Cameras and Images

Pinhole Camera

- Make your own camera
- http://www.foundphotography.com/PhotoThoughts/archives/2005/ 04/pinhole_camera_2.html

Pinhole Camera - How It Works

- The pinhole camera only allows rays from one point in the scene to strike each point of the paper.

Pinhole Camera - How It Works

Pinhole Camera - Example

[Source: A. Torralba]

Pinhole Camera

[Source: A. Torralba]

- You can make it stereo

Pinhole Camera - Stereo Example

[Source: A. Torralba]

- Try it with 3D glasses!

Pinhole Camera

[Source: A. Torralba]

a) Input (occluder present)

b) Reference (occluder absent)

c) Difference image (b-a) d) Crop upside down

e) True view

- Remember this example?
- In this case the window acts as a pinhole camera into the room

Shrinking the Aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...
[Source: N. Snavely]

Shrinking the Aperture

[Source: N. Snavely]

Adding a Lens

[Pic from Wikipedia]

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus

Adding a Lens

[Pic from Wikipedia]

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus
- Changing the shape of the lens changes this distance

[Source: N. Snavely]

Adding a Lens

Small pinhole

Big pinhole

Lens

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus
- Changing the shape of the lens changes this distance
[Source: N. Snavely]

Digital Camera

- A digital camera replaces film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons
- http://electronics.howstuffworks.com/cameras-photography/ digital/digital-camera.htm

Demosaicing

Digital Camera

Image Formation

Image formation process producing a particular image depends on:

- lighting conditions
- scene geometry
- surface properties
- camera optics

Digital Image

Continuous image projected to sensor array

Sampling and quantization

http://pho.to/media/images/digital/digital-sensors.jpg

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

Digital Image

- Image is a matrix with integer values
- We will typically denote it with I

Digital Image

- Image is a matrix with integer values
- We will typically denote it with I
- I($i, j)$ is called intensity

pixel $(1,1)$: intensity 255

Digital Image

- Image is a matrix with integer values
- We will typically denote it with I
- $I(i, j)$ is called intensity
- Matrix I can be $m \times n$ (grayscale)

Digital Image

- Image is a matrix with integer values
- We will typically denote it with I
- $I(i, j)$ is called intensity
- Matrix I can be $m \times n$ (grayscale)
- or $m \times n \times 3$ (color)

Digital Image

- Image is a matrix with integer values
- We will typically denote it with I
- $I(i, j)$ is called intensity
- Matrix I can be $m \times n$ (grayscale)
- or $m \times n \times 3$ (color)

Intensity

- We can think of a (grayscale) image as a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ giving the intensity at position (i, j)
- Intensity 0 is black and 255 is white

Image Transformations

- As with any function, we can apply operators to an image, e.g.:

- We'll talk about special kinds of operators, correlation and convolution (linear filtering)

[Adapted from: N. Snavely]

Image Transformations

- As with any function, we can apply operators to an image, e.g.:

- We'll talk about special kinds of operators, correlation and convolution (linear filtering)

[Adapted from: N. Snavely]

Image Transformations

- As with any function, we can apply operators to an image, e.g.:

$$
I(i, j) \quad J(i, j)=I(i, j)+50
$$

$$
J(i, j)=I(i,-j) \quad I(i, j) \cdot(I(i, j)<250)
$$

- We'll talk about special kinds of operators, correlation and convolution (linear filtering)

[Adapted from: N. Snavely]

Image Transformations

- As with any function, we can apply operators to an image, e.g.:

$J(i, j)=I(i, j)+50$

$J(i, j)=I(i,-j) \quad I(i, j) \cdot(I(i, j)<250)$

- We'll talk about special kinds of operators, correlation and convolution (linear filtering)

[Adapted from: N. Snavely]

Linear Filters

Reading: Szeliski book, Chapter 3.2

Motivation: Finding Waldo

- How can we find Waldo?

[Source: R. Urtasun]

Answer

- Slide and compare!
- In formal language: filtering

Motivation: Noise reduction

- Given a camera and a still scene, how can you reduce noise?

[Source: S. Seitz]

Image Filtering

- Modify the pixels in an image based on some function of a local neighborhood of each pixel
- In other words... Filtering

10	5	3
4	5	1
1	1	7

Local image data

Modified image data
[Source: L. Zhang]

Applications of Filtering

- Enhance an image, e.g., denoise.
- Detect patterns, e.g., template matching.
- Extract information, e.g., texture, edges.
- Filtering is used in Convolutional Neural Networks

Applications of Filtering

- Enhance an image, e.g., denoise. Let's talk about this first
- Detect patterns, e.g., template matching.
- Extract information, e.g., texture, edges.

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Moving average in 1D: $[1,1,1,1,1] / 5$

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Non-uniform weights $[1,4,6,4,1] / 16$

[Source: S. Marschner]

Moving Average in 2D

$$
I(i, j)
$$

$$
G(i, j)
$$

[Source: S. Seitz]

Moving Average in 2D

$I(i, j)$

$G(i, j)$

[Source: S. Seitz]

Moving Average in 2D

$I(i, j)$
$G(i, j)$

[Source: S. Seitz]

Moving Average in 2D

$I(i, j)$

$G(i, j)$

[Source: S. Seitz]

Moving Average in 2D

$I(i, j)$
$G(i, j)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

[Source: S. Seitz]

Moving Average in 2D

$$
I(i, j)
$$

$$
G(i, j)
$$

[Source: S. Seitz]

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods:

$$
G(i, j)=\frac{1}{(2 k+1)^{2}} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u, j+v)
$$

- The output pixel's value is determined as a weighted sum of input pixel values

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i+u, j+v)
$$

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods:

$$
G(i, j)=\frac{1}{(2 k+1)^{2}} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u, j+v)
$$

- The output pixel's value is determined as a weighted sum of input pixel values

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i+u, j+v)
$$

- The entries of the weight kernel or mask $F(u, v)$ are often called the filter coefficients.

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods:

$$
G(i, j)=\frac{1}{(2 k+1)^{2}} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u, j+v)
$$

- The output pixel's value is determined as a weighted sum of input pixel values

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i+u, j+v)
$$

- The entries of the weight kernel or mask $F(u, v)$ are often called the filter coefficients.
- This operator is the correlation operator

$$
G=F \otimes I
$$

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods:

$$
G(i, j)=\frac{1}{(2 k+1)^{2}} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u, j+v)
$$

- The output pixel's value is determined as a weighted sum of input pixel values

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i+u, j+v)
$$

- The entries of the weight kernel or mask $F(u, v)$ are often called the filter coefficients.
- This operator is the correlation operator

$$
G=F \otimes I
$$

Linear Filtering: Correlation

- It's really easy!

Linear Filtering: Correlation

- It's really easy!

Linear Filtering: Correlation

- It's really easy!

image I

Linear Filtering: Correlation

- It's really easy!

.j

image I

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

$G(i, j)=F(\square) \cdot I(\square)+F(\square) \cdot I(\square)+F(\square) \cdot I(\square)+\ldots+F(\square) \cdot I(\square)$

Linear Filtering: Correlation

- What happens along the borders of the image?

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

$$
G(i, j)=F(\square) \cdot I(\square)+F(\square) \cdot I(\square)+F(\square) \cdot I(\square)+\ldots+F(\square) \cdot I(\square)
$$

Boundary Effects

- What happens at the border of the image? What's the size of the output matrix?
- MATLAB: FILTER2(G, F, SHAPE)

Python: SCIPY.NDIMAGE.CONVOLVE

- shape $=$ "full" output size is sum of sizes of f and g
- shape $=$ "same" : output size is same as f
- shape $=$ "valid": output size is difference of sizes of f and g

[Source: S. Lazebnik]

Boundary Effects

- What happens at the border of the image? What's the size of the output matrix?
- MATLAB: FILTER2(G, F, SHAPE)

Python: SCIPY.NDIMAGE.CONVOLVE

- shape $=$ "full" output size is sum of sizes of f and g
- shape $=$ "same" : output size is same as f
- shape $=$ "valid": output size is difference of sizes of f and g

valid

Filtering with Correlation: Example

- What's the result?

Original

[Source: D. Lowe]

Filtering with Correlation: Example

- What's the result?

Original

Filtered
(no change)
[Source: D. Lowe]

Filtering with Correlation: Example

- What's the result?

$?$

Original

[Source: D. Lowe]

Filtering with Correlation: Example

- What's the result?

[Source: D. Lowe]

Filtering with Correlation: Example

- What's the result?

Original
[Source: D. Lowe]

Filtering with Correlation: Example

- What's the result?

[Source: D. Lowe]

Sharpening

before

after
[Source: D. Lowe]

Sharpening

[Source: N. Snavely]

Example of Correlation

- What is the result of filtering the impulse signal (image) I with the arbitrary filter F?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

® | a | b | c |
| :--- | :--- | :--- |
| d | e | f |
| g | h | i |
| $\boldsymbol{F}(i, j)$ | | |

$I(i, j)$

$G(i, j)$
[Source: K. Grauman]

Smoothing by averaging

$$
\square \begin{aligned}
& \text { depicts box filter: } \\
& \text { white }=\text { high value, black = low value }
\end{aligned}
$$

original

filtered

- What if the filter size was 5×5 instead of 3×3 ?
[Source: K. Graumann]

Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?
- Removes high-frequency components from the image ("low-pass filter").

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$
I(i, j)
$$

$$
\begin{gathered}
\frac{1}{16} \begin{array}{|l|l|l|}
\hline 1 & 2 & 1 \\
\hline 2 & 4 & 2 \\
\hline 1 & 2 & 1 \\
F(i, j)
\end{array} \\
F \begin{array}{l}
\end{array} \left\lvert\, \begin{array}{l}
\\
\hline
\end{array}\right. \\
\hline
\end{gathered}
$$

This kernel is an approximation of a 2 d Gaussian function:

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}
$$

[Source: S. Seitz]

Smoothing with a Gaussian

*

[Source: K. Grauman]

Mean vs Gaussian

Gaussian filter: Parameters

- Size of filter or mask: Gaussian function has infinite support, but discrete filters use finite kernels.

$\sigma=5$ with 30×30 kernel
[Source: K. Grauman]

Gaussian filter: Parameters

- Variance of the Gaussian: determines extent of smoothing.

[Source: K. Grauman]

Gaussian filter: Parameters


```
for sigma=1:3:10
                h = fspecial('gaussian', fsize, sigma);
            out = imfilter(im, h);
            imshow (out);
            pause;
end
```

[Source: K. Grauman]

Is this the most general Gaussian?

- No, the most general form for $\mathbf{x} \in \Re^{d}$

$$
\mathcal{N}(\mathbf{x} ; \mu, \Sigma)=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

- We typically use isotropic filters (i.e., circularly symmetric)

Properties of the Smoothing Filter

- All values are positive.
- They all sum to 1.

Properties of the Smoothing Filter

- All values are positive.
- They all sum to 1 .
- Amount of smoothing proportional to mask size.

Properties of the Smoothing Filter

- All values are positive.
- They all sum to 1 .
- Amount of smoothing proportional to mask size.
- Remove "high-frequency" components; "low-pass" filter.

Note: This holds for smoothing filters, not general filters

Properties of the Smoothing Filter

- All values are positive.
- They all sum to 1 .
- Amount of smoothing proportional to mask size.
- Remove "high-frequency" components; "low-pass" filter.

Note: This holds for smoothing filters, not general filters

Template Matching: Finding Waldo

- How can we use what we just learned about filtering to find Waldo?

Template Matching: Finding Waldo

- Is correlation a good choice?

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

- Can we write that in a more compact form (with vectors)?

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

image I

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i+u, j+v)
$$

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i+u, j+v)
$$

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

- Can we write that in a more compact form (with vectors)?
- Define $\mathbf{f}=F(:), T_{i j}=I(i-k: i+k, j-k: j+k)$, and $\mathbf{t}_{i j}=T_{i j}(:)$

$$
G(i, j)=\mathbf{f}^{T} \cdot \mathbf{t}_{i j}
$$

where - is a dot product

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

- Can we write that in a more compact form (with vectors)?
- Define $\mathbf{f}=F(:), T_{i j}=I(i-k: i+k, j-k: j+k)$, and $\mathbf{t}_{i j}=T_{i j}(:)$

$$
G(i, j)=\mathbf{f}^{T} \cdot \mathbf{t}_{i j}
$$

where - is a dot product

- Homework: Can we write full correlation $G=F \otimes I$ in matrix form?

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

- Can we write that in a more compact form (with vectors)?
- Define $\mathbf{f}=F(:), T_{i j}=I(i-k: i+k, j-k: j+k)$, and $\mathbf{t}_{i j}=T_{i j}(:)$

$$
G(i, j)=\mathbf{f}^{T} \cdot \mathbf{t}_{i j}
$$

where - is a dot product

- Finding Waldo: How could we ensure to get the best "score" (e.g. 1) for an image crop that looks exactly like our filter?

A Slight Detour: Correlation in Matrix Form

- Remember correlation:

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot l(i+u, j+v)
$$

- Can we write that in a more compact form (with vectors)?
- Define $\mathbf{f}=F(:), T_{i j}=I(i-k: i+k, j-k: j+k)$, and $\mathbf{t}_{i j}=T_{i j}(:)$

$$
G(i, j)=\mathbf{f}^{T} \cdot \mathbf{t}_{i j}
$$

where • is a dot product

- Finding Waldo: How could we ensure to get the best "score" (e.g. 1) for an image crop that looks exactly like our filter?
- Normalized cross-correlation:

$$
G(i, j)=\frac{\mathbf{f}^{T} \cdot \mathbf{t}_{i j}}{\|\mathbf{f}\| \cdot\left\|\mathbf{t}_{\mathbf{i j}}\right\|}
$$

Back to Template Matching (Finding Waldo)

filter F

Back to Template Matching (Finding Waldo)

- Result of normalized cross-correlation

Back to Template Matching (Finding Waldo)

- Find the highest peak

Back to Template Matching (Finding Waldo)

And put a bounding box (rectangle the size of the template) at the point!

Back to Template Matching (Finding Waldo)

- Homework: Do it yourself! Code on class webpage. Don't cheat!

Convolution

- Convolution operator

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i-u, j-v)
$$

Convolution

- Convolution operator

$$
G(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u, v) \cdot I(i-u, j-v)
$$

- Equivalent to flipping the filter in both dimensions (bottom to top, right to left) and apply correlation.

Correlation vs Convolution

Correlation

Convolution

Correlation vs Convolution

- For a Gaussian or box filter, how will the outputs $F * I$ and $F \otimes I$ differ?

Correlation vs Convolution

- For a Gaussian or box filter, how will the outputs $F * I$ and $F \otimes I$ differ?
- How will the outputs differ for:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Correlation vs Convolution

- For a Gaussian or box filter, how will the outputs $F * I$ and $F \otimes I$ differ?
- How will the outputs differ for:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

- If the input is an impulse signal, how will the outputs differ? $\delta * I$ and $\delta \otimes I$?

"Optical" Convolution

- Camera Shake

Figure: Fergus, et al., SIGGRAPH 2006

- Blur in out-of-focus regions of an image.

Figure: Bokeh: http://lullaby.homepage.dk/diy-camera/bokeh.html Click for more info
[Source: N. Snavely]

Properties of Convolution

$$
\begin{aligned}
\text { Commutative } & : f * g=g * f \\
\text { Associative } & : f *(g * h)=(f * g) * h \\
\text { Distributive } & : f *(g+h)=f * g+f * h
\end{aligned}
$$

Assoc. with scalar multiplier : $\lambda \cdot(f * g)=(\lambda \cdot f) * h$

Properties of Convolution

$$
\begin{aligned}
\text { Commutative } & : f * g=g * f \\
\text { Associative } & : f *(g * h)=(f * g) * h \\
\text { Distributive } & : f *(g+h)=f * g+f * h
\end{aligned}
$$

Assoc. with scalar multiplier : $\lambda \cdot(f * g)=(\lambda \cdot f) * h$

- The Fourier transform of two convolved images is the product of their individual Fourier transforms:

$$
\mathcal{F}(f * g)=\mathcal{F}(f) \cdot \mathcal{F}(g)
$$

Properties of Convolution

$$
\begin{aligned}
\text { Commutative } & : f * g=g * f \\
\text { Associative } & : f *(g * h)=(f * g) * h \\
\text { Distributive } & : f *(g+h)=f * g+f * h
\end{aligned}
$$

Assoc. with scalar multiplier : $\lambda \cdot(f * g)=(\lambda \cdot f) * h$

- The Fourier transform of two convolved images is the product of their individual Fourier transforms:

$$
\mathcal{F}(f * g)=\mathcal{F}(f) \cdot \mathcal{F}(g)
$$

- Homework: Why is this good news?
- Hint: Think of complexity of convolution and Fourier Transform
- Homework: Do above properties also hold for correlation?
- Both correlation and convolution are linear shift-invariant (LSI) operators: the effect of the operator is the same everywhere.

Gaussian Filter

- Convolving twice with Gaussian kernel of width σ is the same as convolving once with kernel of width $\sigma \sqrt{2}$

- We don't need to filter twice, just once with a bigger kernel
[Source: K. Grauman]

Separable Filters: Speed-up Trick!

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution filter.

Separable Filters: Speed-up Trick!

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?

Separable Filters: Speed-up Trick!

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?
- In many cases (not all!), this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring only $2 K$ operations.

Separable Filters: Speed-up Trick!

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?
- In many cases (not all!), this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring only $2 K$ operations.
- If this is possible, then the convolution filter is called separable.

Separable Filters: Speed-up Trick!

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution filter.
- Can we do faster?
- In many cases (not all!), this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring only $2 K$ operations.
- If this is possible, then the convolution filter is called separable.
- And it is the outer product of two filters:

$$
\mathbf{F}=\mathbf{v} \mathbf{h}^{T}
$$

- Homework: Think why in the case of separable filters 2D convolution is the same as two 1D convolutions
[Source: R. Urtasun]

How it Works

How it Works

How it Works

How it Works

filter

Separable Filters: Gaussian filters

- One famous separable filter we already know:

$$
\text { Gaussian : } f(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{\sigma^{2}}}
$$

Separable Filters: Gaussian filters

- One famous separable filter we already know:

$$
\text { Gaussian : } \begin{aligned}
f(x, y) & =\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{\sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{\sigma^{2}}}\right) \cdot\left(\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{y^{2}}{\sigma^{2}}}\right)
\end{aligned}
$$

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{K^{2}}$| 1 | 1 | \cdots | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | \cdots | 1 |
| \vdots | \vdots | 1 | \vdots |
| 1 | 1 | \cdots | 1 |

[Source: R. Urtasun]

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{K^{2}}$| 1 | 1 | \cdots | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | \cdots | 1 |
| \vdots | \vdots | 1 | \vdots |
| 1 | 1 | \cdots | 1 |

What does this filter do?
[Source: R. Urtasun]

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

[Source: R. Urtasun]

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

What does this filter do?
[Source: R. Urtasun]

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

[Source: R. Urtasun]

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

What does this filter do?
[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

- Inspection... this is what we were doing.

How can we tell if a given filter F is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.

How can we tell if a given filter F is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$
F=\mathbf{U} \Sigma \mathbf{V}^{T}=\sum_{i} \sigma_{i} u_{i} v_{i}^{T}
$$

with $\Sigma=\operatorname{diag}\left(\sigma_{i}\right)$.

How can we tell if a given filter F is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$
F=\mathbf{U} \Sigma \mathbf{V}^{T}=\sum_{i} \sigma_{i} u_{i} v_{i}^{T}
$$

with $\Sigma=\operatorname{diag}\left(\sigma_{i}\right)$.

- Matlab: $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{sVD}(\mathrm{F})$;

How can we tell if a given filter F is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$
F=\mathbf{U} \Sigma \mathbf{V}^{T}=\sum_{i} \sigma_{i} u_{i} v_{i}^{T}
$$

with $\Sigma=\operatorname{diag}\left(\sigma_{i}\right)$.

- Matlab: $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{SVD}(\mathrm{F})$;
- $\sqrt{\sigma_{1}} \mathbf{u}_{1}$ and $\sqrt{\sigma_{1}} \mathbf{v}_{1}^{T}$ are the vertical and horizontal filter.
[Source: R. Urtasun]

Summary - Stuff You Should Know

- Correlation: Slide a filter across image and compare (via dot product)
- Convolution: Flip the filter to the right and down and do correlation
- Smooth image with a Gaussian kernel: bigger σ means more blurring
- Some filters (like Gaussian) are separable: you can filter faster. First apply 1D convolution to each row, followed by another 1D conv. to each column
- Applying first a Gaussian filter with σ_{1} and then another Gaussian with σ_{2} is the same as applying one Gaussian filter with $\sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$

Functions

Python functions:

- SCIPY.NDIMAGE.CORRELATE: correlation
- SCIPY.NDIMAGE.CONVOLVE: convolution
- Many filters available: https://docs.scipy.org/doc/scipy-0.15.1/ reference/ndimage.html\#module-scipy.ndimage.filters

Matlab functions:

- imFILTER: can do both correlation and convolution
- CORR2, FILTER2: correlation, NORMXCORR2 normalized correlation
- CONV2: does convolution
- FSPECIAL: creates special filters including a Gaussian

Edges

- What does blurring take away?

[Source: S. Lazebnik]

Next time:

 Edge Detection

 Edge Detection}

