do is take the already trained network, and
remove the last classification layer. Then take the top remaining layer (the
4096 dimensional vector here) and use it as a descriptor (feature vector).

@ Now train your own classifier on top of these features for arbitrary classes.

Classifier predicting
CNN magic ' I my set of classes

4096

Sanja Fidler

CSC420: Intro to Image Understanding

Neural Networks as Descriptors

@ What vision people like to do is take the already trained network, and
remove the last classification layer. Then take the top remaining layer (the
4096 dimensional vector here) and use it as a descriptor (feature vector).

@ Now train your own classifier on top of these features for arbitrary classes.

Classifier predicting
CNN magic ' I my set of classes

4096

Sanja Fidler

CSC420: Intro to Image Understanding

So Neural Networks are Great

@ So networks turn out to be great.

@ At this point Google, Facebook, Microsoft, Baidu “steal” most neural
network professors from academia.

Sanja Fidler CSC420: Intro to Image Understanding

So Neural Networks are Great

@ But to train the networks you need quite a bit of computational power. So
what do you do?

Sanja Fidler CSC420: Intro to Image Understanding

So Neural Networks are Great

@ Buy even more.

Sanja Fidler CSC420: Intro to Image Understanding

So Neural Networks are Great

@ And train more layers. 16 instead of 7 before. 144 million parameters.

add more layers

Max Max
pooling pocling

27
13 13 13
N \
1
E it AN 35:"_‘-_:. K~
b= U e PR - 13 sﬁ::/ 13
384 384 256
256 Max
Max 5 Max pooling 4096 4096

Stride pooling pooling [Pic adopted from: A. Krizhevsky]
224

of 4

Figure: K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition. ICLR 2015

Sanja Fidler CSC420: Intro to Image Understanding

150 Layers!

3dayerplain 3d-layer residual

@ Networks are now at 150 layers

They use a skip connections with special form

@ In fact, they don't fit on this screen

Amazing performance!

A lot of “mistakes” are due to wrong ground-truth

weight layer

weight layer

Hx)=F(x)+x @

F(x) identity

x

Sanja Fidler CSC420: Intro to Image Understanding

Results: Object Classification

Revolution of Depth

\ 152 layers
A
\
\
\
\ 16.4
\
22 Iayers 19 Iayers
\ 6.7
8 layers 8 layers shallow

JEEESS

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. CVPR
2016]

Sanja Fidler CSC420: Intro to Image Understanding

What it looks like in 20237

uery ey alue
@ Vision Transformer! HH HH
@ Self-attention among patches of an image. ele) ole)
k1 v1 k2 v2
@ Better performancel!
o
Vision Transformer (Vi P Q
ision Transformer (ViT) Transformer Encoder . N OO
7 = SO“ k3 v3
-
a .

Transformer Encoder l

softmax(H:F) :H) H

Vy,

Multi-Head
Attention

[N)
Norm = }_H_

Embedded . H
Figure: Self attention
mechanism

J
[1]

mﬁamwg

[An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021]

Sanja Fidler CSC420: Intro to Image Understanding

What do CNNs Learn?

Figure: Filters in the first convolutional layer of Krizhevsky et al

[Matthew D. Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014]

Sanja Fidler CSC420: Intro to Image Understanding 59 /67

What do CNNs Learn?

=1

)
/.
4
-

[
=
=
—|

74
7
K
O
n

Figure: Filters in the second layer

[Matthew D. Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014]

Sanja Fidler CSC420: Intro to Image Understanding 60 /67

What do CNNs Learn?

Figure: Filters in the third layer

[Matthew D. Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014]

Sanja Fidler CSC420: Intro to Image Understanding 61 /67

What do CNNs Learn?

Sanja Fidler CSC420: Intro to Image Understanding 62 /67

Neural Networks — Can Do Anything

@ Classification / annotation
@ Detection

@ Segmentation

@ Stereo

@ Optical flow

How would you use them for these tasks?

Sanja Fidler CSC420: Intro to Image Understanding

@ Does this mean we should throw away traditional computer vision
techniques?

@ Understanding how images are composed or captured paves the way to
design better Neural network architecture for learning.

@ Great insights from traditional techniques when the computing resources are
not enough.

@ Even right now, some traditional methods are still important. (stereo
matching, keypoints detection, etc.)

@ Role of neural network: better feature extractor, function approximator

Sanja Fidler CSC420: Intro to Image Understanding

Neural Networks — Why Do They Work?

@ Some cool tricks in design and training:

A. Krizhevsky, |. Sutskever, G. E. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

@ Computational resources and tones of data

@ NNs can train millions of parameters from tens of millions of examples
- - - e = T ‘ -

Sanja Fidler CSC420: Intro to Image Understanding

Main code: R
@ Neural network packages:
Tensorflow, PyTorch
@ Object detection:
https://github.com/rbgirshick/rcnn
https://github.com/weiliu89/caffe/tree/ssd
@ Semantic Segmentation:
https://github.com/open-mmlab/mmsegmentation
https://github.com/CSAILVision/
semantic-segmentation-pytorch

. J

Sanja Fidler CSC420: Intro to Image Understanding

https://github.com/rbgirshick/rcnn
https://github.com/weiliu89/caffe/tree/ssd
https://github.com/open-mmlab/mmsegmentation
https://github.com/CSAILVision/semantic-segmentation-pytorch
https://github.com/CSAILVision/semantic-segmentation-pytorch

Summary — Stuff Useful to Know

@ Basic operations in neural network, including MLP, activation function,

Convolutional Layer, loss functions, gradient descnt, back propagation.

@ Neural Networks are currently the best feature extractor in computer vision,
still active research!

@ Mainly because they have multiple layers of nonlinear classifiers, and

because they can train from millions of examples efficiently.

@ Going forward design computationally less intense solutions with higher
generalization power that will beat 1000 layers that Google can afford to do.

Sanja Fidler CSC420: Intro to Image Understanding

