Object Detection
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Object Detection

@ The goal of object detection is to localize objects in an image and tell their
class

@ Localization: place a tight bounding box around object

@ Most approaches find only objects of one or a few specific classes, e.g. car
or cow
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points

* Is this part of cow?
* Where on cow have we
see this?
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Interest Point Based Approaches
@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points
training image of cow
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Interest Point Based Approaches

@ Compute interest points (e.g., Harris corner detector is a popular choice)

@ Vote for where the object could be given the content around interest points

training image of cow

The object is probably somewhere here
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting

@ Sliding windows: “slide” a box around image and classify each image crop
inside a box (contains object or not?)
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Sliding Window Approaches

@ Slide window and ask a classifier: “Is sheep in window or not?”

0.1
confidence
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Sliding Window Approaches

@ Slide window and ask a classifier: “Is sheep in window or not?”
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Sliding Window Approaches

@ Slide window and ask a classifier: “Is sheep in window or not?”

Slide: R. Urtasun]
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Sliding Window Approaches

@ Slide window and ask a classifier: “Is sheep in window or not?”
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting

@ Sliding windows: “slide” a box around image and classify each image crop
inside a box (contains object or not?)

@ Generate region (object) proposals, and classify each region
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Region Proposal Based Approaches

@ Group pixels into object-like regions
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Region Proposal Based Approaches

@ Group pixels into object-like regions
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Region Proposal Based Approaches

@ Group pixels into object-like regions
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Region Proposal Based Approaches

@ Generate many different regions
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Region Proposal Based Approaches

@ Generate many different regions
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Region Proposal Based Approaches

@ Generate many different regions
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Region Proposal Based Approaches

@ The hope is that at least a few will cover real objects
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Region Proposal Based Approaches

@ The hope is that at least a few will cover real objects
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Region Proposal Based Approaches

@ Select a region

[E=RABANCO
X:) Searme Divisios
o G D

Sanja Fidler CSC420: Intro to Image Understanding



Region Proposal Based Approaches

@ Crop out an image patch around it, throw to classifier (e.g., Neural Net)

W6-634-3000 classifier
“dog” or not?

confidence: -2.5
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Region Proposal Based Approaches

@ Do this for every region

Sanja Fidler CSC420: Intro to Image Understanding 8/81



Region Proposal Based Approaches

@ Do this for every region
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Region Proposal Based Approaches

@ Do this for every region

classifier
“dog” or not?

confidence: 1.5
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Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized
into three main types:

@ Find interest points, followed by Hough voting < Let’s first look at
one example method for this

@ Sliding windows: “slide” a box around image and classify each image crop
inside a box (contains object or not?)

@ Generate region (object) proposals, and classify each region
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Object Detection via Hough Voting:
Implicit Shape Model

B. Leibe, A. Leonardis, B. Schiele
Robust Object Detection with Interleaved Categorization and
Segmentation

[JCV, 2008

Pa PEer: nttp://www.vision.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf
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Start with Simple: Line Detection

@ How can | find lines in this image?

[Source: K. Grauman]
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Hough Transform

@ Idea: Voting (Hough Transform)

@ Voting is a general technique where we let the features vote for all models
that are compatible with it.

o Cycle through features, cast votes for model parameters.
e Look for model parameters that receive a lot of votes.

[Source: K. Grauman]
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Hough Transform: Line Detection

@ Hough space: parameter space

y 1 bt
y = mox + bg
—
bo °
X my m
image space Hough (parameter) space

@ Connection between image (x,y) and Hough (m, b) spaces

@ A line in the image corresponds to a point in Hough space
o What does a point (xo, yo) in the image space map to in Hough space?

[Source: S. Seitz]

Sanja Fidler CSC420: Intro to Image Understanding



Hough Transform: Line Detection

@ Hough space: parameter space

y b
Yo ° b= —zqogm + yg
—_—
Xo XV fﬁ
image space Hough (parameter) space

@ Connection between image (x, y) and Hough (m, b) spaces

@ A line in the image corresponds to a point in Hough space
e A point in image space votes for all the lines that go through this
point. This votes are a line in the Hough space.

[Source: S. Seitz]
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Hough Transform: Line Detection

@ Hough space: parameter space

y b
© (x4, 1)
Yo ° b= —zom +yo
(Xo, Yo) —
b=-x;m+y,
Xo X m
image space Hough (parameter) space

@ Two points: Each point corresponds to a line in the Hough space

@ A point where these two lines meet defines a line in the image!

[Source: S. Seitz]
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Hough Transform: Line Detection

@ Hough space: parameter space

y 1 b
5} ° ~ L
—_— == .|
A [~
X m
image space Hough (parameter) space

@ Vote with each image point

@ Find peaks in Hough space. Each peak is a line in the image.

[Source: S. Seitz]
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Hough Transform: Line Detection

@ Issues with usual (m, b) parameter space: undefined for vertical lines

@ A better representation is a polar representation of lines

Image columns

[0,0] X d: perpendicular distance
0) from line to origin
d 0: angle the perpendicular
y makes with the x-axis

Image rows

xcosO — ysinf =d

Point in image space > sinusoid segment in Hough space

[Source: S. Seitz]
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Example Hough Transform

With the parameterization xcosf + ysinf = d
@ Points in picture represent sinusoids in parameter space
@ Points in parameter space represent lines in picture

@ Example 0.6x + 0.4y = 2.4, Sinusoids intersect at d = 2.4, § = 0.9273
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[Source: M. Kazhdan, slide credit: R. Urtasun]
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Hough Transform: Line Detection

@ Hough Voting algorithm

Using the polar parameterization:
xcosO —ysinO =d

H: accumulator array
(vates)

Basic Hough transform algorithm d
1. Initialize H[d, 6]=0
2. for each edge point I[x,y] in the image
for 0 = [0in t0 O1ax ] // some quantization

d = xcosO — ysinf
H[d, 6] += 1

3. Find the value(s) of (d, 6) where H[d, 6] is maximum
4. The detected line in the image is given by 7 = xcos6 - ysinf

[Source: S. Seitz]
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Hough Transform: Circle Detection

@ What about circles? How can | fit circles around these coins?
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Hough Transform: Circle Detection

Assume we are looking for a circle of known radius r
e Circle: (x —a)2+ (y — b)?2=r?
@ Hough space (a, b): A point (xp, yo) maps to
(a—x0)%>+ (b—y0)?>=r? — acircle around (o, yo) with radius r
@ Each image point votes for a circle in Hough space

A A

N,
>

Each point in geometric space (left) generates a circle in parameter space (right). The circles in
parameter space intersect at the (a, b) that is the center in geometric space.

[Source: H. Rhody]
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Hough Transform: Circle Detection

What if we don't know r?
@ Hough space: ?

A r
Y.
?
b
0
Image space."""‘ Hough space

[Source: K. Grauman]
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Hough Transform: Circle Detection

What if we don't know r?

@ Hough space: conics

A r
M

@) \/‘ b

(x,y)

Image space o Hough space

[Source: K. Grauman]
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Hough Transform: Circle Detection

@ Find the coins

Original Votes: Penny

[Source: K. Grauman]
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Hough Transform: Circle Detection

@ lIris detection

: rf-‘: @
m L.
Ly

Gradient+threshold Hough space Max detections
(fixed radius)

[Source: K. Grauman]
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Generalized Hough Voting

@ Hough Voting for general shapes

A
v, Offline procedure:

At each boundary point,
compute displacement
vector: r = a - p;.

Model shape .
Store these vectors in a
£ / table indexed by gradient
0 \ orientation 0.

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980
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Implicit Shape Model

@ Implicit Shape Model adopts the idea of voting
@ Basic idea:

e Find interest points in an image
e Match patch around each interest point to a training patch
e Vote for object center given that training instance
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Implicit Shape Model: Basic Idea

@ Vote for object center

training image of cow

¥ +++++*+++t-1+ *+++f
T S T S o
& gt il

o

v

vote for center of object
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Implicit Shape Model: Basic Idea

@ Vote for object center

training image of cow
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Implicit Shape Model: Basic Idea

@ Vote for object center

Sanja Fidler

training image of cow
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Implicit Shape Model: Basic Idea

@ Vote for object center

training image of cow
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Implicit Shape Model: Basic Idea

@ Vote for object center
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But that’s ok. We want only peaks in voting space.
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Implicit Shape Model: Basic Idea

@ Find the patches that produced the peak

TR

+, 1y
ot o

++ 4

LT

4 A
T S 1 S o
b w4 &

o

Find patches that voted for the peaks (back-projection).
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Implicit Shape Model: Basic Idea

@ Place a box around these patches — objects!
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Find full objects based on the back-projected patches.
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Implicit Shape Model: Basic Idea

@ Really easy. Only one problem... Would be slow... How do we make it fast?

we need to match a patch around each yellow + to
all patches in all training images — SLOW
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Implicit Shape Model: Basic Idea

@ Visual vocabulary (we saw this for retrieval)

@ Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!
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Implicit Shape Model: Basic Idea

@ Training: Getting the vocabulary

training image
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Implicit Shape Model: Basic Idea

@ Find interest points in each training image

training image

detect interest points (e.g. Harris)
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Implicit Shape Model: Basic Idea

@ Collect patches around each interest point

training image

extract an image patch around each
interest point
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Implicit Shape Model: Basic Idea

@ Collect patches across all training examples

training images collect all patches
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Implicit Shape Model: Basic Idea

@ Cluster the patches to get a small set of “representative” patches

training images collect all patches
= AREFE =R -nEEE
B RSN aRSEoE

bl 4. To Y PrIE} e el o Lo
ihi-=-r:HB"-m“i.=ll

i-ﬂlﬁﬂ':«allﬂ
TENBEx ARSYEAAADS
_!u-HHUHIISIHI1HESI

visual codebook

* cluster the patches to get a few
“representative’’ patches

* each cluster represented as the
average of all patches that belong to
the cluster

ViZiaNEm EE R

clusters

Sanja Fidler CSC420: Intro to Image Understanding



Implicit Shape Model: Training

@ Represent each training patch with the closest visual word.

@ Record the displacement vectors for each word across all training examples.

- : Visual codeword with
Training image displacement vectors

[Leibe et al. 1JCV 2008]
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Implicit Shape Model: Test

@ At test times detect interest points
@ Assign each patch around interest point to closes visual word

@ Vote with all displacement vectors for that word

[Source: B. Leibe]
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Recognition Pipeline

Original Image Interest Points Matched Codebook Probabilistic
Entries Vating

l#.

. .

LA 5

X
3D Voting Space
(continuous)

//

Refined Hypotheses Backprojected Backprojection
(optional) Hypotheses of Maxima

Segmentation

™.

[Source: B. Leibe]
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Recognition Summary

Apply interest points and extract features around selected locations.
Match those to the codebook.
Collect consistent configurations using Generalized Hough Transform.

Each entry votes for a set of possible positions and scales in continuous
space.

Extract maxima in the continuous space using Mean Shift.

Refinement can be done by sampling more local features.

[Source: R. Urtasun]
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Example

Original image

[Source: B. Leibe, credit: R. Urtasun]
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Example

+
+y K
gt

Gt

Interest points

[Source: B. Leibe, credit: R. Urtasun]
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Matched patches

[Source: B. Leibe, credit: R. Urtasun]
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Example

Voting space

[Source: B. Leibe, credit: R. Urtasun]
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15t hypothesis

[Source: B. Leibe, credit: R. Urtasun]
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2" hypothesis

[Source: B. Leibe, credit: R. Urtasun]
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3rd hypothesis

[Source: B. Leibe, credit: R. Urtasun]
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The CNN Era

80%

PASCALVOC A

= 70% A
s A
£ 60% Before deep convnets R-CNNv1
c
S A
‘G 50%
3 ( \
= A A
o 40% .
g A Using deep convnets
©
§ 30% A
< A

20%
& A
Q
£ 10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year

[Slide credit: Renjie Liao]
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Deep Object Detection

Object Detection
{2 Published: 09 Oct 2015 % Category: deep_learning
» Inside-Outside Net (ION)
+ G-CNN
Jump to... » HyperNet
« Leaderboard « MultiPathNet

Papers » CRAFT

. ultiBox * R-FCN

« DeepID-Net « PVANET

» NoC » GBD-Net

« DeepBox « Feature Pyramid Network (FPN)
» MR-CNN * YOLOv2

» Faster R-CNN]| « DSSD

« YOLO

« AttentionNet

« DenseBox

https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
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RCNN: Regions with CNN Features

1. Input 2. Extract region 3. Compute 4. Classify

image proposals (~2k) CNN features regions

[Slide credit: Ross Girshick]
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Training

1. Pre-train CNN for image classification

large auxiliary
dataset (ImageNet)
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Training
1. Pre-train CNN for image classification

large auxiliary
dataset (ImageNet)

2. Fine-tune CNN on target dataset
and task

(optional)

small target
dataset (PASCAL VOC)
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Training

1. Pre-train CNN for image classification

large auxiliary
dataset (ImageNet)

2. Fine-tune CNN on target dataset
and task

[ e e o)

small target
dataset (PASCAL VOC)

~2000 warped per class

windows / image
small target

dataset (PASCAL VOC)

Sanja Fidler CSC420: Intro to Image Understanding
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RCNN: Performance

VOC2007
DPM v5 (Girshick et al. 2011) 33.7%
Regionlets (Wang et al. 2013) 41.7%
R-CNN (AlexNet) 54.2%
R-CNN (AlexNet) + BB 58.5%
R-CNN (VGGNet) 62.2%
R-CNN (VGGNet) + BB 66.0%

Sanja Fidler
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RCNN: Performance

VOC2007

DPM v5 (Girshick et al. 2011) 33.7%

Regionlets (Wang et al. 2013) 41.7%

R-CNN (AlexNet) 54.2%

R-CNN (AlexNet) + BB 58.5%

R-CNN (VGGNet) 62.2%

R-CNN (VGGNet) + BB 66.0%
R-CNN (VGGNet) Time

Train 84 hours

Test 47 s/im
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RCNN Pipeline

Apply bounding-box regressors

Bbox reg || SVMs Classify regions with SVMs
Bbox reg || SVMs

Forward each region

ConvNet through ConvNet

ConvNet

ConvNet
onvte h Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

[Slide credit: Ross Girshick]
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Object Detection

P aeroplane? no.

erson? yes.
4 —
tvmonitor? no.

Getting Proposals  Feature Extraction Classifier
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Object Detection

Feature Extraction
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Spatial Pyramid Pooling

warp

image - p conv layers > fc layers > output

image - conv layers | » fc layers » output

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014
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Spatial Pyramid Pooling

fully-connected layers (fcg, fc;)

[pool3x3] [pool2x2] [pool1x1]
1§ type=pool type=pool type=pool
tixed-length representation pool=max pool=max
... S — inputs=conv5 il i onv5
: sizeX=5
stride=4 stride=6 stride=13
4x256-d
[fc6]

type=fc
outputs=4096
inputs=pool3x3,pool2x2,pool1x1

spatial pyramid pooling layer

feature maps of convs
(arbitrary size)

‘I convolutional layers
input image

Slide credit: K. He, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV2014
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SPP-Net

[Slide credit: Ross Girshick]
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Sanja Fidler

VOC2007 Speed
R-CNN (ZFNet) 59.2%  14.5s/im
R-CNN (VGGNet) 66.0% 47.0 s/im
SPP (ZFNet) 59.2% 0.38 s/im
SPP (VGGNet) 63.1% 2.3 s/im



Object Detection

Feature Extraction

SPP

Sanja Fidler CSC420: Intro to Image Understanding
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Object Detection

aeroplane? no.
9

> person? yes.
A :
tvmonitor? no.

Classifier
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Fast R-CNN

Totally end-to-end!

\ Log loss + smooth L1 loss ‘ Multi-task loss
A ¥ -
softmax m

NS A
FCs

2 15
A o

7 Trainable |

ConvNet
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VOC2007
SPPNet BB 63.1%
R-CNN BB 66.0%
Fast RCNN 66.9%
Fast RCNN (07+12) 70.0%
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Object Detection
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Faster R-CNN

classifier

Rol pooling

/
pmpoy

Region Proposal Network

feature maps

conv layers

Ren S, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. NIPS2015
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Region Proposal Network (RPN)

e N Ak i S k anchor boxes P .
<= © +  Sliding window style

cls layer ‘ ’ reg layer

* Multi-scale predictions on fix-sized

t intermediate layer

window for efficiency (take advantage of
the large receptive field of CNN features)

* Same loss as R-CNN (cls+bbox)

sliding window.

conv feature map
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Region Proposal Network (RPN)

300 proposals 1000 proposals 2000 proposals

loU
Figure 2: Recall vs. IoU overlap ratio on the PASCAL VOC 2007 test set.
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Faster R-CNN: Performance

* Fewer and better proposals not only bring speed-
up, but also detection performance boost.

# proposals mAP (%) time (ms)

66.9
07+12 70.0

RPN+VGG, unshared
RPN+VGG, shared
RPN+VGG, shared
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Recognition Tasks

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

: ; ; Jaml? =
GRASS, , DOG, DOG, CAT  DOG, DOG, CAT
N TREE:/SKY U\ o VRN o Y,
No objects, just pixels Single Object Multiple Object
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Mask-RCNN
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Segmentation via FCN

forward /inference

backward/learning
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Mask-RCNN

NI

RolAlign|

Faster R-CNN

class
— e

FCN on Rol
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Mask-RCNN: Multiple Heads

cls
Fest bbox
@ Loss for each proposal is: eal. reg
L =L cls+L_box+ L_mask
mask
Mask R-CNN
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Mask-RCNN: Rol Align

665/32 = 20.78

,800/32 =25 e bbox
. I softmax regressor
C N N o Rol FC
VGG16 P~ oot
20/7 = 2.86
Coordinate St s Coordinate 9uantized Coordinate
on image on feature map on Rol feature
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erstanding

CSC420: Intro to Image

Sanja Fidler

Mask-RCNN: Rol Align




Mask-RCNN: Rol Align

feat. map
L /] ; : :
i)l i - i fixed dimensional
bilineapife_el o e Rol output
interpolation
e o | o |o \
f i | \
| | ’ }
e o e |o /
o y
!o s | o
variable size Rol
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Mask-RCNN: Rol Align

align? | bilinear? | age. | AP APso  APrs
RolPool [12] max| 269 48.8 26.4

v |max| 272 492 271 .
RolWarp [10] v lawel 271 age 271 (a) RoTAlign (Re_sNet—50-C4)
RolAl v v |max| 302 510 318 comparison

oddEn sl ave| 303 512 315

AP AP5p APy | AP APYY APRS
RolPool | 23.6 465 216 | 282 527 269
RolAlign | 309 518 321 | 340 553 364
+7.3 +53 +105 | +58 +2.6 +9.5
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Mask Head
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Mask-RCNN: Mask Head

e

7x7
X256

7

14x14 |

Faster

R-CNN

w/ FPN [27]

—3 Class

71024 |j—’| 1024 \}

»|[14X%14 28x28

X256

2

X256 X256

L3 box

Sanja Fidler
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Mask-RCNN: Detection Results

backbone AP™  APEY  APRY | APY  APY, AP
Faster R-CNN+++ [19] ResNet-101-C4 34.9 55.9 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [27] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [21] | Inception-ResNet-v2 [41] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [39] Inception-ResNet-v2-TDM | 36.8 57.9 39.2 16.2 39.8 521
Faster R-CNN, RolAlign ResNet-101-FPN 373 59.6 40.3 19.8 40.2 48.8
Mask R-CNN ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN ResNeXt-101-FPN 39.8 62.3 43.4 221 43.2 51.2
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Mask-RCNN: Instance Segmentation
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Mask-RCNN: Instance Segmentation

training data AP [val] AP APg5q | person  rider car truck bus train  mcyele bicycle
InstanceCut [23] | fine + coarse 15.8 13.0 279 10.0 8.0 237 14.0 19.5 15.2 93 4.7
DWT [4] fine 19.8 15.6 30.0 15.1 11.7 329 17.1 204 15.0 79 49
SAIS [17] fine - 17.4 36.7 14.6 129 357 16.0 23.2 19.0 10.3 7.8
DIN [3] fine + coarse - 20.0 38.8 16.5 16.7 25.7 20.6 30.0 234 17.1 10.1
SGN [29] fine + coarse 29.2 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4
Mask R-CNN fine 315 26.2 49.9 30.5 23.7 46.9 228 322 18.6 19.1 16.0
Mask R-CNN fine +COCO 364 320 58.1 4.8 27.0 49.1 30.1 40.9 309 24.1 18.7
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Mask-RCNN: Pose
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Object Detection

Getting Proposals

Faster R-CNN
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Efficient Object Detection

person? yes

p aeroplane? no.

tvmonitor? no.

Q

Getting Proposals  Feature Extraction Classifier

Faster R-CNN SPP Fast R-CNN

66.0% —> 73.2%
47 s/im —> 0.2 s/im

Sanja Fidler CSC420: Intro to Image Understanding
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Car Example

Pascal 2007 mAP | Speed

DPM v5 33.7 .07 FPS | 14 sf/img
R-CNN 66.0 .05 FPS | 20s/img
a

/N 15 Mile, 1760 Feet

on
Sanja Fidler CSC420: Intro to Image Understanding




Car Example

DPM v5
R-CNN
Fast R-CNN

=

Pascal 2007 mAP
33.7
66.0
70.0

176 feet

Speed
.07 FPS | 14 sfimg

.05 FPS | 20s/img
S FPS | 2sf/img

[Slide credit: Joseph Chet Redmon]

Sanja Fidler
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Car Example

Pascal 2007 mAP |Speed

DPMv5 33.7 .07 FPS | 14 s/img

R-CNN 66.0 05 FPS | 20s/img

Fast R-CNN 70.0 .S FPS | 2s/img

Faster R-CNN 73.2 7FPS 140 ms/img
8 feet

JENN 12 feet
O O

[Slide credit: Joseph Chet Redmon]
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Real Time Object Detection?

A
SsD512
80 80% MAP /19 fps
SSD300
— 77% mAP / 46 fps
o
< Faster R-CNN, Ren 2015
IS 73% mAP / 7 fps
5 29°
e o2V
N~ x©
o Fast R-CNN, Girshic %5 oo\
S 70\ : 00
70% MAP /0.4 fps (O .

S oo+ Single Shot
O
>

YOLO, Redmon 2016

A R-CNN, Girshick 2014
6% MAP /21 fps

6% MAP /0.02 fps

10 20 30 40 50
Speed (fps)
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i‘ 240,

Conv.layer  Convolutional Layers Conn. Layer _Conn. Layer
7x7x6452 Detaction Layer

class prob.

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR'16]
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YOLO: Output Parametrization

Each cell predicts:

- For each bounding box:
- 4 coordinates (x,y, w, h)
- 1 confidence value

- Some number of class
probabilities

For Pascal VOC: 8 r,
o%’od/ %
- 7x7 grid 77 :
b dina b m 1st - 5th 6th - 10th 11th - 30th
- 2bounding boxes / ce Box #1 Box #2 Class Probabilities
- 20 classes

7x7x(2x5+20)=7x7x30tensor = 1470 outputs

[Slide credit: Redmon J et al. You only look once: Unified, real-time object detection. CVPR'16]
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YOLO Limitations

@ Small objects
@ Objects with different shapes and sizes

@ Occluded objects
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SSD: Single Shot MultiBox Detector

person: .85

. AL - . N2 et ~ ,
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SSD: Single Shot MultiBox Detector

@ SSD: YOLO + default box shape + multi-scale

:.----.I
S P
|_:_"'_"'|',I":

Y Py o ===
S H =, | |: ! : |: :
Srr=afrey o ! e
I||I_J|I| ||'l___ !
] R S [JET) E B W

— i
A |
Vothi sl ] | 1S [P iy
C o= =[+1=

: e Yioc: A(cz, cy,w, h)
g < conf : (c1,¢0,-+,¢p)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV'16]
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SSD: Single Shot MultiBox Detector

Extra Feature Layers
)

VGG-16 .
 _ through Conv5_3 layer Classifier : Conv: 3x3x(4x(Classes+4))
a2 218

N
AN Classifier : Conv: 3x3x(6x(Classes+4))
\
FJN NS B N VY
200 | !
1 I
| ]
image | }
b
| ]
- ]
\ ]
]
]
! J 1024 1024 ]
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128

]
I
I
I
I P
Canvd_3 : Convé Com? . Conv: 3x3x(4x(Classes+4))
! !
I
]
I
I
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1
\ YOLO Customized Architecture

74.3mAP
59FPS

1 1

Fs) (Fcn)

g " N

[ | Detections:8732| per Class |
Non-Maximum Suppression ]

l

[ | Detections: 98 per class
‘ Non-Maximum Suppression ‘

63.4mAP
45FPS

A

Fully Connected ~ Fully Connected

[Slide credit: Wei L, et al. SSD: Single Shot MultiBox Detector. ECCV'16]
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Thank you and good luck!
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