## Image Features

## Image Features

- Image features are useful descriptions of local or global image properties designed (or learned!) to accomplish a certain task
- You may want to choose different features for different tasks
- Depending on the problem we need to typically answer three questions:
- Where to extract image features?
- What to extract (what's the content of the feature)?
- How to use them for your task, e.g., how to match them?


## Image Features

- Let's watch a video clip



## Image Features

- Where is the movie taking place?



## Image Features

- Where is the movie taking place?



## Image Features

- Where is the movie taking place?



## Image Features

- Where is the movie taking place?


## We matched in:

- Distinctive locations: keypoints
- Distinctive features: descriptors



## Image Features

- Tracking: Where to did the scene/actors move?


Where did it each point originate from the previous frame?

## Image Features

- Tracking: Where to did the scene/actors move?


## We matched:

- Quite distinctive locations
- Quite distinctive features


Where did it each point originate from the previous frame?

## Image Features

- A shot in a movie is a clip with a coherent camera (no sudden viewpoint changes)



## Image Features

- A shot in a movie is a clip with a coherent camera (no sudden viewpoint changes)


## We matched:

- Globally - one descriptor for full image

- Descriptor can be simple, e.g. color



## Image Features

- How could we tell which type of scene it is?


What kind of scene is behind the actors?
Kitchen? Bedroom? Street? Bar?


## Image Features

- How could we tell which type of scene it is?

We matched:

- Globally - one descriptor for full image (?)
- More complex descriptor: color, gradients, "deep" features (learned), etc


What kind of scene is behind the actors?
Kitchen? Bedroom? Street? Bar?


## Image Features

- How would we solve this?


Are these two cups of the same type?

## Image Features

- How would we solve this?

We matched:

- One descriptor for full patch
- Descriptor can be simple, e.g. color


Are these two cups of the same type?

## Image Features

- How would we solve this?


Where can I find this pattern?
LAKE BELE

## Image Features

- How would we solve this?

We matched:

- At each location
- Compared pixel values


Where can I find this pattern?
LAKE BELE

## Image Features

- How would we solve this?


Where can I find this pattern?


## Image Features

- How would we solve this?


## We matched:

- Distinctive locations
- Distinctive features
- Affine invariant



## Image Features

- How would we solve this?



## Image Features

- Detection: Where to extract image features?
- "Interesting" locations (keypoints, interesting regions)
- In each location (densely)
- Description: What to extract?
- What's the spatial scope of the feature?
- What's the content of the feature?
- Matching: How to match them?


## Image Features

- Detection: Where to extract image features?
- "Interesting" locations (keypoints) TODAY
- In each location (densely)
- Description: What to extract?
- What's the spatial scope of the feature?
- What's the content of the feature?
- Matching: How to match them?

Image Features:

## Interest Point (Keypoint) Detection

## Application Example: Image Stitching


[Source: K. Grauman]

## Local Features

- Detection: Identify the interest points.
- Description: Extract feature vector descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]


## Goal: Repeatability of the Interest Point Operator

- Our goal is to detect (at least some of) the same points in both images
- We have to be able to run the detection procedure independently per image
- We need to generate enough points to increase our chances of detecting matching points
- We shouldn't generate too many or our matching algorithm will be too slow


Figure: Too few keypoints $\rightarrow$ little chance to find the true matches
[Source: K. Grauman, slide credit: R. Urtasun]

## Goal: Distinctiveness of the Keypoints

- We want to be able to reliably determine which point goes with which.

[Source: K. Grauman, slide credit: R. Urtasun]


## What Points to Choose?


[Source: K. Grauman]

## What Points to Choose?



- Textureless patches are nearly impossible to localize.
[Adopted from: R. Urtasun]


## What Points to Choose?



- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.


## [Adopted from: R. Urtasun]

## What Points to Choose?



- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments cannot be localized on lines segments with the same orientation (aperture problem)
[Adopted from: R. Urtasun]


## What Points to Choose?



## image

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments cannot be localized on lines segments with the same orientation (aperture problem)
- Gradients in at least two different orientations are easiest, e.g., corners!
[Adopted from: R. Urtasun]


## What Points to Choose?



## image

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments cannot be localized on lines segments with the same orientation (aperture problem)
- Gradients in at least two different orientations are easiest, e.g., corners!
[Adopted from: R. Urtasun]


## Interest Points: Corners

- How can we find corners in an image?



## Interest Points: Corners

- We should easily recognize the point by looking through a small window.
- Shifting a window in any direction should give a large change in intensity.


Figure: (left) flat region: no change in all directions, (center) edge: no change along the edge direction, (right) corner: significant change in all directions
[Source: Alyosha Efros, Darya Frolova, Denis Simakov]

## Interest Points: Corners

- Compare two image patches using (weighted) summed square difference
- Measures change in appearance of window $w(x, y)$ for the shift

[Source: J. Hays]


## Interest Points: Corners

- Compare two image patches using (weighted) summed square difference
- Measures change in appearance of window $w(x, y)$ for the shift

[Source: J. Hays]


## Interest Points: Corners

- Compare two image patches using (weighted) summed square difference
- Measures change in appearance of window $w(x, y)$ for the shift


Window function $w(x, y)=$


1 in window, 0 outside


Gaussian
[Source: J. Hays]

## Interest Points: Corners

- Let's look at $E_{\text {WSSD }}$
- We want to find out how this function behaves for small shifts

$$
E(u, v)
$$



- Remember our goal to detect corners:



## Interest Points: Corners

- Using a simple first-order Taylor Series expansion:

$$
I(x+u, y+v) \approx I(x, y)+u \cdot \frac{\partial I}{\partial x}(x, y)+v \cdot \frac{\partial I}{\partial y}(x, y)
$$

- And plugging it in our expression for $E_{\text {WSSD }}$ :

$$
\begin{aligned}
E_{\mathrm{WSSD}}(u, v) & =\sum_{x} \sum_{y} w(x, y)(I(x+u, y+v)-I(x, y))^{2} \\
& \approx \sum_{x} \sum_{y} w(x, y)\left(I(x, y)+u \cdot I_{x}+v \cdot I_{y}-I(x, y)\right)^{2} \\
& =\sum_{x} \sum_{y} w(x, y)\left(u^{2} I_{x}^{2}+2 u \cdot v \cdot I_{x} \cdot I_{y}+v^{2} I_{y}^{2}\right) \\
& =\sum_{x} \sum_{y} w(x, y) \cdot\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
I_{x}^{2} & I_{x} \cdot I_{y} \\
I_{x} \cdot I_{y} & I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

## Interest Points: Corners

- Since $(u, v)$ doesn't depend on $(x, y)$ we can rewriting it slightly:

$$
\begin{aligned}
E_{\mathrm{WSSD}}(u, v) & =\sum_{x} \sum_{y} w(x, y)\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
I_{x}^{2} & I_{x} \cdot I_{y} \\
I_{x} \cdot I_{y} & I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& =\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left(\sum_{x} \sum_{y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} \cdot I_{y} \\
I_{x} \cdot I_{y} & I_{y}^{2}
\end{array}\right]\right)}_{\text {Let's denotes this with } M}\left[\begin{array}{c}
u \\
v
\end{array}\right] \\
& =\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

- M is a $2 \times 2$ second moment matrix computed from image gradients:

$$
M=\sum_{x} \sum_{y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} \cdot I_{y} \\
I_{x} \cdot I_{y} & I_{y}^{2}
\end{array}\right]
$$

## How Do I Compute M?



- Let's say I have this image


## How Do I Compute M?

$$
M=? \quad M=? \quad M=? \quad M=?
$$

- Let's say I have this image
- I need to compute a $2 \times 2$ second moment matrix in each image location


## How Do I Compute M?



- Let's say I have this image
- I need to compute a $2 \times 2$ second moment matrix in each image location
- In a particular location I need to compute $M$ as a weighted average of gradients in a window


## How Do I Compute M?

$$
M=\sum_{x} \sum_{y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} \cdot I_{y} \\
I_{x} \cdot I_{y} & I_{y}^{2}
\end{array}\right]
$$


image

$I_{x}=\frac{\partial I}{\partial x}$

$I_{y}=\frac{\partial I}{\partial y}$

$I_{x} \cdot I_{y}$

- Let's say I have this image
- I need to compute a $2 \times 2$ second moment matrix in each image location
- In a particular location I need to compute $M$ as a weighted average of gradients in a window

I can do this efficiently by computing three matrices, $I_{x}^{2}, I_{y}^{2}$ and $I_{x} \cdot I_{y}$, and convolving each one with a filter, e.g. a box or Gaussian filter

## Interest Points: Corners

- We now have $M$ computed in each image location
- Our $E_{\text {WSSD }}$ is a quadratic function where $M$ implies its shape

$$
\begin{aligned}
& E_{\mathrm{WSSD}}(u, v)=\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& M=\sum_{x} \sum_{y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} \cdot I_{y} \\
I_{x} \cdot I_{y} & I_{y}^{2}
\end{array}\right]
\end{aligned}
$$


[Source: J. Hays]

## Interest Points: Corners

- Let's take a horizontal "slice" of $E_{\mathrm{WSSD}}(u, v)$ :

$$
\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\text { const }
$$

- This is the equation of an ellipse



## Interest Points: Corners

- Let's take a horizontal "slice" of $E_{\mathrm{WSSD}}(u, v)$ :

$$
\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\text { const }
$$

- This is the equation of an ellipse


Figure: Different ellipses obtain by different horizontal "slices"

## Interest Points: Corners

- Our matrix $M$ is symmetric:

$$
M=\sum_{x} \sum_{y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} \cdot I_{y} \\
I_{x} \cdot I_{y} & I_{y}^{2}
\end{array}\right]
$$

- And thus we can diagonalize it (in Matlab: $[\mathrm{V}, \mathrm{D}]=\operatorname{EIG}(\mathrm{M})$ ):

$$
M=V\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] V^{-1}
$$

- Columns of $V$ are major and minor axes of ellipse, $\lambda^{-1 / 2}$ are radius

[Source: J. Hays]


## Interest Points: Corners

- Columns of $V$ are principal directions
- $\lambda_{1}, \lambda_{2}$ are principal curvatures

[Source: F. Flores-Mangas]


## Interest Points: Corners

- The eigenvalues of $M\left(\lambda_{1}, \lambda_{2}\right)$ reveal the amount of intensity change in the two principal orthogonal gradient directions in the window

[Source: R. Szeliski, slide credit: R. Urtasun]


## Interest Points: Corners

- How do the ellipses look like for this image?

[Source: J. Hays]


## Interest Points: Corners

- How do the ellipses look like for this image?

[Source: J. Hays]


## Interest Points: Corners


"edge":
$\lambda_{1} \gg \lambda_{2}$
$\lambda_{2} \gg \lambda_{1}$

"corner":
$\lambda_{1}$ and $\lambda_{2}$ are large,
$\lambda_{1} \sim \lambda_{2}$;

"flat" region $\lambda_{1}$ and $\lambda_{2}$ are small;
[Source: K. Grauman, slide credit: R. Urtasun]

## Interest Points: Criteria to Find Corners

- Harris and Stephens, '88, is rotationally invariant and downweighs edge-like features where $\lambda_{1} \gg \lambda_{0}$

$$
R=\operatorname{det}(M)-\alpha \cdot \operatorname{trace}(M)^{2}=\lambda_{0} \lambda_{1}-\alpha\left(\lambda_{0}+\lambda_{1}\right)^{2}
$$

- Why go via det and trace and not use a criteria with $\lambda$ ?
- $\alpha$ a constant ( 0.04 to 0.06 )


"corner":
$R>0$

"flat" region
$|R|$ small
- The corresponding detector is called Harris corner detector


## Interest Points: Criteria to Find Corners

- Harris and Stephens, 88 is rotationally invariant and downweighs edge-like features where $\lambda_{1} \gg \lambda_{0}$

$$
R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{0} \lambda_{1}-\alpha\left(\lambda_{0}+\lambda_{1}\right)^{2}
$$

- Shi and Tomasi, 94 proposed the smallest eigenvalue of $\mathbf{A}$, i.e., $\lambda_{0}^{-1 / 2}$.
- Triggs, 04 suggested

$$
\lambda_{0}-\alpha \lambda_{1}
$$

also reduces the response at 1D edges, where aliasing errors sometimes inflate the smaller eigenvalue

- Brown et al, 05 use the harmonic mean

$$
\frac{\operatorname{det}(\mathbf{A})}{\operatorname{trace}(\mathbf{A})}=\frac{\lambda_{0} \lambda_{1}}{\lambda_{0}+\lambda_{1}}
$$

[Source R. Urtasun]

## Harris Corner detector

(1) Compute gradients $I_{x}$ and $I_{y}$
(2) Compute $I_{x}^{2}, I_{y}^{2}, I_{x} \cdot I_{y}$
(3) Average (Gaussian) $\rightarrow$ gives $M$
(c) Compute
$R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}$ for each image window (cornerness score)
(3) Find points with large $R(R>$ threshold).
(0) Take only points of local maxima, i.e., perform non-maximum suppression


## Example


[Source: K. Grauman]

## 1) Compute Cornerness


[Source: K. Grauman]

## 2) Find High Response


[Source: K. Grauman]

## 3) Non-maxima Suppresion


[Source: K. Grauman]

## Results


[Source: K. Grauman]

## Another Example


[Source: K. Grauman]

## Cornerness


[Source: K. Grauman]

## Interest Points


[Source: K. Grauman]

## Interest Points - Ideal Properties?

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
Invariance : Image is transformed and corner locations do not change Covariance : If we have two transformed versions of the same image, features should be detected in corresponding locations



## Properties of Harris Corner Detector

- Shift?

- Harris corner detector is shift-covariant (our window functions shift)
[Source: J. Hays]


## Properties of Harris Corner Detector

- Rotation?

- Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same
- Harris corner detector is rotation-covariant
[Source: J. Hays]


## Properties of Harris Corner Detector

- Scale?


All points will be classified as edges

- Corner location is not scale invariant/covariant!
[Source: J. Hays]


## Next Time

- Can we also define keypoints that are shift, rotation and scale invariant/covariant?
- What should be our description around keypoint?

