Cameras and Images

Pinhole Camera

[Source: A. Torralba]

- Make your own camera
- http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html

Pinhole Camera – How It Works

 The pinhole camera only allows rays from one point in the scene to strike each point of the paper.

Pinhole Camera - How It Works

Pinhole Camera – Example

[Source: A. Torralba]

Pinhole Camera

[Source: A. Torralba]

You can make it stereo

Pinhole Camera – Stereo Example

[Source: A. Torralba]

Try it with 3D glasses!

Pinhole Camera

[Source: A. Torralba]

- Remember this example?
- In this case the window acts as a pinhole camera into the room

Shrinking the Aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

[Source: N. Snavely]

Shrinking the Aperture

[Source: N. Snavely]

Adding a Lens

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus

Adding a Lens

object point

Lens

• A lens focuses light onto the film

Small pinhole

- There is a specific distance at which objects are in focus
- Changing the shape of the lens changes this distance

[Source: N. Snavely]

Big pinhole

Adding a Lens

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus
- Changing the shape of the lens changes this distance

[Source: N. Snavely]

Digital Camera

[Adopted from S. Seitz]

- A digital camera replaces film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons
- http://electronics.howstuffworks.com/cameras-photography/ digital/digital-camera.htm

Demosaicing

Digital Camera

Image Formation

Image formation process producing a particular image depends on:

- lighting conditions
- scene geometry
- surface properties
- camera optics

Continuous image projected to sensor array

Sampling and quantization

http://pho.to/media/images/digital/digital-sensors.jpg

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

- Image is a matrix with integer values
- We will typically denote it with I

- Image is a matrix with integer values
- We will typically denote it with I
- I(i,j) is called **intensity**

- Image is a matrix with integer values
- We will typically denote it with I
- I(i,j) is called **intensity**
- Matrix I can be $m \times n$ (grayscale)

- Image is a matrix with integer values
- We will typically denote it with I
- I(i,j) is called **intensity**
- Matrix I can be $m \times n$ (grayscale)
- or $m \times n \times 3$ (color)

- Image is a matrix with integer values
- We will typically denote it with I
- I(i,j) is called **intensity**
- Matrix I can be $m \times n$ (grayscale)
- or $m \times n \times 3$ (color)

Intensity

- We can think of a (grayscale) image as a function $f: \mathbb{R}^2 \to \mathbb{R}$ giving the intensity at position (i,j)
- Intensity 0 is black and 255 is white

As with any function, we can apply operators to an image, e.g.:

 We'll talk about special kinds of operators, correlation and convolution (linear filtering)

As with any function, we can apply operators to an image, e.g.:

 We'll talk about special kinds of operators, correlation and convolution (linear filtering)

As with any function, we can apply operators to an image, e.g.:

 We'll talk about special kinds of operators, correlation and convolution (linear filtering)

• As with any function, we can apply operators to an image, e.g.:

 We'll talk about special kinds of operators, correlation and convolution (linear filtering)

Linear Filters

Reading: Szeliski book, Chapter 3.2

Motivation: Finding Waldo

• How can we find Waldo?

[Source: R. Urtasun]

Answer

- Slide and compare!
- In formal language: filtering

Motivation: Noise reduction

• Given a camera and a still scene, how can you reduce noise?

[Source: S. Seitz]

Image Filtering

- Modify the pixels in an image based on some function of a local neighborhood of each pixel
- In other words... Filtering

10	5	3
4	5	1
1	1	7

Local image data

a

7

Modified image data

[Source: L. Zhang]

Applications of Filtering

- Enhance an image, e.g., denoise.
- Detect patterns, e.g., template matching.
- Extract information, e.g., texture, edges.
- Filtering is used in Convolutional Neural Networks

Applications of Filtering

- Enhance an image, e.g., denoise. Let's talk about this first
- Detect patterns, e.g., template matching.
- Extract information, e.g., **texture**, **edges**.

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Moving average in 1D: [1, 1, 1, 1, 1]/5

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Non-uniform weights [1, 4, 6, 4, 1] / 16

[Source: S. Marschner]

Involves weighted combinations of pixels in small neighborhoods:

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

 The output pixel's value is determined as a weighted sum of input pixel values

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Involves weighted combinations of pixels in small neighborhoods:

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

 The output pixel's value is determined as a weighted sum of input pixel values

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

• The entries of the weight kernel or mask F(u, v) are often called the filter coefficients.

Involves weighted combinations of pixels in small neighborhoods:

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

 The output pixel's value is determined as a weighted sum of input pixel values

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

- The entries of the weight **kernel** or **mask** F(u, v) are often called the **filter coefficients**.
- This operator is the correlation operator

$$G = F \otimes I$$

Involves weighted combinations of pixels in small neighborhoods:

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

 The output pixel's value is determined as a weighted sum of input pixel values

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

- The entries of the weight **kernel** or **mask** F(u, v) are often called the **filter coefficients**.
- This operator is the correlation operator

$$G = F \otimes I$$

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

$$G(i,j) = F(\square) \cdot I(\square) + F(\square) \cdot I(\square) + F(\square) \cdot I(\square) + \dots + F(\square) \cdot I(\square)$$

• What happens along the borders of the image?

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

$$G(i,j) = F() \cdot I() + F() \cdot I() + F() \cdot I() + \dots + F() \cdot I()$$

Boundary Effects

- What happens at the border of the image? What's the size of the output matrix?
- MATLAB: FILTER2(G, F, SHAPE)
 Python: SCIPY.NDIMAGE.CONVOLVE
- shape = "full" output size is sum of sizes of f and g
- shape = "same": output size is same as f
- shape = "valid": output size is difference of sizes of f and g

Boundary Effects

- What happens at the border of the image? What's the size of the output matrix?
- MATLAB: FILTER2(G, F, SHAPE)
 Python: SCIPY.NDIMAGE.CONVOLVE
- shape = "full" output size is sum of sizes of f and g
- shape = "same": output size is same as f
- shape = "valid": output size is difference of sizes of f and g

• What's the result?

0	0	0
0	1	0
0	0	0

?

Original

• What's the result?

Original

Filtered (no change)

• What's the result?

I	0	0	0
	0	0	1
	0	0	0

?

Original

• What's the result?

0	0	0
0	0	1
0	0	0

• What's the result?

Original

• What's the result?

Sharpening

before

after

Sharpening

[Source: N. Snavely]

Example of Correlation

• What is the result of filtering the impulse signal (image) I with the arbitrary filter F?

Smoothing by averaging

• What if the filter size was 5×5 instead of 3×3 ?

Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?
- Removes high-frequency components from the image ("low-pass filter").

$$\overline{I(i,j)}$$

This kernel is an approximation of a 2d Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}$$

Smoothing with a Gaussian

[Source: K. Grauman]

Mean vs Gaussian

Gaussian filter: Parameters

• Size of filter or mask: Gaussian function has infinite support, but discrete filters use finite kernels.

Gaussian filter: Parameters

• Variance of the Gaussian: determines extent of smoothing.

Gaussian filter: Parameters

Is this the most general Gaussian?

ullet No, the most general form for $\mathbf{x} \in \Re^d$

$$\mathcal{N}\left(\mathbf{x};\,\mu,\Sigma\right) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}\exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T\Sigma^{-1}(\mathbf{x}-\mu)\right)$$

• We typically use isotropic filters (i.e., circularly symmetric)

- All values are positive.
- They all sum to 1.

- All values are positive.
- They all sum to 1.
- Amount of smoothing proportional to mask size.

- All values are positive.
- They all sum to 1.
- Amount of smoothing proportional to mask size.
- Remove "high-frequency" components; "low-pass" filter.

Note: This holds for smoothing filters, not general filters

- All values are positive.
- They all sum to 1.
- Amount of smoothing proportional to mask size.
- Remove "high-frequency" components; "low-pass" filter.

Note: This holds for smoothing filters, not general filters

Template Matching: Finding Waldo

image I

• How can we use what we just learned about filtering to find Waldo?

Template Matching: Finding Waldo

image I

filter F

• Is correlation a good choice?

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Can we write that in a more compact form (with vectors)?

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Remember correlation:

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

$$G(i,j) = \mathbf{f}^{T} \cdot \mathbf{t}_{ij}$$
image I

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

- Can we write that in a more compact form (with vectors)?
- Define f = F(:), $T_{ij} = I(i k : i + k, j k : j + k)$, and $\mathbf{t}_{ij} = T_{ij}(:)$

$$G(i,j) = \mathbf{f}^T \cdot \mathbf{t}_{ij}$$

where \cdot is a dot product

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

- Can we write that in a more compact form (with vectors)?
- Define f = F(:), $T_{ij} = I(i k : i + k, j k : j + k)$, and $\mathbf{t}_{ij} = T_{ij}(:)$

$$G(i,j) = \mathbf{f}^T \cdot \mathbf{t}_{ij}$$

where \cdot is a dot product

• **Homework:** Can we write full correlation $G = F \otimes I$ in matrix form?

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

- Can we write that in a more compact form (with vectors)?
- Define f = F(:), $T_{ij} = I(i k : i + k, j k : j + k)$, and $\mathbf{t}_{ij} = T_{ij}(:)$

$$G(i,j) = \mathbf{f}^T \cdot \mathbf{t}_{ij}$$

where \cdot is a dot product

• Finding Waldo: How could we ensure to get the best "score" (e.g. 1) for an image crop that looks exactly like our filter?

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

- Can we write that in a more compact form (with vectors)?
- Define $\mathbf{f} = F(:)$, $T_{ij} = I(i k : i + k, j k : j + k)$, and $\mathbf{t}_{ij} = T_{ij}(:)$

$$G(i,j) = \mathbf{f}^T \cdot \mathbf{t}_{ij}$$

where \cdot is a dot product

- Finding Waldo: How could we ensure to get the best "score" (e.g. 1) for an image crop that looks exactly like our filter?
- Normalized cross-correlation:

$$G(i,j) = \frac{\mathbf{f}^T \cdot \mathbf{t}_{ij}}{||\mathbf{f}|| \cdot ||\mathbf{t}_{ij}||}$$

filter F

Result of normalized cross-correlation

• Find the highest peak

And put a bounding box (rectangle the size of the template) at the point!

• Homework: Do it yourself! Code on class webpage. Don't cheat!

Convolution

Convolution operator

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i-u,j-v)$$

Convolution

Convolution operator

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i-u,j-v)$$

 Equivalent to flipping the filter in both dimensions (bottom to top, right to left) and apply correlation.

• For a Gaussian or box filter, how will the outputs F * I and $F \otimes I$ differ?

- For a Gaussian or box filter, how will the outputs F * I and $F \otimes I$ differ?
- How will the outputs differ for:

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

- For a Gaussian or box filter, how will the outputs F * I and $F \otimes I$ differ?
- How will the outputs differ for:

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

• If the input is an impulse signal, how will the outputs differ? $\delta * I$ and $\delta \otimes I$?

"Optical" Convolution

Camera Shake

Figure: Fergus, et al., SIGGRAPH 2006

• Blur in out-of-focus regions of an image.

Figure: Bokeh: http://lullaby.homepage.dk/diy-camera/bokeh.html Click for more info

[Source: N. Snavely]

Properties of Convolution

Commutative : f * g = g * f

Associative : f * (g * h) = (f * g) * h

Distributive : f * (g + h) = f * g + f * h

Assoc. with scalar multiplier : $\lambda \cdot (f * g) = (\lambda \cdot f) * h$

Properties of Convolution

Commutative : f * g = g * f

Associative : f * (g * h) = (f * g) * h

Distributive : f * (g + h) = f * g + f * h

Assoc. with scalar multiplier : $\lambda \cdot (f * g) = (\lambda \cdot f) * h$

 The Fourier transform of two convolved images is the product of their individual Fourier transforms:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

Properties of Convolution

Commutative : f * g = g * f

Associative : f * (g * h) = (f * g) * h

Distributive : f * (g + h) = f * g + f * h

Assoc. with scalar multiplier : $\lambda \cdot (f * g) = (\lambda \cdot f) * h$

 The Fourier transform of two convolved images is the product of their individual Fourier transforms:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

- **Homework:** Why is this good news?
- Hint: Think of complexity of convolution and Fourier Transform
- Homework: Do above properties also hold for correlation?
- Both correlation and convolution are linear shift-invariant (LSI)
 operators: the effect of the operator is the same everywhere.

Gaussian Filter

• Convolving twice with Gaussian kernel of width σ is the same as convolving once with kernel of width $\sigma\sqrt{2}$

We don't need to filter twice, just once with a bigger kernel

[Source: K. Grauman]

• The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution filter.

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?
- In many cases (**not all!**), this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, **requiring only** 2K **operations**.

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?
- In many cases (not all!), this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring only 2K operations.
- If this is possible, then the convolution filter is called **separable**.

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?
- In many cases (not all!), this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring only 2K operations.
- If this is possible, then the convolution filter is called **separable**.
- And it is the outer product of two filters:

$$\mathbf{F} = \mathbf{v} \, \mathbf{h}^T$$

 Homework: Think why in the case of separable filters 2D convolution is the same as two 1D convolutions

[Source: R. Urtasun]

Separable Filters: Gaussian filters

• One famous separable filter we already know:

Gaussian :
$$f(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{\sigma^2}}$$

Separable Filters: Gaussian filters

• One famous separable filter we already know:

Gaussian :
$$f(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{\sigma^2}}$$

= $\left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{\sigma^2}}\right) \cdot \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{y^2}{\sigma^2}}\right)$

Is this separable? If yes, what's the separable version?

$\frac{1}{K^2}$	1	1		1
	1	1		1
	:	:	1	:
	1	1		1

Is this separable? If yes, what's the separable version?

$$\frac{1}{K}$$
 1 1 \cdots 1

What does this filter do?

Is this separable? If yes, what's the separable version?

$$\begin{array}{c|cccc}
 & 1 & 2 & 1 \\
\hline
 & 2 & 4 & 2 \\
\hline
 & 1 & 2 & 1
\end{array}$$

Is this separable? If yes, what's the separable version?

$$\begin{array}{c|cccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}$$

$$\frac{1}{4}$$
 $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

What does this filter do?

Is this separable? If yes, what's the separable version?

$$\begin{array}{c|cccc}
 -1 & 0 & 1 \\
 \hline
 -2 & 0 & 2 \\
 \hline
 -1 & 0 & 1
\end{array}$$

Is this separable? If yes, what's the separable version?

$$\begin{array}{c|cccc}
 -1 & 0 & 1 \\
 \hline
 -2 & 0 & 2 \\
 \hline
 -1 & 0 & 1
\end{array}$$

$$\frac{1}{2}$$
 -1 0 1

What does this filter do?

• Inspection... this is what we were doing.

- Inspection... this is what we were doing.
- Looking at the analytic form of it.

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$F = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i u_i v_i^T$$

with $\Sigma = \operatorname{diag}(\sigma_i)$.

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$F = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i u_i v_i^T$$

with $\Sigma = \operatorname{diag}(\sigma_i)$.

• Matlab: [U,S,V] = SVD(F);

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$F = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i u_i v_i^T$$

with $\Sigma = \operatorname{diag}(\sigma_i)$.

- Matlab: [U,S,V] = SVD(F);
- $\sqrt{\sigma_1}\mathbf{u}_1$ and $\sqrt{\sigma_1}\mathbf{v}_1^T$ are the vertical and horizontal filter.

Summary – Stuff You Should Know

- Correlation: Slide a filter across image and compare (via dot product)
- Convolution: Flip the filter to the right and down and do correlation
- ullet Smooth image with a Gaussian kernel: bigger σ means more blurring
- **Some** filters (like Gaussian) are **separable**: you can filter faster. First apply 1D convolution to each row, followed by another 1D conv. to each column
- Applying first a Gaussian filter with σ_1 and then another Gaussian with σ_2 is the same as applying one Gaussian filter with $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$

Functions

Python functions:

- SCIPY.NDIMAGE.CORRELATE: correlation
- SCIPY.NDIMAGE.CONVOLVE: convolution
- Many filters available: https://docs.scipy.org/doc/scipy-0.15.1/ reference/ndimage.html#module-scipy.ndimage.filters

Matlab functions:

- IMFILTER: can do both correlation and convolution
- CORR2, FILTER2: correlation, NORMXCORR2 normalized correlation
- CONV2: does convolution
- FSPECIAL: creates special filters including a Gaussian

Edges

• What does blurring take away?

[Source: S. Lazebnik]

Next time:

Edge Detection