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Object Detection

The goal of object detection is to localize objects in an image and tell their
class

Localization: place a tight bounding box around object

Most approaches find only objects of one or a few specific classes, e.g. car
or cow
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized

into three main types:

Find interest points, followed by Hough voting
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Interest Point Based Approaches

Compute interest points (e.g., Harris corner detector is a popular choice)

Vote for where the object could be given the content around interest points
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized

into three main types:

Find interest points, followed by Hough voting

Sliding windows: “slide” a box around image and classify each image crop

inside a box (contains object or not?)

Sanja Fidler CSC420: Intro to Image Understanding 5 / 81



Sliding Window Approaches

Slide window and ask a classifier: “Is sheep in window or not?”

0.1
confidence

[Slide: R. Urtasun]
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Sliding Window Approaches

Slide window and ask a classifier: “Is sheep in window or not?”
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Sliding Window Approaches
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Sliding Window Approaches

Slide window and ask a classifier: “Is sheep in window or not?”
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Sliding Window Approaches

Slide window and ask a classifier: “Is sheep in window or not?”
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Sliding Window Approaches

Slide window and ask a classifier: “Is sheep in window or not?”
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized

into three main types:

Find interest points, followed by Hough voting

Sliding windows: “slide” a box around image and classify each image crop

inside a box (contains object or not?)

Generate region (object) proposals, and classify each region
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Region Proposal Based Approaches

Group pixels into object-like regions
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Region Proposal Based Approaches

Generate many different regions
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Region Proposal Based Approaches

The hope is that at least a few will cover real objects

Sanja Fidler CSC420: Intro to Image Understanding 8 / 81



Region Proposal Based Approaches

The hope is that at least a few will cover real objects

Sanja Fidler CSC420: Intro to Image Understanding 8 / 81



Region Proposal Based Approaches

Select a region
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Region Proposal Based Approaches

Crop out an image patch around it, throw to classifier (e.g., Neural Net)
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Region Proposal Based Approaches

Do this for every region
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized

into three main types:

Find interest points, followed by Hough voting ← Let’s first look at

one example method for this

Sliding windows: “slide” a box around image and classify each image crop

inside a box (contains object or not?)

Generate region (object) proposals, and classify each region

Sanja Fidler CSC420: Intro to Image Understanding 9 / 81



Object Detection via Hough Voting:

Implicit Shape Model

B. Leibe, A. Leonardis, B. Schiele

Robust Object Detection with Interleaved Categorization and

Segmentation

IJCV, 2008
Paper: http://www.vision.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf
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Start with Simple: Line Detection

How can I find lines in this image?

[Source: K. Grauman]
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Hough Transform

Idea: Voting (Hough Transform)

Voting is a general technique where we let the features vote for all models
that are compatible with it.

Cycle through features, cast votes for model parameters.
Look for model parameters that receive a lot of votes.

[Source: K. Grauman]
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Hough Transform: Line Detection

Hough space: parameter space

Connection between image (x , y) and Hough (m, b) spaces

A line in the image corresponds to a point in Hough space
What does a point (x0, y0) in the image space map to in Hough space?

[Source: S. Seitz]
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Hough Transform: Line Detection

Hough space: parameter space

Connection between image (x , y) and Hough (m, b) spaces

A line in the image corresponds to a point in Hough space
A point in image space votes for all the lines that go through this
point. This votes are a line in the Hough space.

[Source: S. Seitz]
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Hough Transform: Line Detection

Hough space: parameter space

Two points: Each point corresponds to a line in the Hough space

A point where these two lines meet defines a line in the image!

[Source: S. Seitz]
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Hough Transform: Line Detection

Hough space: parameter space

Vote with each image point

Find peaks in Hough space. Each peak is a line in the image.

[Source: S. Seitz]
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Hough Transform: Line Detection

Issues with usual (m, b) parameter space: undefined for vertical lines

A better representation is a polar representation of lines

[Source: S. Seitz]
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Example Hough Transform

With the parameterization x cos θ + y sin θ = d

Points in picture represent sinusoids in parameter space

Points in parameter space represent lines in picture

Example 0.6x + 0.4y = 2.4, Sinusoids intersect at d = 2.4, θ = 0.9273

[Source: M. Kazhdan, slide credit: R. Urtasun]
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Hough Transform: Line Detection

Hough Voting algorithm

[Source: S. Seitz]
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Hough Transform: Circle Detection

What about circles? How can I fit circles around these coins?
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Hough Transform: Circle Detection

Assume we are looking for a circle of known radius r

Circle: (x − a)2 + (y − b)2 = r2

Hough space (a, b): A point (x0, y0) maps to
(a− x0)2 + (b − y0)2 = r2 → a circle around (x0, y0) with radius r

Each image point votes for a circle in Hough space

[Source: H. Rhody]
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Hough Transform: Circle Detection

What if we don’t know r?

Hough space: ?

[Source: K. Grauman]
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Hough Transform: Circle Detection

What if we don’t know r?

Hough space: conics

[Source: K. Grauman]
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Hough Transform: Circle Detection

Find the coins

[Source: K. Grauman]
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Hough Transform: Circle Detection

Iris detection

[Source: K. Grauman]
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Generalized Hough Voting

Hough Voting for general shapes

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980

[Source: K. Grauman]
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Implicit Shape Model

Implicit Shape Model adopts the idea of voting

Basic idea:

Find interest points in an image

Match patch around each interest point to a training patch

Vote for object center given that training instance
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Implicit Shape Model: Basic Idea

Vote for object center

Sanja Fidler CSC420: Intro to Image Understanding 28 / 81



Implicit Shape Model: Basic Idea

Vote for object center

Sanja Fidler CSC420: Intro to Image Understanding 28 / 81



Implicit Shape Model: Basic Idea

Vote for object center

Sanja Fidler CSC420: Intro to Image Understanding 28 / 81



Implicit Shape Model: Basic Idea

Vote for object center

Sanja Fidler CSC420: Intro to Image Understanding 28 / 81
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Implicit Shape Model: Basic Idea

Find the patches that produced the peak
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Implicit Shape Model: Basic Idea

Place a box around these patches → objects!
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Implicit Shape Model: Basic Idea

Really easy. Only one problem... Would be slow... How do we make it fast?
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Implicit Shape Model: Basic Idea

Visual vocabulary (we saw this for retrieval)

Compare each patch to a small set of visual words (clusters)
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Implicit Shape Model: Basic Idea

Training: Getting the vocabulary

Sanja Fidler CSC420: Intro to Image Understanding 28 / 81



Implicit Shape Model: Basic Idea

Find interest points in each training image
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Implicit Shape Model: Basic Idea

Collect patches around each interest point
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Implicit Shape Model: Basic Idea

Collect patches across all training examples
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Implicit Shape Model: Basic Idea

Cluster the patches to get a small set of “representative” patches
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Implicit Shape Model: Training

Represent each training patch with the closest visual word.

Record the displacement vectors for each word across all training examples.

Training image 
Visual codeword with 

displacement vectors 

[Leibe et al. IJCV 2008]
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Implicit Shape Model: Test

At test times detect interest points

Assign each patch around interest point to closes visual word

Vote with all displacement vectors for that word

[Source: B. Leibe]
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Recognition Pipeline

[Source: B. Leibe]
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Recognition Summary

Apply interest points and extract features around selected locations.

Match those to the codebook.

Collect consistent configurations using Generalized Hough Transform.

Each entry votes for a set of possible positions and scales in continuous
space.

Extract maxima in the continuous space using Mean Shift.

Refinement can be done by sampling more local features.

[Source: R. Urtasun]
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Example

Original image 

[Source: B. Leibe, credit: R. Urtasun]
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Example

Interest points 

[Source: B. Leibe, credit: R. Urtasun]
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Example

Matched patches 

[Source: B. Leibe, credit: R. Urtasun]
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Example

Voting space

[Source: B. Leibe, credit: R. Urtasun]
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Example

1st hypothesis 

[Source: B. Leibe, credit: R. Urtasun]
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Example

2nd hypothesis 

[Source: B. Leibe, credit: R. Urtasun]
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Example

3rd hypothesis 

[Source: B. Leibe, credit: R. Urtasun]

Sanja Fidler CSC420: Intro to Image Understanding 33 / 81



The CNN Era

[Slide credit: Renjie Liao]
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Deep Object Detection

Sanja Fidler CSC420: Intro to Image Understanding 35 / 81



RCNN: Regions with CNN Features

[Slide credit: Ross Girshick]
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Training
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Training
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Training
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RCNN: Performance

Sanja Fidler CSC420: Intro to Image Understanding 38 / 81



RCNN: Performance
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RCNN Pipeline

[Slide credit: Ross Girshick]
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Object Detection
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Object Detection
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Spatial Pyramid Pooling
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Spatial Pyramid Pooling
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SPP-Net

[Slide credit: Ross Girshick]
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SPP-Net: Performance
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Object Detection
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Object Detection
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Fast R-CNN
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Fast R-CNN: Performance
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Object Detection
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Faster R-CNN
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Region Proposal Network (RPN)
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Region Proposal Network (RPN)
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Faster R-CNN: Performance
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Recognition Tasks
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Mask-RCNN
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Segmentation via FCN

Sanja Fidler CSC420: Intro to Image Understanding 58 / 81



Mask-RCNN
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Mask-RCNN: Multiple Heads

Loss for each proposal is:
L = L cls+L box +L mask
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Mask-RCNN: RoI Align
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Mask-RCNN: RoI Align
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Mask-RCNN: RoI Align
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Mask-RCNN: RoI Align
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Mask-RCNN: Mask Head
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Mask-RCNN: Mask Head
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Mask-RCNN: Detection Results

Sanja Fidler CSC420: Intro to Image Understanding 67 / 81



Mask-RCNN: Instance Segmentation
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Mask-RCNN: Instance Segmentation
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Mask-RCNN: Pose
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Object Detection
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Efficient Object Detection
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Car Example

[Slide credit: Joseph Chet Redmon]
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Car Example

[Slide credit: Joseph Chet Redmon]
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Real Time Object Detection?
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YOLO: You Only Look Once

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR’16]
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YOLO: Output Parametrization

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR’16]
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YOLO Limitations

Small objects

Objects with different shapes and sizes

Occluded objects
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SSD: Single Shot MultiBox Detector

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV’16]Sanja Fidler CSC420: Intro to Image Understanding 78 / 81



SSD: Single Shot MultiBox Detector

SSD: YOLO + default box shape + multi-scale

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV’16]
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SSD: Single Shot MultiBox Detector

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV’16]
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Thank you and good luck!
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