Object Detection

Object Detection

- The goal of object detection is to localize objects in an image and tell their class
- Localization: place a tight bounding box around object
- Most approaches find only objects of one or a few specific classes, e.g. car or cow

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

• Find interest points, followed by Hough voting

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

- Find interest points, followed by Hough voting
- **Sliding windows**: "slide" a box around image and classify each image crop inside a box (contains object or not?)

• Slide window and ask a classifier: "Is sheep in window or not?"

0.1 confidence

• Slide window and ask a classifier: "Is sheep in window or not?"

-0.2

• Slide window and ask a classifier: "Is sheep in window or not?"

-0.1

• Slide window and ask a classifier: "Is sheep in window or not?"

0.1

• Slide window and ask a classifier: "Is sheep in window or not?"

. . . 1.5

• • •

[Slide: R. Urtasun]

• Slide window and ask a classifier: "Is sheep in window or not?"

• Slide window and ask a classifier: "Is sheep in window or not?"

6/81

• Slide window and ask a classifier: "Is sheep in window or not?"

6/81

• Slide window and ask a classifier: "Is sheep in window or not?"

0.1 confidence-0.2 -0.1 0.1 ... 1.5 ... 0.5 0.4 0.3

[Slide: R. Urtasun]

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

- Find interest points, followed by Hough voting
- Sliding windows: "slide" a box around image and classify each image crop inside a box (contains object or not?)
- Generate region (object) proposals, and classify each region

• Group pixels into object-like regions

• Group pixels into object-like regions

• Group pixels into object-like regions

• Generate many different regions

• Generate many different regions

• Generate many different regions

• The hope is that at least a few will cover real objects

• The hope is that at least a few will cover real objects

• Select a region

• Crop out an image patch around it, throw to classifier (e.g., Neural Net)

classifier ``dog" or not?

confidence: -2.5

• Do this for every region

• Do this for every region

• Do this for every region

confidence: 1.5

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

- **Sliding windows**: "slide" a box around image and classify each image crop inside a box (contains object or not?)
- Generate region (object) proposals, and classify each region

Object Detection via Hough Voting: Implicit Shape Model

B. Leibe, A. Leonardis, B. Schiele

Robust Object Detection with Interleaved Categorization and

Segmentation

IJCV, 2008

Paper: http://www.vision.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf

Start with Simple: Line Detection

• How can I find lines in this image?

[Source: K. Grauman]

Sanja Fidler

Hough Transform

- Idea: Voting (Hough Transform)
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.

[Source: K. Grauman]
• Hough space: parameter space

- Connection between image (x, y) and Hough (m, b) spaces
 - A line in the image corresponds to a point in Hough space
 - What does a point (x_0, y_0) in the image space map to in Hough space?

[Source: S. Seitz]

• Hough space: parameter space

- Connection between image (x, y) and Hough (m, b) spaces
 - A line in the image corresponds to a point in Hough space
 - A point in image space votes for all the lines that go through this point. This votes are a line in the Hough space.
- [Source: S. Seitz]

• Hough space: parameter space

Two points: Each point corresponds to a line in the Hough space
A point where these two lines meet defines a line in the image!
[Source: S. Seitz]

• Hough space: parameter space

- Vote with each image point
- Find peaks in Hough space. Each peak is a line in the image.

[Source: S. Seitz]

- Issues with usual (m, b) parameter space: undefined for vertical lines
- A better representation is a polar representation of lines

d: perpendicular distance from line to origin

 $\ensuremath{\boldsymbol{\theta}}$: angle the perpendicular makes with the x-axis

 $x\cos\theta - y\sin\theta = d$

Point in image space \rightarrow sinusoid segment in Hough space

[Source: S. Seitz]

Example Hough Transform

With the parameterization $x \cos \theta + y \sin \theta = d$

- Points in picture represent sinusoids in parameter space
- Points in parameter space represent lines in picture
- Example 0.6x + 0.4y = 2.4, Sinusoids intersect at d = 2.4, $\theta = 0.9273$

[Source: M. Kazhdan, slide credit: R. Urtasun]

• Hough Voting algorithm

Using the polar parameterization:

 $x\cos\theta - y\sin\theta = d$

Basic Hough transform algorithm

1. Initialize H[d, θ]=0 2. for each edge point I[x,y] in the image for θ = [θ_{min} to θ_{max}] // some quantization $d = x \cos \theta - y \sin \theta$ H[d, θ] += 1

3. Find the value(s) of (d, $\theta)$ where H[d, $\theta]$ is maximum

4. The detected line in the image is given by $d = x \cos\theta - y \sin\theta$

[Source: S. Seitz]

• What about circles? How can I fit circles around these coins?

Assume we are looking for a circle of known radius r

• Circle:
$$(x - a)^2 + (y - b)^2 = r^2$$

- Hough space (a, b): A point (x_0, y_0) maps to $(a - x_0)^2 + (b - y_0)^2 = r^2 \rightarrow a$ circle around (x_0, y_0) with radius r
- Each image point votes for a circle in Hough space

Each point in geometric space (left) generates a circle in parameter space (right). The circles in parameter space intersect at the (a, b) that is the center in geometric space.

[Source: H. Rhody]

What if we don't know r?

• Hough space: ?

[Source: K. Grauman]

What if we don't know r?

• Hough space: conics

[Source: K. Grauman]

[Source: K. Grauman]

Iris detection

Gradient+threshold

Hough space (fixed radius)

Max detections

[Source: K. Grauman]

Generalized Hough Voting

• Hough Voting for general shapes

Offline procedure:

At each boundary point, compute displacement vector: $\mathbf{r} = \mathbf{a} - \mathbf{p}_{i}$.

Store these vectors in a table indexed by gradient orientation θ .

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980

Implicit Shape Model

- Implicit Shape Model adopts the idea of voting
- Basic idea:
 - Find interest points in an image
 - Match patch around each interest point to a training patch
 - Vote for object center given that training instance

Vote for object center

vote for center of object

• Vote for object center

vote for center of object

• Vote for object center

vote for center of object

Vote for object center

of course some wrong votes are bound to happen...

Vote for object center

But that's ok. We want only **peaks** in voting space.

• Find the patches that produced the peak

Find patches that voted for the peaks (back-projection).

• Place a box around these patches \rightarrow objects!

Find full objects based on the back-projected patches.

• Really easy. Only one problem... Would be slow... How do we make it fast?

we need to match a patch around each yellow + to all patches in all training images $\ \rightarrow\$ SLOW

Sanja Fidler

CSC420: Intro to Image Understanding

- Visual vocabulary (we saw this for retrieval)
- Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

• Training: Getting the vocabulary

training image

• Find interest points in each training image

training image

detect interest points (e.g. Harris)

• Collect patches around each interest point

training image

extract an image patch around each interest point

• Collect patches across all training examples

training images

collect all patches

• Cluster the patches to get a small set of "representative" patches

training images

- cluster the patches to get a few ``representative'' patches
- each cluster represented as the average of all patches that belong to the cluster

collect all patches

visual codebook

Implicit Shape Model: Training

- Represent each training patch with the closest visual word.
- Record the displacement vectors for each word across all training examples.

Training image

Visual codeword with displacement vectors

[Leibe et al. IJCV 2008]

Implicit Shape Model: Test

- At test times detect interest points
- Assign each patch around interest point to closes visual word
- Vote with all displacement vectors for that word

[Source: B. Leibe]

Recognition Pipeline

[Source: B. Leibe]

Recognition Summary

- Apply interest points and extract features around selected locations.
- Match those to the codebook.
- Collect consistent configurations using Generalized Hough Transform.
- Each entry votes for a set of possible positions and scales in continuous space.
- Extract maxima in the continuous space using Mean Shift.
- Refinement can be done by sampling more local features.

[Source: R. Urtasun]

Original image

[Source: B. Leibe, credit: R. Urtasun]

Interest points

[Source: B. Leibe, credit: R. Urtasun]

Example

Matched patches

[Source: B. Leibe, credit: R. Urtasun]

Voting space

1st hypothesis

2nd hypothesis

3rd hypothesis

The CNN Era

[Slide credit: Renjie Liao]

Deep Object Detection

https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html

RCNN: Regions with CNN Features

[Slide credit: Ross Girshick]

Sanja Fidler

Training

Training

Training

RCNN: Performance

VOC2007

- DPM v5 (Girshick et al. 2011) 33.7%
- Regionlets (Wang et al. 2013) 41.7%
 - R-CNN (AlexNet) 54.2%
 - R-CNN (AlexNet) + BB 58.5%
 - R-CNN (VGGNet) 62.2%
 - R-CNN (VGGNet) + BB 66.0%

RCNN: Performance

VOC2007

- DPM v5 (Girshick et al. 2011) 33.7%
- Regionlets (Wang et al. 2013) 41.7%
 - R-CNN (AlexNet) 54.2%
 - R-CNN (AlexNet) + BB 58.5%
 - R-CNN (VGGNet) 62.2%
 - R-CNN (VGGNet) + BB 66.0%

R-CNN (VGGNet)	Time
Train	84 hours
Test	47 s/im

RCNN Pipeline

[Slide credit: Ross Girshick]

Sanja Fidler

Object Detection

Getting Proposals Feature Extraction Classifier

Object Detection

Getting Proposals Feature Extraction Classifier

Spatial Pyramid Pooling

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014

Spatial Pyramid Pooling

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014

SPP-Net

[Slide credit: Ross Girshick]

Sanja Fidler

SPP-Net: Performance

	VOC2007	Speed
R-CNN (ZFNet)	59.2%	14.5 s/im
R-CNN (VGGNet)	66.0%	47.0 s/im
SPP (ZFNet)	59.2%	0.38 s/im
SPP (VGGNet)	63.1%	2.3 s/im

Object Detection

Getting Proposals Feature Extraction Classifier

SPP

Object Detection

Getting Proposals Feature Extraction Classifier

Fast R-CNN

Fast R-CNN: Performance

	VOC2007
SPPNet BB	63.1%
R-CNN BB	66.0%
Fast RCNN	66.9%
Fast RCNN (07+12)	70.0%

Object Detection

Getting Proposals Feature Extraction

Classifier

(e.g. selective search)

Faster R-CNN

Ren S, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS2015

Region Proposal Network (RPN)

- · Sliding window style
- Multi-scale predictions on fix-sized window for efficiency (take advantage of the large receptive field of CNN features)
- Same loss as R-CNN (cls+bbox)

									512^2 , 1:2
proposal	188×111	113×114	70×92	416×229	261×284	174×332	768×437	499×501	355×715

Region Proposal Network (RPN)

Figure 2: Recall vs. IoU overlap ratio on the PASCAL VOC 2007 test set.

• Fewer and better proposals not only bring speedup, but also detection performance boost.

method	# proposals	data	mAP (%)	time (ms)
SS	2k	07	66.9	1830
SS	2k	07+12	70.0	1830
RPN+VGG, unshared	300	07	68.5	342
RPN+VGG, shared	300	07	69.9	196
RPN+VGG, shared	300	07+12	73.2	196

Recognition Tasks

Mask-RCNN

Segmentation via FCN

Mask-RCNN

• Loss for each proposal is: $L = L_cls + L_box + L_mask$

Mask-RCNN: Rol Align

Mask-RCNN: Rol Align

Mask-RCNN: Rol Align

Mask-RCNN: Rol Align

	align?	bilinear?	agg.	AP	AP ₅₀	AP ₇₅
RoIPool [12]			max	26.9	48.8	26.4
RoIWarp [10]		✓	max	27.2	49.2	27.1
<i>Kolwarp</i> [10]		 ✓ 	ave	27.1	48.9	27.1
RoIAlign	1	1	max	30.2	51.0	31.8
KolAlign	 ✓ 	 ✓ 	ave	30.3	51.2	31.5

(a) RoIAlign (ResNet-50-C4) comparison

	AP	AP_{50}	AP_{75}	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	_
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9	-
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4	
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5	-

Mask-RCNN: Mask Head

Mask-RCNN: Mask Head

	backbone	APbb	AP_{50}^{bb}	AP_{75}^{bb}	AP_S^{bb}	$\mathrm{AP}^{\mathrm{bb}}_M$	AP_L^{bb}
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [41]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [39]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

Mask-RCNN: Instance Segmentation

Mask-RCNN: Instance Segmentation

	training data	AP[val]	AP	AP_{50}	person	rider	car	truck	bus	train	mcycle	bicycle
InstanceCut [23]	fine+coarse	15.8	13.0	27.9	10.0	8.0	23.7	14.0	19.5	15.2	9.3	4.7
DWT [4]	fine	19.8	15.6	30.0	15.1	11.7	32.9	17.1	20.4	15.0	7.9	4.9
SAIS [17]	fine	-	17.4	36.7	14.6	12.9	35.7	16.0	23.2	19.0	10.3	7.8
DIN [3]	fine+coarse	-	20.0	38.8	16.5	16.7	25.7	20.6	30.0	23.4	17.1	10.1
SGN [29]	fine+coarse	29.2	25.0	44.9	21.8	20.1	39.4	24.8	33.2	30.8	17.7	12.4
Mask R-CNN	fine	31.5	26.2	49.9	30.5	23.7	46.9	22.8	32.2	18.6	19.1	16.0
Mask R-CNN	fine+COCO	36.4	32.0	58.1	34.8	27.0	49.1	30.1	40.9	30.9	24.1	18.7

Mask-RCNN: Pose

Object Detection

Getting Proposals Feature Extraction Classifier

Faster R-CNN

Efficient Object Detection

66.0% —> 73.2% 47 s/im —> 0.2 s/im

	Pascal 2007 mAP	Speed		
DPM v5	33.7	.07 FPS	14 s/img	
R-CNN	66.0	.05 FPS	20 s/img	

1/3 Mile, 1760 feet

[Slide credit: Joseph Chet Redmon]

Sanja Fidler

	Pascal 2007 mAP	Speed			
DPM v5	33.7	.07 FPS	14 s/img		
R-CNN	66.0	.05 FPS	20 s/img		
Fast R-CNN	70.0	.5 FPS	2 s/img		

[Slide credit: Joseph Chet Redmon]

Sanja Fidler

	Pascal 2007 mAP	Speed		
DPM v5	33.7	.07 FPS	14 s/img	
R-CNN	66.0	.05 FPS	20 s/img	
Fast R-CNN	70.0	.5 FPS	2 s/img	
Faster R-CNN	73.2	7 FPS	140 ms/img	

[Slide credit: Joseph Chet Redmon]

Real Time Object Detection?

YOLO: You Only Look Once

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR'16]

YOLO: Output Parametrization

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 tensor = **1470 outputs**

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR'16]

YOLO Limitations

- Small objects
- Objects with different shapes and sizes
- Occluded objects

SSD: Single Shot MultiBox Detector

SSD: Single Shot MultiBox Detector

• SSD: YOLO + default box shape + multi-scale

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV'16]

SSD: Single Shot MultiBox Detector

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV'16]

Thank you and good luck!